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Disruptive computer viruses have inflicted huge economic losses.This paper addresses the development of a cost-effective dynamic
control strategy of disruptive viruses. First, the development problem ismodeled as an optimal control problem. Second, a criterion
for the existence of an optimal control is given.Third, the optimality system is derived. Next, some examples of the optimal dynamic
control strategy are presented. Finally, the performance of actual dynamic control strategies is evaluated.

1. Introduction

The proliferation of computer networks has brought huge
benefits to human society. Meanwhile, it offers a shortcut to
spread computer viruses, inflicting large economic losses [1].
Consequently, containing the prevalence of digital viruses has
been one of the major concerns in the field of cybersecurity.
The spreading dynamics of computer virus has been widely
adopted as the standard method for assessing the viral
prevalence [2]. Since the seminal work by Kephart andWhite
[3, 4], a multitude of computer virus-spreading models,
ranging from the population-level models [5–12] and the
network-level models [13–17] to the node-level models [18–
22], have been proposed.

One of the central tasks in cybersecurity is to develop
control strategies of computer virus so that, subject to
limited budgets, the losses caused by computer infections
are minimized [23]. In recent years, the optimal design
problem of virus control strategies has been modeled as
static optimization problems [24–28]. The optimal static
control strategies, however, only apply to the small-timescale
situations where the network state keeps unchanged. In the
realistic situations where the network state is varying over
time, the optimal design problem of virus control strategies

can be modeled as dynamic optimal control problems [29–
33].The optimal dynamic control strategies outperform their
static counterparts, because the former not only are more
cost-effective but apply to different timescales.

A disruptive computer virus is defined as a computer
virus whose life period consists of two consecutive phases:
the latent phase and the disruptive phase. In the latent phase,
a disruptive virus staying in a host does not perform any
disruptive operations. Rather, the virus tries to infect as
many hosts as possible by sending its copies to them. In the
disruptive phase, a disruptive virus staying in a host performs
a variety of operations that disrupt the host, such as distorting
data, deleting data or files, and destroying the operating
system. To assess the prevalence of disruptive viruses, a
number of virus-spreading models, which are referred to as
the Susceptible-Latent-Bursting-Susceptible (SLBS) models,
have been suggested [34–38]. The main distinction between
the SLBS models and the traditional SEIS models lies in
that the latent hosts in the former possess strong infecting
capability, whereas the exposed individuals in the latter
possess no infecting capability at all. Recently, the basic SLBS
models have been extended towards different directions [39–
43]. At the population-level, Chen et al. [44] developed an
optimal dynamic control strategy of disruptive viruses.
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All of the above-mentioned SLBSmodels are population-
level; that is, they are based on the assumption that every
infected host in the population is equally likely to infect
any other susceptible host. These models have two striking
defects: (a) the personalized features of different hosts cannot
be taken into consideration and (b) the impact of the struc-
ture of the virus-propagating network on the viral prevalence
cannot be revealed by studying the models. To overcome
these defects, Yang et al. [45] presented a node-level SLBS
model. In our opinion, optimal dynamic control strategies of
disruptive viruses should be developed at the node-level, so
as to achieve the best cost-efficiency.

This paper is intended to develop at the node-level an
optimal dynamic control strategy of disruptive computer
viruses. First, the development problem is modeled as an
optimal control problem. Second, a criterion for the existence
of an optimal control for the optimal control problem is given.
Third, the optimality system for the optimal control problem
is presented. Next, some exemplar optimal dynamic control
strategies are given. Finally, the difference between the cost-
efficiency of an arbitrary control strategy and that of the
optimal dynamic strategy is estimated.

The subsequent materials of this work are organized as
follows. Section 2 presents the preliminary knowledge on
optimal control theory. Sections 3 and 4 formulate and study
the optimal control problem, respectively. Some numerical
examples are given in Section 5. Section 6 estimates the
aforementioned difference. Finally, Section 7 closes this work.

2. Fundamental Knowledge

For fundamental knowledge on optimal control theory, see
[46].

Consider the following optimal control problem.

Minimize
u(⋅)∈U

𝐽 (u (𝑡))
= ∫𝑇
0
𝐹 (x (𝑡) , u (𝑡)) 𝑑𝑡

subject to 𝑑x (𝑡)𝑑𝑡 = f (x (𝑡) , u (𝑡)) ,
0 ≤ 𝑡 ≤ 𝑇.

(P)

Lemma 1. Problem (P) has an optimal control if the following
five conditions hold simultaneously.

(C1) U is closed and convex.

(C2) There is u(⋅) ∈ U such that the adjunctive dynamical
system is solvable.

(C3) f(x, u) is bounded by a linear function in x.

(C4) 𝐹(x, u) is convex onU.

(C5) 𝐹(x, u) ≥ 𝑐1‖u‖𝜌 + 𝑐2 for some vector norm ‖ ⋅ ‖, 𝜌 >1, 𝑐1 > 0, and 𝑐2.

3. Formulation of the Optimal
Control Problem

Consider a population of𝑁 hosts (nodes) labelled 1, 2, . . . , 𝑁.
As with the traditional SLBS models, assume that at any time
every node in the population is in one of three possible states:
susceptible, latent, and disruptive. Susceptible nodes are those
that are not infected with any disruptive computer virus.
Latent nodes are those that are infected with some disruptive
viruses and all of them are in the latent phase. Disruptive
nodes are those that are infected with some disruptive viruses
and some of them are in the disruptive phase. Let 𝑋𝑖(𝑡) = 0,
1, and 2 denote that at time 𝑡 node 𝑖 is susceptible, latent, and
disruptive, respectively. Let

𝑆𝑖 (𝑡) = Pr {𝑋𝑖 (𝑡) = 0} ,
𝐿 𝑖 (𝑡) = Pr {𝑋𝑖 (𝑡) = 1} ,
𝐵𝑖 (𝑡) = Pr {𝑋𝑖 (𝑡) = 2} .

(1)

As 𝑆𝑖(𝑡) + 𝐿 𝑖(𝑡) + 𝐵𝑖(𝑡) ≡ 1 (1 ≤ 𝑖 ≤ 𝑁), the vector

I (𝑡)
= (𝐿1 (𝑡) , . . . , 𝐿𝑁 (𝑡) , 𝐵1 (𝑡) , . . . , 𝐵𝑁 (𝑡))𝑇 (2)

probabilistically captures the state of the population at time 𝑡.
Suppose a dynamic control strategy will be carried out

during the time frame [0, 𝑇]. Let us impose a set of statistical
hypotheses as follows.

(H1) A susceptible node 𝑖 is infected by a latent node 𝑗 at
rate 𝛽𝐿,𝑖𝑗 ≥ 0. Let A𝐿 = (𝛽𝐿,𝑖𝑗)𝑁×𝑁.

(H2) A susceptible node 𝑖 is infected by a disruptive node 𝑗
at rate 𝛽𝐵,𝑖𝑗 ≥ 0. Let A𝐵 = (𝛽𝐵,𝑖𝑗)𝑁×𝑁.

(H3) Due to the outburst of latent viruses, a latent node 𝑖
becomes disruptive at rate 𝛼𝑖 > 0. Let 𝛼 = max𝑖 𝛼𝑖.

(H4) Due to the action of new patches, at time 𝑡 a latent
node 𝑖 becomes susceptible at a controllable rate𝛾𝐿,𝑖(𝑡) ∈ 𝐿2[0, 𝑇] and 𝛾𝐿 ≤ 𝛾𝐿,𝑖(𝑡) ≤ 𝛾𝐿. Hereafter,
the symbol 𝐿2[0, 𝑇] stands for the set of all Lebesgue
square integrable functions defined on the interval[0, 𝑇]. Moreover, the cost needed to achieve the
rate at the infinitesimal time interval [𝑡, 𝑡 + 𝑑𝑡) is𝑝𝑖𝛾𝜃𝐿,𝑖(𝑡)𝑑𝑡, 𝑝𝑖 > 0, and 𝜃 > 0. This accords with the
intuition that the cost increases with 𝛾𝐿,𝑖(𝑡).

(H5) Due to the action of new patches, at time 𝑡 a disruptive
node 𝑖 becomes susceptible at a controllable rate𝛾𝐵,𝑖(𝑡) ∈ 𝐿2[0, 𝑇] and 𝛾𝐵 ≤ 𝛾𝐵,𝑖(𝑡) ≤ 𝛾𝐵. Moreover,
the cost needed to achieve the rate at the infinitesimal
time interval [𝑡, 𝑡 + 𝑑𝑡) is 𝑞𝑖𝛾𝜃𝐵,𝑖(𝑡)𝑑𝑡, 𝑞𝑖 > 0. This
conforms to the intuition that the cost increases with𝛾𝐵,𝑖(𝑡).

Figure 1 shows hypotheses (H1)–(H5) schematically.
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Figure 1: Diagram of assumptions (H1)–(H5).

Let Δ𝑡 > 0 denote a very small time interval. Hypotheses
(H1)–(H5) imply the following relations.

Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 0}
= Δ𝑡 𝑁∑
𝑗=1

𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + Δ𝑡 𝑁∑
𝑗=1

𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡) + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 0} = 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 1} = 𝛼𝑖Δ𝑡 + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 0 | 𝑋𝑖 (𝑡) = 1} = 𝛾𝐿,𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 0 | 𝑋𝑖 (𝑡) = 2} = 𝛾𝐵,𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 2} = 𝑜 (Δ𝑡) .

(3)

As a result, we have

Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 0 | 𝑋𝑖 (𝑡) = 0}
= 1 − Δ𝑡 𝑁∑

𝑗=1

𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡)

− Δ𝑡 𝑁∑
𝑗=1

𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡) + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 1}

= 1 − 𝛼𝑖Δ𝑡 − 𝛾𝐿,𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) ,
Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 2}

= 1 − 𝛾𝐵,𝑖 (𝑡) Δ𝑡 + 𝑜 (Δ𝑡) .

(4)

By the total probability formula, we get

𝐿 𝑖 (𝑡 + Δ𝑡)
= 𝑆𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 0}
+ 𝐿 𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 1}
+ 𝐵𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 1 | 𝑋𝑖 (𝑡) = 2}

= [1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)] Δ𝑡 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]
+ 𝐿 𝑖 (𝑡) − Δ𝑡 [𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡) + 𝑜 (Δ𝑡) ,

𝐵𝑖 (𝑡 + Δ𝑡)
= 𝑆𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 0}
+ 𝐿 𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 1}
+ 𝐵𝑖 (𝑡)Pr {𝑋𝑖 (𝑡 + Δ𝑡) = 2 | 𝑋𝑖 (𝑡) = 2}

= 𝛼𝑖Δ𝑡𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡) − 𝛾𝐵,𝑖 (𝑡) Δ𝑡𝐵𝑖 (𝑡) + 𝑜 (Δ𝑡) .

(5)

Transposing the terms 𝐿 𝑖(𝑡) and 𝐵𝑖(𝑡) from the right to the
left and dividing both sides by Δ𝑡, we get
𝐿 𝑖 (𝑡 + Δ𝑡) − 𝐿 𝑖 (𝑡)Δ𝑡
= [1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)] 𝑁∑

𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]
− [𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡) + 𝑜 (Δ𝑡)Δ𝑡 ,

𝐵𝑖 (𝑡 + Δ𝑡) − 𝐵𝑖 (𝑡)Δ𝑡 = 𝛼𝑖𝐿 𝑖 (𝑡) − 𝛾𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡) + 𝑜 (Δ𝑡)Δ𝑡 .

(6)

Letting Δ𝑡 → 0, we get the following dynamical model.

𝑑𝐿 𝑖 (𝑡)𝑑𝑡
= [1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)] 𝑁∑

𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]
− [𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡) ,

𝑑𝐵𝑖 (𝑡)𝑑𝑡 = 𝛼𝑖𝐿 𝑖 (𝑡) − 𝛾𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡) ,

(7)
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where 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑁. We refer to the model as the
controlled SLBS model, where the control,

𝛾 (𝑡) = (𝛾𝐿,1 (𝑡) , . . . , 𝛾𝐿,𝑁 (𝑡) , 𝛾𝐵,1 (𝑡) , . . . ,
𝛾𝐵,𝑁 (𝑡))𝑇 ,

(8)

stands for a dynamic control strategy of disruptive computer
viruses. The admissible set of controls is

Γ = {𝛾 (𝑡) ∈ (𝐿2 [0, 𝑇])2𝑁 | 𝛾𝐿 ≤ 𝛾𝐿,𝑖 (𝑡)
≤ 𝛾𝐿, 𝛾𝐵 ≤ 𝛾𝐵,𝑖 (𝑡) ≤ 𝛾𝐵, 0 ≤ 𝑡 ≤ 𝑇, 1
≤ 𝑖 ≤ 𝑁} .

(9)

Model (7) can be written in matrix notation as

𝑑I (𝑡)𝑑𝑡 = f (I (𝑡) , 𝛾 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇. (10)

Given a dynamic control strategy 𝛾(⋅). The total loss can
be measured by ∫𝑇

0
∑𝑁𝑖=1[𝐿 𝑖(𝑡) + 𝐵𝑖(𝑡)]𝑑𝑡, and the total cost

can be gauged by ∫𝑇
0
∑𝑁𝑖=1[𝑝𝑖𝛾𝜃𝐿,𝑖(𝑡) + 𝑞𝑖𝛾𝜃𝐵,𝑖(𝑡)]𝑑𝑡. As a result,

the performance of a dynamic control strategy 𝛾(⋅) can be
measured by

𝐽 (𝛾 (⋅)) = ∫𝑇
0

𝑁∑
𝑖=1

[𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡)
+ 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑡) + 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑡)] 𝑑𝑡.

(11)

Hence, developing an optimal dynamic control strategy of
disruptive viruses can be modeled as solving the following
optimal control problem.

Minimiz
𝛾(⋅)∈Γ

e 𝐽 (𝛾 (⋅)) = ∫𝑇
0

𝑁∑
𝑖=1

[𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡) + 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑡) + 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑡)] 𝑑𝑡
subject to 𝑑I (𝑡)𝑑𝑡 = f (I (𝑡) , 𝛾 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇,

I (0) = I0.
(P∗)

A solution to the optimal control problem (P∗) stands for
an optimal dynamic control strategy of disruptive viruses. For
convenience, let

𝐹 (I (𝑡) , 𝛾 (𝑡)) = 𝑁∑
𝑖=1

[𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡)
+ 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑡) + 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑡)] .

(12)

4. A Theoretical Study of the Optimal
Control Problem

In this section, we shall study the optimal control problem(P∗) presented in the previous section.

4.1. Existence of an Optimal Control. As a solution to the
optimal control problem (P∗) stands for an optimal dynamic
control strategy of disruptive viruses, it is critical to show that
there is such an optimal control. For that purpose, let us show
that the five conditions in Lemma 1 hold true simultaneously.

Lemma 2. The admissible set Γ is closed.

Proof. Let 𝛾(𝑡) = (𝛾𝐿,1(𝑡), . . . , 𝛾𝐿,𝑁(𝑡), 𝛾𝐵,1(𝑡), . . . , 𝛾𝐵,𝑁(𝑡))𝑇 be
a limit point of Γ,

𝛾(𝑛) (𝑡) = (𝛾(𝑛)𝐿,1 (𝑡) , . . . , 𝛾(𝑛)𝐿,𝑁 (𝑡) , 𝛾(𝑛)𝐵,1 (𝑡) , . . . ,
𝛾(𝑛)𝐵,𝑁 (𝑡))𝑇 , 𝑛 = 1, 2, . . . , (13)

a sequence of points in Γ such that󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛾(𝑛) (𝑡) − 𝛾 (𝑡)󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
= [[∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾(𝑛) (𝑡) − 𝛾 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑡]]
1/2

< 1𝑛 .
(14)

The completeness of (𝐿2(0, 𝑇))2𝑁 implies 𝛾(𝑡) ∈ 𝐿2(0, 𝑇)2𝑁.
Hence, the claim follows from the observation that

𝛾𝐿 ≤ 𝛾𝐿,𝑖 (𝑡) = lim
𝑛→∞

𝛾(𝑛)𝐿,𝑖 (𝑡) ≤ 𝛾𝐿,
𝛾𝐵 ≤ 𝛾𝐵,𝑖 (𝑡) = lim

𝑛→∞
𝛾(𝑛)𝐵,𝑖 (𝑡) ≤ 𝛾𝐵,

1 ≤ 𝑖 ≤ 𝑁.
(15)

Lemma 3. The admissible set Γ is convex.
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Proof. Let

𝛾(1) (𝑡) = (𝛾(1)𝐿,1 (𝑡) , . . . , 𝛾(1)𝐿,𝑁 (𝑡) , 𝛾(1)𝐵,1 (𝑡) , . . . , 𝛾(1)𝐵,𝑁 (𝑡))𝑇
∈ Γ,

𝛾(2) (𝑡) = (𝛾(2)𝐿,1 (𝑡) , . . . , 𝛾(2)𝐿,𝑁 (𝑡) , 𝛾(2)𝐵,1 (𝑡) , . . . , 𝛾(2)𝐵,𝑁 (𝑡))𝑇
∈ Γ,

(16)

and 0 < 𝜅 < 1. As (𝐿2[0, 𝑇])2𝑁 is a real vector space, we get
(1 − 𝜅) 𝛾(1) (𝑡) + 𝜅𝛾(2) (𝑡)
∈ (𝐿2 [0, 𝑇])2𝑁 . (17)

So, the claim follows from the observation that

𝛾𝐿 ≤ (1 − 𝜅) 𝛾(1)𝐿,𝑖 (𝑡) + 𝜅𝛾(2)𝐿,𝑖 (𝑡) ≤ 𝛾𝐿,
𝛾𝐵 ≤ (1 − 𝜅) 𝛾(1)𝐵,𝑖 (𝑡) + 𝜅𝛾(2)𝐵,𝑖 (𝑡) ≤ 𝛾𝐵,

1 ≤ 𝑖 ≤ 𝑁.
(18)

Lemma 4. There is 𝛾 ∈ Γ such that model (7) is solvable.

Proof. Substituting 𝛾(𝑡) ≡ 𝛾 = (𝛾𝐿, . . . , 𝛾𝐿, 𝛾𝐵, . . . , 𝛾𝐵)𝑇 into
model (7), we get

𝑑I (𝑡)𝑑𝑡 = f (I (𝑡) , 𝛾) , 0 ≤ 𝑡 ≤ 𝑇. (19)

As f(I, 𝛾) is continuously differentiable, the claim follows
from the Continuation Theorem for Differential Systems
[47].

Lemma 5. f(I, 𝛾) is bounded by a linear function in I.

Proof. The claim follows from the observation that, for 𝑖 =1, 2, . . . , 𝑁,

(1 − 𝐿 𝑖 − 𝐵𝑖) 𝑁∑
𝑗=1

(𝛽𝐿,𝑖𝑗𝐿𝑗 + 𝛽𝐵,𝑖𝑗𝐵𝑗)
− (𝛼𝑖 + 𝛾𝐿,𝑖) 𝐿 𝑖 ≤ 𝑁∑

𝑗=1

𝛽𝐿,𝑖𝑗𝐿𝑗
+ 𝑁∑
𝑗=1

𝛽𝐵,𝑖𝑗𝐵𝑗 − (𝛼𝑖 + 𝛾𝐿) 𝐿 𝑖,
𝛼𝑖𝐿 𝑖 − 𝛾𝐵,𝑖𝐵𝑖 ≤ 𝛼𝑖𝐿 𝑖 − 𝛾𝐵𝐵𝑖.

(20)

Lemma 6. 𝐹(I, 𝛾) is convex on Γ if 𝜃 ≥ 1.
Proof. TheHessian of 𝐹 with respect to 𝛾,

[[[[[[[[[[[[[[[[[[[[[[

𝜕2𝐹𝜕𝛾2𝐿,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐿,1𝜕𝛾𝐿,𝑁 𝜕2𝐹𝜕𝛾𝐿,1𝜕𝛾𝐵,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐿,1𝜕𝛾𝐵,𝑁... d
... ... d

...𝜕2𝐹𝜕𝛾𝐿,𝑁𝜕𝛾𝐿,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾2𝐿,𝑁 𝜕2𝐹𝜕𝛾𝐿,𝑁𝜕𝛾𝐵,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐿,𝑁𝜕𝛾𝐵,𝑁𝜕2𝐹𝜕𝛾𝐵,1𝜕𝛾𝐿,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐵,1𝜕𝛾𝐿,𝑁 𝜕2𝐹𝜕𝛾2𝐵,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐵,1𝜕𝛾𝐵,𝑁... d
... ... d

...
𝜕2𝐹𝜕𝛾𝐵,𝑁𝜕𝛾𝐿,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾𝐵,𝑁𝜕𝛾𝐿,𝑁 𝜕2𝐹𝜕𝛾𝐵,𝑁𝜕𝛾𝐵,1 ⋅ ⋅ ⋅ 𝜕2𝐹𝜕𝛾2𝐵,𝑁

]]]]]]]]]]]]]]]]]]]]]]

= 𝜃 (𝜃 − 1)
[[[[[[[[[[[[[[

𝑝1𝛾𝜃−2𝐿,1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0... d
... ... d

...0 ⋅ ⋅ ⋅ 𝑝𝑁𝛾𝜃−2𝐿,𝑁 0 ⋅ ⋅ ⋅ 00 ⋅ ⋅ ⋅ 0 𝑞1𝛾𝜃−2𝐵,1 ⋅ ⋅ ⋅ 0... d
... ... d

...0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 𝑞𝑁𝛾𝜃−2𝐵,𝑁

]]]]]]]]]]]]]]

,

(21)
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is always positive semidefinite. This implies the convexity of𝐹.
Lemma 7. 𝐹(I, 𝛾) ≥ min𝑖{𝑐𝑖, 𝑑𝑖}‖I‖𝜃𝜃, where ‖ ⋅‖𝜃 stands for the𝜃-norm of vectors.

Proof. We have

𝐹 (I, 𝛾) = 𝑁∑
𝑖=1

(𝐿 𝑖 + 𝐵𝑖 + 𝑝𝑖𝛾𝜃𝐿,𝑖 + 𝑞𝑖𝛾𝜃𝐵,𝑖)
≥ min
1≤𝑖≤𝑁

{𝑝𝑖, 𝑞𝑖} 𝑁∑
𝑖=1

(𝛾𝜃𝐿,𝑖 + 𝛾𝜃𝐵,𝑖)
= min
1≤𝑖≤𝑁

{𝑝𝑖, 𝑞𝑖} 󵄩󵄩󵄩󵄩󵄩I󵄩󵄩󵄩󵄩󵄩𝜃𝜃 .
(22)

We are ready to present themain result of this subsection.

Theorem 8. Problem (P∗) has an optimal control if 𝜃 > 1.
Proof. Lemmas 2–7 show that the five conditions in Lemma 1
are all met. Hence, the existence of an optimal control follows
from Lemma 1.

4.2. The Optimality System. As the optimality system for the
optimal control problem (P∗) offers amethod for numerically
solving the problem, it is critical to determine the optimality
system. For that purpose, consider the corresponding Hamil-
tonian

𝐻(I (𝑡) , 𝛾 (𝑡) , 𝜆 (𝑡))
= 𝑁∑
𝑖=1

[𝐿 𝑖 (𝑡) + 𝐵𝑖 (𝑡) + 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑡) + 𝑞𝑖𝛾𝜃2𝑖 (𝑡)]
+ 𝑁∑
𝑖=1

𝜆𝐿,𝑖 (𝑡)

⋅ {{{[1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)]
𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]

− [𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡)}}} + 𝑁∑
𝑖=1

𝜆𝐵,𝑖 (𝑡) [𝛼𝑖𝐿 𝑖 (𝑡)
− 𝛾𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡)] ,

(23)

where 𝜆(⋅) = (𝜆𝐿,1(⋅), . . . , 𝜆𝐿,𝑁(⋅), 𝜆𝐵,1(⋅), . . . , 𝜆𝐵,𝑁(⋅))𝑇 is the
adjoint.

Theorem 9. Suppose 𝛾∗(⋅) is an optimal control for problem(P∗) with 𝜃 > 1; I∗(⋅) is the solution to the controlled SLBS

model with 𝛾(⋅) = 𝛾∗(⋅).Then, there exists𝜆∗(⋅)with𝜆∗(𝑇) = 0
such that

𝑑𝜆∗𝐿,𝑖 (𝑡)𝑑𝑡 = −1 + 𝜆∗𝐿,𝑖 (𝑡){{{{{
𝛼𝑖 + 𝛾∗𝐿,𝑖 (𝑡)

+ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿∗𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵∗𝑗 (𝑡)]}}}}}
− 𝑁∑
𝑗=1

𝛽𝐿,𝑗𝑖 [1 − 𝐿∗𝑗 (𝑡) − 𝐵∗𝑗 (𝑡)] 𝜆∗𝐿,𝑗 (𝑡)
− 𝛼𝑖𝜆∗𝐵,𝑖 (𝑡) ,

𝑑𝜆∗𝐵,𝑖 (𝑡)𝑑𝑡 = −1 + 𝛾∗𝐵,𝑖 (𝑡) 𝜆∗𝐵,𝑖 (𝑡) + 𝜆∗𝐿,𝑖 (𝑡)
⋅ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿∗𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵∗𝑗 (𝑡)]
−∑
𝑗

𝛽𝐵,𝑗𝑖 [1 − 𝐿∗𝑗 (𝑡) − 𝐵∗𝑗 (𝑡)] 𝜆∗𝐿,𝑗 (𝑡) ,
𝛾∗𝐿,𝑖 (𝑡)

= max
{{{{{
min

{{{{{
[[
𝜆∗𝐿,𝑖 (𝑡) 𝐿∗𝑖 (𝑡)𝜃𝑝𝑖 ]]

1/(𝜃−1)

,

𝛾𝐿}}}}}
, 𝛾𝐿}}}}}

,
𝛾∗𝐵,𝑖 (𝑡)

= max
{{{{{
min

{{{{{
[[
𝜆∗𝐵,𝑖 (𝑡) 𝐵∗𝑖 (𝑡)𝜃𝑞𝑖 ]]

1/(𝜃−1)

,

𝛾𝐵}}}}}
, 𝛾𝐵}}}}}

,

(24)

where 0 ≤ 𝑡 ≤ 𝑇 and 1 ≤ 𝑖 ≤ 𝑁.

Proof. According to the PontryaginMinimumPrinciple [26],
there exists 𝜆∗(𝑡) such that

𝑑𝜆∗𝐿,𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (I∗ (𝑡) , 𝛾∗ (𝑡) , 𝜆∗ (𝑡))𝜕𝐿 𝑖 ,
0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁,
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𝑑𝜆∗𝐵,𝑖 (𝑡)𝑑𝑡 = −𝜕𝐻 (I∗ (𝑡) , 𝛾∗ (𝑡) , 𝜆∗ (𝑡))𝜕𝐵𝑖 ,
0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁.

(25)

Thus, the first 2𝑁 equations in the claim follow by direct
calculations. As the terminal cost is unspecified and the final
state is free, the transversality condition 𝜆∗(𝑇) = 0 holds. By
using the optimality condition

𝛾∗ (𝑡)
= argmin
𝛾(𝑡)∈Γ

𝐻(I∗ (𝑡) , 𝛾 (𝑡) , 𝜆∗ (𝑡)) , (26)

we get (a) either

𝜕𝐻 (I∗ (𝑡) , 𝛾∗ (𝑡) , 𝜆∗ (𝑡))𝜕𝛾𝐿,𝑖
= 𝜃𝑝𝑖 (𝛾∗𝐿,𝑖 (𝑡))𝜃−1 − 𝜆∗𝐿,𝑖 (𝑡) 𝐿∗𝑖 (𝑡) = 0

(27)

or 𝛾∗𝐿,𝑖(𝑡) = 𝛾𝐿 or 𝛾∗𝐿,𝑖(𝑡) = 𝛾𝐿 and (b) either

𝜕𝐻 (I∗ (𝑡) , 𝛾∗ (𝑡) , 𝜆∗ (𝑡))𝜕𝛾𝐵,𝑖
= 𝜃𝑞𝑖 (𝛾∗𝐵,𝑖 (𝑡))𝜃−1 − 𝜆∗𝐵,𝑖 (𝑡) 𝐵∗𝑖 (𝑡) = 0

(28)

or 𝛾∗𝐵,𝑖(𝑡) = 𝛾𝐵 or 𝛾∗𝐵,𝑖(𝑡) = 𝛾𝐵. So, the last 2𝑁 equations in the
claim follow.

By combining the above discussions, we get the optimality
system for problem (P∗) with 𝜃 > 1 as follows.

𝑑𝐿 𝑖 (𝑡)𝑑𝑡 = [1 − 𝐿 𝑖 (𝑡) − 𝐵𝑖 (𝑡)]
⋅ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)] − [𝛼𝑖
+ 𝛾𝐿,𝑖 (𝑡)] 𝐿 𝑖 (𝑡) ,

𝑑𝐵𝑖 (𝑡)𝑑𝑡 = 𝛼𝑖𝐿 𝑖 (𝑡) − 𝛾𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡) ,
𝑑𝜆𝐿,𝑖 (𝑡)𝑑𝑡 = −1 + 𝜆𝐿,𝑖 (𝑡){{{{{

𝛼𝑖 + 𝛾𝐿,𝑖 (𝑡)

+ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]}}}}}

− 𝑁∑
𝑗=1

𝛽𝐿,𝑗𝑖 [1 − 𝐿𝑗 (𝑡) − 𝐵𝑗 (𝑡)] 𝜆𝐿,𝑗 (𝑡)
− 𝛼𝑖𝜆𝐵,𝑖 (𝑡) ,

𝑑𝜆𝐵,𝑖 (𝑡)𝑑𝑡 = −1 + 𝛾𝐵,𝑖 (𝑡) 𝜆𝐵,𝑖 (𝑡) + 𝜆𝐿,𝑖 (𝑡)
⋅ 𝑁∑
𝑗=1

[𝛽𝐿,𝑖𝑗𝐿𝑗 (𝑡) + 𝛽𝐵,𝑖𝑗𝐵𝑗 (𝑡)]
− 𝑁∑
𝑗=1

𝛽𝐵,𝑗𝑖 [1 − 𝐿𝑗 (𝑡) − 𝐵𝑗 (𝑡)] 𝜆𝐿,𝑗 (𝑡) ,
𝛾𝐿,𝑖 (𝑡)

= max
{{{{{
min

{{{{{
[[
𝜆𝐿,𝑖 (𝑡) 𝐿 𝑖 (𝑡)𝜃𝑝𝑖 ]]

1/(𝜃−1)

,

𝛾𝐿}}}}}
, 𝛾𝐿}}}}}

,
𝛾𝐵,𝑖 (𝑡)

= max
{{{{{
min

{{{{{
[[
𝜆𝐵,𝑖 (𝑡) 𝐵𝑖 (𝑡)𝜃𝑞𝑖 ]]

1/(𝜃−1)

,

𝛾𝐵}}}}}
, 𝛾𝐵}}}}}

,
(29)

where I(0) = I0, 𝜆(𝑇) = 0, 0 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖 ≤ 𝑁.
By applying the forward-backward Euler scheme to the

optimality system, we can obtain the numerical solution to
the optimal control problem (P∗), that is, an optimal dynamic
control strategy of disruptive viruses.

5. Numerical Examples

This section gives some examples of the optimal dynamic
control strategy of disruptive computer viruses. Given a
dynamic control strategy 𝛾(𝑡). Define the average control
(AC) function, the average cumulative loss (ACL) function,
the average cumulative cost (ACC) function, and the average
cumulative performance (ACP) function as follows.

AC (𝑡) = 1𝑁
𝑁∑
𝑖=1

[𝛾𝐿,𝑖 (𝑡) + 𝛾𝐵,𝑖 (𝑡)] ,
0 ≤ 𝑡 ≤ 𝑇,
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ACL (𝑡) = 1𝑁
𝑁∑
𝑖=1

∫𝑡
0
[𝐿 𝑖 (𝑠) + 𝐵𝑖 (𝑠)] 𝑑𝑠,

0 ≤ 𝑡 ≤ 𝑇,
ACC (𝑡) = 1𝑁

𝑁∑
𝑖=1

∫𝑡
0
[𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑠)

+ 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑠)] 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇,
ACP (𝑡) = 1𝑁

𝑁∑
𝑖=1

∫𝑡
0
[𝐿 𝑖 (𝑠) + 𝐵𝑖 (𝑠)

+ 𝑝𝑖𝛾𝜃𝐿,𝑖 (𝑠) + 𝑞𝑖𝛾𝜃𝐵,𝑖 (𝑠)] 𝑑𝑠,
0 ≤ 𝑡 ≤ 𝑇.

(30)

These functions form an evaluation criterion of dynamic
control strategies of disruptive viruses.

5.1. Scale-Free Network. Scale-free networks are a large class
of networks havingwidespread applications. For our purpose,
generate a scale-free network𝐺with𝑁 = 100nodes using the
Barabasi-Albert method [48].

Example 10. Consider an optimal control problem (P∗) on
the virus-spreading network𝐺, where the parameters and the
initial conditions are set as follows.

(a) 𝑇 = 200, 𝜃 = 2, 𝛾𝐿 = 0, 𝛾𝐿 = 0.2, 𝛾𝐵 = 0.1, and𝛾𝐵 = 0.3.
(b) 𝛽𝐿,𝑖𝑗 = 0.005 and 𝛽𝐵,𝑖𝑗 = 0.001, (𝑖, 𝑗) ∈ 𝐸(𝐺).
(c) 𝛼𝑖 = 0.1 and 𝑝𝑖 = 𝑞𝑖 = 1, 𝑖 ∈ 𝑉(𝐺).
(d) 𝐿 𝑖(0) = 0.1 and 𝐵𝑖(0) = 0, 1 ≤ 𝑖 ≤ 𝑁.

For the optimal dynamic control strategy to the optimal
control problem and some static control strategies, the AC
functions, the ACL functions, the ACC functions, and the
ACP function are shown in Figure 2.

5.2. Small-WorldNetwork. Small-world networks are another
large class of networks having widespread applications. For
our purpose, generate a small-world network𝐺with𝑁 = 100
nodes using the Watts-Strogatz method [49].

Example 11. Consider an optimal control problem (P∗) on
the virus-spreading network𝐺, where the parameters and the
initial conditions are set as follows.

(a) 𝑇 = 200, 𝜃 = 2, 𝛾𝐿 = 0, 𝛾𝐿 = 0.2, 𝛾𝐵 = 0.1, and 𝛾𝐵 =0.3.
(b) 𝛽𝐿,𝑖𝑗 = 0.005 and 𝛽𝐵,𝑖𝑗 = 0.001, (𝑖, 𝑗) ∈ 𝐸(𝐺).
(c) 𝛼𝑖 = 0.1 and 𝑝𝑖 = 𝑞𝑖 = 1, 𝑖 ∈ 𝑉(𝐺).
(d) 𝐿 𝑖(0) = 0.1 and 𝐵𝑖(0) = 0, 1 ≤ 𝑖 ≤ 𝑁.

For the optimal dynamic control strategy to the optimal
control problem and some static control strategies, the AC
functions, the ACL functions, the ACC functions, and the
ACP function are shown in Figure 3.

5.3. Realistic Network. Consider a network 𝐺 with 𝑁 = 300
nodes cut out from the database of Stanford University [50].

Example 12. Consider an optimal control problem (P∗) on
the virus-spreading network𝐺, where the parameters and the
initial conditions are set as follows.

(a) 𝑇 = 200, 𝜃 = 2, 𝛾𝐿 = 0, 𝛾𝐿 = 0.2, 𝛾𝐵 = 0.1, and 𝛾𝐵 =0.3.
(b) 𝛽𝐿,𝑖𝑗 = 0.005 and 𝛽𝐵,𝑖𝑗 = 0.001, (𝑖, 𝑗) ∈ 𝐸(𝐺).
(c) 𝛼𝑖 = 0.1 and 𝑝𝑖 = 𝑞𝑖 = 1, 𝑖 ∈ 𝑉(𝐺).
(d) 𝐿 𝑖(0) = 0.1 and 𝐵𝑖(0) = 0, 1 ≤ 𝑖 ≤ 𝑁.

For the optimal dynamic control strategy to the optimal
control problem and some static control strategies, the AC
functions, the ACL functions, the ACC functions, and the
ACP function are shown in Figure 4.

6. Performance Evaluation

The previous discussions manifest that if the parameters in
the optimal control problem (P∗) are all available, then an
optimal dynamic control strategy can be obtained by numer-
ically solving the optimality system. In realistic scenarios,
however, some of these parameters might be unavailable. In
such situations, it is necessary to estimate the performance of
an actual dynamical control strategy in comparison with that
of the optimal dynamical control strategy. Now let us present
such an estimation.

Theorem 13. Consider the optimal control problem (P∗). Let𝛾∗(⋅) be the optimal dynamic control strategy, 𝛾(⋅) an arbitrary
dynamic control strategy. Then,

󵄨󵄨󵄨󵄨󵄨󵄨𝐽 (𝛾 (⋅)) − 𝐽 (𝛾∗ (⋅))󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2𝑁𝑐1𝑐2 (𝑒𝑐2𝑇 − 1 − 𝑐2𝑇 − 𝑐22𝑇22 )

+ 𝑁∑
𝑖=1

𝑝𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐿,𝑖 (𝑡) − 𝛾∗𝜃𝐿,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑞𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐵,𝑖 (𝑡) − 𝛾∗𝜃𝐵,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑡,

(31)
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Figure 2: (a) The AC functions, (b) the ACL functions, (c) the ACC functions, and (d) the ACP functions for the optimal dynamic control
strategies in Example 10.

where

𝑐1 = max
{{{{{{{
2max
1≤𝑖≤𝑁

{{{{{
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝐿,𝑖𝑗󵄨󵄨󵄨󵄨󵄨󵄨
}}}}}

+ 2max
1≤𝑖≤𝑁

{{{{{
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝐵,𝑖𝑗󵄨󵄨󵄨󵄨󵄨󵄨
}}}}}
+ 𝛾𝐿 − 𝛾𝐿, 𝛾𝐵

− 𝛾𝐵}}}}}}}
,

𝑐2 = 2max
1≤𝑖≤𝑁

{{{{{
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝐿,𝑖𝑗󵄨󵄨󵄨󵄨󵄨󵄨
}}}}}
+ 𝛼 + 𝛾𝐿

+max
{{{{{{{
2max
1≤𝑖≤𝑁

{{{{{
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝛽𝐵,𝑖𝑗󵄨󵄨󵄨󵄨󵄨󵄨}}}}}
, 𝛾𝐵}}}}}}}

.

(32)

Proof. Let ‖ ⋅ ‖ denote the ∞-norm. Let I∗(⋅) = (L∗(⋅)𝑇,
B∗(⋅)𝑇)𝑇 denote the solution to the SLBS model with control𝛾∗(𝑡) and I(⋅) = (L(⋅)𝑇,B(⋅)𝑇)𝑇 the solution to the SLBS
model with control 𝛾(⋅). As

L (𝑡) = L∗0 + ∫𝑡
0
diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))

⋅ A𝐿L (𝑠) 𝑑𝑠
+ ∫𝑡
0
diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))

⋅ A𝐵B (𝑠) 𝑑𝑠
− ∫𝑡
0
diag (𝛼𝑖 + 𝛾𝐿,𝑖 (𝑠)) L (𝑠) 𝑑𝑠,

L∗ (𝑡) = L∗0

+ ∫𝑡
0
diag (1 − 𝐵∗𝑖 (𝑠) − 𝐿∗𝑖 (𝑠))

⋅ A𝐿L∗ (𝑠) 𝑑𝑠
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Figure 3: (a) The AC functions, (b) the ACL functions, (c) the ACC functions, and (d) the ACP functions for the optimal dynamic control
strategies in Example 11.

+ ∫𝑡
0
diag (1 − 𝐵∗𝑖 (𝑠) − 𝐿∗𝑖 (𝑠))

⋅ A𝐵B∗ (𝑠) 𝑑𝑠
− ∫𝑡
0
diag (𝛼𝑖 + 𝛾∗𝐿,𝑖 (𝑠)) L∗ (𝑠) 𝑑𝑠,

(33)
we get

L (𝑡) − L∗ (𝑡) = ∫𝑡
0
diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))

⋅ A𝐿 [L (𝑠) − L∗ (𝑠)] 𝑑𝑠
+ ∫𝑡
0
diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))

⋅ A𝐵 [B (𝑠) − B∗ (𝑠)] 𝑑𝑠
− ∫𝑡
0
diag (𝐿 𝑖 (𝑠) − 𝐿∗𝑖 (𝑠) + 𝐵𝑖 (𝑠) − 𝐵∗𝑖 (𝑠))

⋅ A𝐿L∗ (𝑠) 𝑑𝑠

− ∫𝑡
0
diag (𝐿 𝑖 (𝑠) − 𝐿∗𝑖 (𝑠) + 𝐵𝑖 (𝑠) − 𝐵∗𝑖 (𝑠))

⋅ A𝐵B∗ (𝑠) 𝑑𝑠 − ∫𝑡
0
diag (𝛼𝑖 + 𝛾𝐿,𝑖 (𝑠))

⋅ [L (𝑠) − L∗ (𝑠)] 𝑑𝑠 − ∫𝑡
0
diag (𝛾𝐿,𝑖 (𝑠) − 𝛾∗𝐿,𝑖 (𝑠))

⋅ L∗ (𝑠) 𝑑𝑠.
(34)

So, 󵄩󵄩󵄩󵄩L (𝑡) − L∗ (𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩 ∫𝑡
0

󵄩󵄩󵄩󵄩diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + 󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩
⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (1 − 𝐵𝑖 (𝑠) − 𝐿 𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + 󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩
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Figure 4: (a) The AC functions, (b) the ACL functions, (c) the ACC functions, and (d) the ACP functions for the optimal dynamic control
strategies in Example 12.

⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (𝐿 𝑖 (𝑠) − 𝐿∗𝑖 (𝑠) + 𝐵𝑖 (𝑠) − 𝐵∗𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + 󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩
⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (𝐿 𝑖 (𝑠) − 𝐿∗𝑖 (𝑠) + 𝐵𝑖 (𝑠) − 𝐵∗𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + ∫𝑡

0

󵄩󵄩󵄩󵄩diag (𝛼𝑖 + 𝛾𝐿,𝑖 (𝑠))󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
+ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩diag (𝛾𝐿,𝑖 (𝑠) − 𝛾∗𝐿,𝑖 (𝑠))󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
≤ (2 󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩 + 2 󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩 + 𝛾𝐿 − 𝛾𝐿) 𝑡 + (󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩 + 𝛼 + 𝛾𝐿)

⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠 + 󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩
⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠.
(35)

As

B (𝑡) = B∗0 + ∫𝑡
0
diag (𝛼𝑖) L (𝑠) 𝑑𝑠

− ∫𝑡
0
diag (𝛾𝐵,𝑖 (𝑠))B (𝑠) 𝑑𝑠,

B∗ (𝑡) = B∗0 + ∫𝑡
0
diag (𝛼𝑖) L∗ (𝑠) 𝑑𝑠

− ∫𝑡
0
diag (𝛾∗𝐵,𝑖 (𝑠)) ⋅ B∗ (𝑠) 𝑑𝑠,

(36)



12 Discrete Dynamics in Nature and Society

we get

B (𝑡) − B∗ (𝑡)
= ∫𝑡
0
diag (𝛼𝑖) [L (𝑠) − L∗ (𝑠)] 𝑑𝑠

− ∫𝑡
0
diag (𝛾𝐵,𝑖 (𝑠)) [B (𝑠) − B∗ (𝑠)] 𝑑𝑠

− ∫𝑡
0
diag (𝛾𝐵,𝑖 (𝑠) − 𝛾∗𝐵,𝑖 (𝑠))B∗ (𝑠) 𝑑𝑠.

(37)

Thus,

󵄩󵄩󵄩󵄩B (𝑡) − B∗ (𝑡)󵄩󵄩󵄩󵄩
≤ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (𝛼𝑖)󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
+ ∫𝑡
0

󵄩󵄩󵄩󵄩diag (𝛾𝐵,𝑖 (𝑠))󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
+ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩diag (𝛾𝐵,𝑖 (𝑠) − 𝛾∗𝐵,𝑖 (𝑠))󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
≤ (𝛾𝐵 − 𝛾𝐵) 𝑡 + 𝛼∫𝑡

0

󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠
+ 𝛾𝐵 ∫𝑡

0

󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩 𝑑𝑠.

(38)

As ‖I(𝑡) − I∗(𝑡)‖ = max{‖L(𝑡) −L∗(𝑡)‖, ‖B(𝑡) −B∗(𝑡)‖}, we get
󵄩󵄩󵄩󵄩󵄩󵄩I (𝑡) − I∗ (𝑡)󵄩󵄩󵄩󵄩󵄩󵄩 ≤ max {2 󵄩󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩󵄩 + 2 󵄩󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩󵄩
+ 𝛾𝐿 − 𝛾𝐿, 𝛾𝐵 − 𝛾𝐵} 𝑡 + (󵄩󵄩󵄩󵄩󵄩A𝐿󵄩󵄩󵄩󵄩󵄩 + 𝛼
+ 𝛾𝐿)∫𝑡

0

󵄩󵄩󵄩󵄩󵄩󵄩L (𝑠) − L∗ (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑠
+max {󵄩󵄩󵄩󵄩󵄩A𝐵󵄩󵄩󵄩󵄩󵄩 , 𝛾𝐵}
⋅ ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩󵄩B (𝑠) − B∗ (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑠 ≤ 𝑐1𝑡
+ 𝑐2 ∫𝑡
0

󵄩󵄩󵄩󵄩󵄩󵄩I (𝑠) − I∗ (𝑠)󵄩󵄩󵄩󵄩󵄩󵄩 𝑑𝑠.

(39)

Applying the Gronwall inequality [47], we get

󵄩󵄩󵄩󵄩󵄩󵄩I (𝑡) − I∗ (𝑡)󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝑐1𝑡 + 𝑐1𝑐2 ∫𝑡0 𝑠𝑒𝑐2(𝑡−𝑠)𝑑𝑠
= 𝑐1𝑐2 (𝑒𝑐2𝑡 − 1 − 𝑐2𝑡) .

(40)

Hence, we deduce that󵄨󵄨󵄨󵄨𝐽 (𝛾 (⋅)) − 𝐽 (𝛾∗ (⋅))󵄨󵄨󵄨󵄨
≤ 𝑁∑
𝑖=1

∫𝑇
0

󵄨󵄨󵄨󵄨𝐿 𝑖 (𝑡) − 𝐿∗𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡
+∑
𝑖

∫𝑇
0

󵄨󵄨󵄨󵄨𝐵𝑖 (𝑡) − 𝐵∗𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡
+∑
𝑖

𝑝𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐿,𝑖 (𝑡) − 𝛾∗𝜃𝐿,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑞𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐵,𝑖 (𝑡) − 𝛾∗𝜃𝐵,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
≤ 2𝑁∫𝑇

0

󵄩󵄩󵄩󵄩I (𝑡) − I∗ (𝑡)󵄩󵄩󵄩󵄩 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑝𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐿,𝑖 (𝑡) − 𝛾∗𝜃𝐿,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑞𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝜃𝑘𝑖 (𝑡) − 𝜃∗𝑘𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
≤ 2𝑁𝑐1𝑐2 (𝑒𝑐2𝑇 − 1 − 𝑐2𝑇 − 𝑐22𝑇22 )
+ 𝑁∑
𝑖=1

𝑝𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐿,𝑖 (𝑡) − 𝛾∗𝜃𝐿,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡
+ 𝑁∑
𝑖=1

𝑞𝑖 ∫𝑇
0

󵄨󵄨󵄨󵄨󵄨𝛾𝜃𝐵,𝑖 (𝑡) − 𝛾∗𝜃𝐵,𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡.

(41)

Although this estimation is rough, it takes the first
step towards the accurate performance evaluation of actual
dynamic control strategies of disruptive computer viruses.

7. Conclusions and Remarks

This paper has studied the problem of containing disruptive
computer viruses in a cost-effective way. The problem has
been modeled as an optimal control problem. A criterion
for the existence of an optimal control has been given, and
the optimality system has been derived. Some examples of
the optimal dynamic control strategy have been presented.
Finally, the performance of an actual control strategy of
disruptive viruses has been estimated.

Towards this direction, there are a number of problems
that are worth studying. First, the bandwidth resources
consumed in the virus control process should be measured
and incorporated in the cost. Second, the optimal dynamic
control problem should be investigated under sophisticated
epidemic models such as the impulsive epidemic models
[51, 52], the stochastic epidemic models [53–55], and the
epidemic models on time-varying networks [56–58]. Last,
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it is rewarding to apply the methodology developed in this
paper to the optimal dynamic control of rumor spreading
[59–61].
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