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To solve problems such as the high cost of microgrids (MGs), balance between supply and demand, stability of system operation,
and optimizing the MG planning model, the energy storage system (ESS) and harmony search algorithm (HSA) are proposed.
First, the conventional MG planning optimization model is constructed and the constraint conditions are defined: the supply and
demand balance and reserve requirements. Second, an ESS is integrated into the optimal model of MG planning. The model with
an ESS can solve and identify parameters such as the optimal power, optimal capacity, and optimal installation year. Third, the
convergence speed and robustness of the ESS are optimized and improved. A case study comprising three different cases concludes
the paper. The results show that the modified HSA (MHSA) can effectively improve the stability and economy of MG operation
with an ESS.

1. Introduction

Distributed powers, loads, energy storage systems (ESS), and
control devices are combined using microgrids (MGs) to
form a single controllable power generation and distribution
system, supplying electricity andheat to users simultaneously.
With operational control, energy management, and other
key technologies, MGs can be connected to the grid or run
separately. These approaches reduce the adverse effects of
an intermittent distributed power supply to the distribution
network and maximize the use of distributed power output
to improve reliability and power quality. In recent years, MGs
have been joined by smart-energy comprehensive-utilization
LANnetworks, which offer superior performancewhenusing
wind power, solar photovoltaic (PV), and other sources of
renewable clean energy power generation with a high devel-
opment rate. Due to the reverse distribution of renewable
energy power generation and customer power demand, the
balance between supply and demand is challenging to meet,
and an auxiliary power source for renewable energy power
generation is necessary. Based on the peak-valley conditions

of the load curve, ESS can effectively flatten the peak-valley
difference by optimizing the charge-discharge behavior.
Therefore, ESS are widely used in MGs. The operating
characteristics of MGs can be affected, however, in the case
of a large-scale ESS with its high initial investment cost. The
study of how to optimize MG planning with ESS has both
important theoretical value and practical significance.

MG demonstration projects have been conducted in
many countries [1]. More than 400 MGs have been con-
structed, are under construction, or are awaiting construc-
tion. The US Distributed Energy Technology Laboratory
(DETL) analyzes the efficiency of distributed generation
(DG), monitors the changes in output, and searches the
impact on MGs caused by load variation [2]. MG Manheim
in Germany is located in a residential area, containing six
PV units [3]. This MG tests the decentralized controls with
controls based on agents. The MG demonstration project in
Kyotango, Japan, is aimed at MG energy management and
power quality control [4]. Relative to those of developed
countries, studies ofMG technology inChina started late.The
current demonstration projects can be divided into remote
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MGs, island MGs and urban MGs [5]. The new energy
MG demonstration area in Turpan, Xinjiang, is currently
the largest and most comprehensive application in China
and is an integral project examining the use of solar energy
in buildings [6]. The MG at Dangan Island is the first
independent renewable power station in China.ThisMG can
use wave energy to desalinate 60 t/day of seawater [7]. The
MG ESS at the Nanjing Power Supply Company can smooth
output fluctuations of wind and light energy and switch the
grid-connected system to off-grid mode freely in the system
[8].

At present, the optimization method of MGs with ESS
considers primarily economic characteristics, response char-
acteristics, and environmental protections. Reference [9]
considers the environmental costs and reliability constric-
tions from the angle of minimizing investment and optimizes
the power supply capacity forMGs to operate an entire year in
islands. Reference [10] describes the reliability of MGs. Based
on economic dispatching and considering system reliability,
the energy storage optimization model is established in this
literature. Reference [11] aims at developing a wind storage
system and considers the influence of the wind power pen-
etration rate, energy storage efficiency, and diesel generator
operation strategy from the perspective of minimizing power
supply costs. A stochastic optimization method is used to
obtain the optimal energy storage capacity, and the corre-
sponding sensitivity analysis is conducted. Considering econ-
omy and reliability, [10] establishes the objective function and
can obtain the optimal capacity disposition of the ESS for
different types of MGs. The objective of [12] is to maximize
net profit over a maximized lifetime. A power generation
planning model, including a low-carbon economy MG sys-
tem, is established. In [13], a stochastic model is proposed
for the coordinated scheduling of combined heat and power
units inMGs.Thismodel also considers wind turbine and PV
units. Based on the cost formula, [14] identifies the optimal
size of battery energy storage in operational management.
Reference [15] proposes amultiobjective energymanagement
system in the short term with the presence of renewable
energy. This system can optimize the performance of MGs.
Reference [16] seeks to optimize the random behaviors of
wind and solar energy in MGs in the short term and with
the presence of renewable energy sources.The response loads
involved in the operating costs and pollutant emissions are
also considered. An MG optimizing model is proposed in
[17]. The model integrates microhydropower and renewable-
energy-driven power plants with PV systems connected to
the grid system. References [18, 19] establish an MG with
electric vehicles and distributed power generation, optimize
its constraints, and propose an improved general type 2 fuzzy
logic set (GT2FLS) and harmony search algorithm (HSA) to
minimize the frequency deviation of the MG on the load
disturbance. In [20], a robust control strategy for an MG
with electric vehicles and DG is introduced. This strategy
guarantees the stability and robustness of the system and
can be applied to different MG configurations. With the
development of smart grid technology, user demand response
[21], real-time price [22], and other factors are also considered
in MG optimal scheduling models.

Existing studies, however, have the following two defi-
ciencies: the balance between supply and demand is usually
considered in constraints, but the system reserve problem
is not [23]. Based on the reliability of the system, the total
reserve capacity determined is typically 25%–30%of themax-
imum load in theMG system [24]. As a smart comprehensive
multienergy utilization LAN network, the reserve system
should be fully met. Regarding the selection of an appropri-
ate algorithm, existing studies use analytical methods [25],
numerical algorithms [26], and other traditional optimiza-
tion algorithms in general.These algorithms require improve-
ment with regard to their convergence speed and calculation
results. The limitations of traditional optimization methods
have appeared, and the scale and complexity of optimization
problems are increasing gradually. Additional advanced plan-
ning studies onMGs have used heuristic intelligent optimiza-
tion algorithms [27] such as the genetic algorithm [28], parti-
cle swarm optimization (PSO) [29], enhanced gravity search
algorithm (EGSA) [30], and HSA [31], to solve the problems;
however, these algorithms still have room to improve in terms
of convergence time, optimal problem searching, and results.
Thus, the contributions of this study are as follows:

(i) An optimization model for MG planning is estab-
lished with the objective function of the minimum
operating cost in the scheduling period. The oper-
ational costs consist of the fuel cost, unit operation
cost, and power purchase cost. In addition, the model
considers the supply and demand balance constraint
and the system reserve constraint.

(ii) An optimization model for MG planning with ESS is
proposed to enhance the stability and economyofMG
operation. The model takes the scale constraint and
operational constraint of ESS operation as the new
constraint conditions.

(iii) A modified harmony search algorithm (MHSA) is
proposed. To apply the coordination search ability
and overcome the limitations of the harmony search
range, a subharmony memory is constructed to
improve the algorithm’s adaptability. The algorithm
could increase the convergence speed and reduce the
total cost.

The remainder of this paper is organized as follows:
Section 2 constructs an optimizationmodel forMG planning
with the objective function of minimum operation cost. In
Section 3, an optimizationmodel of MG planning with ESS is
established, including the objective function and constraints.
Section 4 uses the MHSA to enhance the adaptability and
expand the search range. Three simulation cases are estab-
lished to demonstrate the validity of the MHSA in Section 5.
Section 6 highlights the main conclusions of this study.

2. Basic MG Planning Optimization Model

Reasonable MG planning optimization can enhance eco-
nomic benefits, optimize the overall power flow, and improve
power quality. In this section, an optimization model of MG
planning is established.
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2.1. Objective Function. The model takes the minimum
MG operation cost as the objective function, which can be
calculated as shown in

𝐶MO =
𝑁∑
𝑛=1

24∑
ℎ=1

𝐽∑
𝑗=1

365
× (𝐶𝐹,𝑗𝑃𝑛,ℎ,𝑗 + 𝐶PV,𝑗 ⋅ 𝑃𝑛,ℎ,𝑗 + 𝐶𝑊,𝑗 ⋅ 𝑃𝑛,ℎ,𝑗 + 𝜗𝐶buy,𝑗 − 𝜁𝐶sell,𝑗)
× (1 + 𝑟)−𝑛 ,

(1)

where 𝑛 is the indexed year;𝑁 is the planning cycle;𝐶mo rep-
resentsMG operational costs including the unit commitment
cost, fuel cost, and unit operation cost; ℎ is the indexed hour;𝑗 is the index for DG units; 𝐽 is the number of DG units; 𝐶𝐹,𝑗
is the fuel cost of unit 𝑗;𝑃𝑛,ℎ,𝑗 is the output power of DG unit 𝑗
at hour ℎ in year 𝑛; 𝐶PV,𝑗 is the operational cost of PV power
generating 𝑗; 𝐶𝑊,𝑗 is the operational cost of wind turbine 𝑗;𝐶buy,𝑗 is the power purchasing cost of MG from the main
network; 𝜗 is a binary variable; 𝐶sell,𝑗 is the revenue of MG
power sales for the main network; 𝜁 is a binary variable; 𝑟 is
the discount rate; and 𝑛 is the index for the years of interest.
2.2. Constriction Conditions. The MG planning model is
constrained by many factors. In this section, the supply and
demand balance constraints and system reserve constraints
are considered.

2.2.1. Supply and Demand Balance Constraint. When the
DG generation capacity cannot meet the energy demand at
specific hours, the MG requires the power to be transported
from the main network:

𝐽∑
𝑗=1

𝑃𝑛,ℎ,𝑗 + 𝑃𝐵,𝑛,ℎ + 𝑃𝑉,ℎ + 𝑃𝑊,ℎ + 𝜓𝑃Main,ℎ

= (1 + 𝜃)𝑛−1 𝑃𝐷,ℎ,
(2)

where 𝑃𝑉,ℎ is the prediction value of PV output power at hourℎ; 𝑃𝑊,ℎ is the prediction value of WPP power output at hourℎ; 𝑃main,ℎ is a binary variable; 𝜃 is the load growth rate; and𝑃𝐷,ℎ is the demand forecast value at hour ℎ.
2.2.2. MG Reserve Constraint. The distributed power supply
is a mutual reserve of the power grid, which has the advan-
tages of high reliability and energy efficiency.TheMG reserve
should satisfy no less than 15% of the load demand per hour.
The following conditions should also be met:

𝑅𝑛,ℎ + 𝑅𝐵,𝑛,ℎ = 𝜇𝐷 (1 + 𝜃)𝑛−1 𝑃𝐷,ℎ + 𝜇𝑉𝑃𝑉,ℎ + 𝜇𝑊𝑃𝑊,ℎ,
𝑅𝑛,ℎ ≤

𝐽∑
𝑗=1

(𝑃𝑗,max − 𝑃𝑛,ℎ,𝑗) ,
𝑅𝐵,𝑛,ℎ
≤ −𝑃𝐵,𝑛,ℎ +min {(𝑆𝐵,𝑛,ℎ − 0.15 × 𝐸BR,𝑛) 𝑄𝐵𝑃BR,𝑛} ,

(3)

where 𝑅𝑛,ℎ is the reserve of the DG unit at hour ℎ in year𝑛; 𝑅𝐵,𝑛,ℎ is the reserve of ESS at hour ℎ in year 𝑛; 𝜇𝐷 is

the prediction error of the load demand; 𝜇𝑉 and 𝜇𝑊 are the
prediction errors of PV and WPP, respectively; 𝑃𝑗,max is the
maximum output power of unit 𝑗; 𝑆𝐵,𝑛,ℎ is the ESS charging
state at hour ℎ in year 𝑛; 𝐸𝐵,𝑛 is the ESS capacity in year 𝑛; and𝑄𝐵 is the ESS charging and discharging efficiency.

3. MG Planning Optimization Model
with ESS

In this section, the optimizationmodel forMGplanning with
ESS is established based on the basic model. The model can
be used to solve the problems of the optimal power, optimal
capacity, and the optimal installation year for MGs with ESS.

3.1. Objective Function. The operating cost of MGs and the
investment cost of the ESS are considered in this planning
model for MGs with ESS. The objective of this study is to
address the ESS installation planning problem in existing
MGs; thus, the investment cost of MGs is not included. The
total cost in the planning cycle is taken as the objective
function. The total cost includes the operation cost of MGs
and the investment cost of the ESS:

min𝐶 = 𝐶MO + 𝐶𝐵, (4)

where𝐶 is the objective function of the investment cost;𝐶MO
is the MG operating cost; and 𝐶𝐵 is the ESS installation and
operational costs.

The ESS cost includes the installation cost and the
operational cost.The installation cost is calculated as follows:

𝐶BI =
𝑁∑
𝑛=1

(𝐶BVI
𝑃𝑃𝐵,𝑛 + 𝐶BVI

𝐸𝐸𝐵,𝑛 + 𝐶BFI) × ( 𝑃
𝐹, 𝑟, 𝑛) , (5)

where 𝐶BI is the ESS installation cost; 𝐶BVI
𝑃 is the variable

installation cost associated with the rated power; 𝑃𝐵,𝑛 is the
power output of the ESS in installation year 𝑛; 𝐶BVI

𝐸 is the
variable installation cost related to the capacity size; 𝐸𝐵,𝑛
is the capacity of the ESS in installation year 𝑛; 𝐸𝐵,𝑛 = 0
represents ESS not installed in year 𝑛; and 𝐶BFI is the fixed
installation cost. The operation cost of ESS is predominantly
the system operation cost and fixed operation cost, which can
be calculated as follows:

𝐶BO =
𝑁∑
𝑛=1

(𝐶BFO𝑃BR,𝑛) (1 + 𝑟)−𝑛

+ 𝑁∑
𝑛=1

24∑
ℎ=1

365 × 𝐶BVO𝑃𝐵,𝑛,ℎ (1 + 𝑟)−𝑛 ,
(6)

where 𝐶BO is the ESS operation cost; 𝐶BFO is the fixed
operation cost; 𝑃BR,𝑛 is the rated power in year 𝑛; 𝐶BVO is the
variable operation cost; and 𝑃𝐵,𝑛,ℎ is the ESS power output at
hour ℎ in year 𝑛.
3.2. ConstrictionConditions. Thesupply anddemandbalance
constraint and reserve constraint must still be considered in
the optimization model for MG planning with ESS. In addi-
tion, the ESS scale constraints and operational constraints
should also be considered in the model.
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3.2.1. Scale Constraints. The scale constraints, including
installation power constraints, capacity scale constraints, and
energy-scale constraints at a specific power size, can be
calculated by (7) as follows:

𝑃BR,𝑛 = {{{
𝑃𝐵,𝑛, 𝑛 = 1
𝑃𝐵,𝑛 + 𝑃BR,𝑛−1, 𝑛 ̸= 1,

𝐸BR,𝑛 = {{{
𝐸𝐵,𝑛, 𝑛 = 1
𝐸𝐵,𝑛 + 𝐸BR,𝑛−1, 𝑛 ̸= 1,

𝛽EP,min𝑃BR,𝑛 ≤ 𝐸BR,𝑛 ≤ 𝛽EP,max𝑃BR,𝑛,

(7)

where 𝑃BR,𝑛 is the ESS rated power; 𝐸BR,𝑛 is the ESS rated
capacity; and 𝛽EP ,max and 𝛽EP ,min are the ESS maximum and
minimum efficiency, respectively.

3.2.2. Operational Constraints. The ESS operational con-
straints include limits on power charging and discharging
levels, initial charging state constraints, and power limitations
and capacity constraints. They can be described as follows:

𝐵dis,𝑛,ℎ + 𝐵ch,𝑛,ℎ ≤ 1,
−𝑃BR,𝑛 ⋅ 𝐵ch,𝑛,ℎ ≤ 𝑃𝐵,𝑛,ℎ ≤ 𝑘 ⋅ 𝑃BR,𝑛 ⋅ 𝐵dis,𝑛,ℎ,

𝑆𝐵,𝑛,ℎ = 𝑘 ⋅ 𝐸BR,𝑛,
−𝑃BR,𝑛 ≤ 𝑃𝐵,𝑛,ℎ ≤ 𝑃BR,𝑛,

0.15 𝐸BR,𝑛 ≤ 𝑆𝐵,𝑛,ℎ ≤ 𝐸BR,𝑛,

(8)

where 𝐵dis,𝑛,ℎ is the discharging binary variable. When𝐵dis,𝑛,ℎ = 1, the ESS is discharging at hour ℎ in year 𝑛. When𝐵dis,𝑛,ℎ = 0, the ESS is not discharging. 𝐵ch,𝑛,ℎ is the charging
binary variable. When 𝐵ch,𝑛,ℎ = 1, the ESS is charging at hourℎ in year 𝑛, and when 𝐵ch,𝑛,ℎ = 0, the ESS is not charging. 𝑘 is
the index of discharging depth.

4. Improved Harmony Search Algorithm

The HSA is a new type of intelligent optimization algo-
rithm that can find optimal solutions more easily. A simple
searching process and strong global searching ability are the
advantages of the HSA [32]. This paper will introduce the
HSA, expand the search range, and improve the coordination
of local and global search to solve the proposed model [33].

4.1. Harmony Search Algorithm. Z. W. Geem et al. proposed
a heuristic intelligent optimization algorithm called the HSA
[34]. The specific calculation steps are introduced as follows.

Step 1. The objective function, constraints, and basic param-
eters of harmony search are determined.A 𝐻 is the number
that could be saved by harmony memory (HM).The number
should be less than the number of feasible solutions.B 𝑃rob is
the preserving probability of harmonic memory, specifically
the probability of preserving the solution 𝑥𝑗𝑖 from HM when
a new solution emerges. C 𝑃art is the probability of fine-
tuning the disturbance in a portion of the solution.D 𝐼 is the

number of improvised operations, specifically the number of
cycles.

Step 2. HM is initialized.𝐻 is the number of initial solutions
generated randomly in the optimization problems. 𝑄0 is an
HM gathered by𝐻 initial solutions when iterative algebra 𝑡 =0. This parameter can be expressed as follows:

𝑄0 =
[[[[[[[[[[
[

𝑥11 ⋅ ⋅ ⋅ 𝑥1𝑁 𝑓11 𝑓12
𝑥21 ⋅ ⋅ ⋅ 𝑥2𝑁 𝑓21 𝑓22... ⋅ ⋅ ⋅ ... ... ...
𝑥𝐻−11 ⋅ ⋅ ⋅ 𝑥𝐻−1𝑁 𝑓𝐻−11 𝑓𝐻−12
𝑥𝑁1 ⋅ ⋅ ⋅ 𝑥𝐻𝑁 𝑓𝐻1 𝑓𝐻2

]]]]]]]]]]
]

, (9)

where 𝑋𝑗 is the 𝑗th solution vector; 𝑥𝑗𝑖 is the 𝑖th subvector of
the 𝑗th solution vector; and𝑓(𝑋𝑗) is the function value of the𝑗th solution vector, with 𝑖 = 1, 2, . . . , 𝐻 and 𝑗 = 1, 2, . . . , 𝑁.

Step 3. New solutions are generated. New harmonic vectors𝑋new = (𝑥1new, 𝑥2new, . . . , 𝑥𝑖new, . . . , 𝑥𝑛new) are generated in
the following three ways:A Some of the solutions in HM are
preserved with a probability of 𝑃rob. In other words, the new
solution 𝑥𝑖new comes from the collection of the 𝑖th solution
component in the memory𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝐻}.B A new
solution 𝑥𝑖new is generated randomly with a probability of 1−𝑃rob.C Part of 𝑃art in 𝑥𝑖new is disturbed by the above method.
The disturbance principle can be calculated as

𝑥󸀠𝑖new = 𝑥𝑖new + 2 ⋅ 𝜂 ⋅ rand − 𝜂, (10)

where 𝜂 is the bandwidth; rand is the random number
between 0 and 1; and 𝑥󸀠𝑖new is the 𝑖th new solutions after
disturbance:

𝑥new𝑖
←󳨀 {{{

𝑥new𝑖 ∈ {𝑥1𝑖 , 𝑥2𝑖 , . . . , 𝑥𝐻𝑖 } , rand ( ) < 𝑃rob
𝑥new𝑖 ∈ 𝑋new

𝑖 , otherwise: 𝑖 = 1, 2, . . . , 𝑁,
(11)

where 𝑁 is the number of solutions and rand is a random
number between 0 and 1. The new harmony 𝑥𝑖new requires
tonal tuning if its value comes from HM.

Step 4. The memory is updated. The worst solution is
replaced by the new one if the new solution is better than the
worst in HM, and then the new HM is obtained. Otherwise,
the original solution is kept unchanged.

Step 5. The algorithm ends if the program reaches the
predetermined number of iterations I. If not, the algorithm
returns to Step 3.

Figure 1 shows the algorithm flow chart.

4.2. Algorithm Improvement. HSA has the advantages of a
simple search process, strong global searching ability, and
finding optimal solutions easily, but the convergence speed



Discrete Dynamics in Nature and Society 5

Step 1. Objective functions, constraint conditions,
and the basic parameters of HSA are determined

Step 2. HM is initialized and N optimization problem
solutions are randomly generated and put into the memory

The worst solution is replaced
and the new one is put into HM

Step 4. Whether the new solution is larger
than the worst in the HM is judged

Whether it reaches the termination condition
(the maximum number of iterations) is judged

Step 5. Output the optimal solution

End

Start

Yes

Yes
No

No

Step 3. New solutions are generated by
specific mechanisms X

Ｈ？Ｑ
= x

Ｈ？Ｑ

1 , x
Ｈ？Ｑ

2 , . . . , x
Ｈ？Ｑ

i , . . . , x
Ｈ？Ｑ

n

Figure 1: Flow chart of HSAS.

is slow. The adaptability is poor, and the search range is
limited. In this section, the MHSA is proposed to improve
the convergence speed and robustness of the HSA [35].

4.2.1. The Improvement of Self-Adaptability. MHSA adds the
optimal solution weight 𝜔 (0.4–0.6) in Step 3, and the
remainingweight is divided equally by other solutions. As the
number of iterations decreases, the fixed bandwidth 𝜂 also
decreases. The decreasing of the fixed bandwidth 𝜂 can be
described as follows:

𝜂 = 𝑍 ⋅ ( 𝐿𝐼𝐼max
) , (12)

where Z is the maximum range of the function; LI is the
current number of remaining iterations; and 𝐼max is the
maximum number of iterations. By introducing this adaptive
strategy, the local and global searching ability of the HSA can
be improved to achieve optimization.

4.2.2. The Establishment of Sub-HM. The process of creating
the sub-HM is as follows [36]:AThemain HM is established
as a sub-HM searched by the standard iterative. B An aux-
iliary harmony searching iteratively from the opposite direc-
tion of the main HM is established. The algorithm divides all
solutions of HM into two mutually independent sublibraries
after being randomly initialized, rather than updating the
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entire solutions. According to the standard HSA, one of the
sublibraries of HM searches iteratively.The other one search-
es from the opposite end, fully exploring the search range and
identifying useful information within the search field.

The process of MHSA in MG planning with ESS is
described as follows:

(1) MG planning with the ESS and its algorithm parame-
ters are initialized.

(2) HM is initialized, and the harmony matrix is gen-
erated. After random initialization, HM is divided into the
main HM and auxiliary HM. The value of each harmony is
calculated.

(3) Based on the main HM and the auxiliary HM, a
new HM can be generated through the methods of harmony
preservation, pitch adjustment, and random selection. In
the process of generating the new harmonic vector, three
principles will be used: harmony reservation, tone control,
and random selection.

(4) The next-generation HM is updated according to
the algorithmic principle. The optimal solution weight 𝜔 is
added; 𝜂 is self-adaptive in this step.

(5) The criterion of terminating the proofreading algo-
rithm: Take the convergence principle as reference, and judge
whether the algorithm satisfies the convergence condition. If
not, Steps 3 and 4 will be repeated until the algorithm satisfies
the convergence condition or reaches the maximum value.

5. Case Simulation

Three simulation cases are established to verify the applicabil-
ity of the proposed model and algorithm. The DG net power
generation and reserve in different cases are assumed. The
model is calculated by MHSA and compared with HSA and
PSO.

5.1. Basic Data. A small MG in China is chosen as the
analytical object. This MG system is a small commercial
and industrial MG. The load characteristics are sensitive and
require a relatively high level of power supply reliability and
quality. The MG consists of two diesel generators (namely,
DG1 and DG2) with 250 kW installed capacity, a PV gener-
ator DG3 with a capacity of 100 kW, and a wind generator
DG4 with a capacity of 150 kW. The upper climbing power
and lower climbing power of DG1 andDG2 are notmore than
50 kW, the start-shut time of DG1 and DG2 is not less than 30
minutes, and the start-shut cost of DG1 andDG2 is ¥120. PSO
is a type of bionic optimization algorithm [37] based on the
swarm intelligence theory with the advantages of simplicity,
high precision, and fast convergence. PSO is widely used in
neural network construction, power system planning, and
fuzzy controls [38]. Table 1 illustrates the parameter values of
the DG units in the MG.

Lead-acid batteries [39] are used in theMG.The users are
predominantly residents, public utilities, and small business
users. Table 2 shows the values of the model parameters. The
data in the table are based on the general standard of [40].

Data from a typical summer day are selected to calculate
the three scenarios and ensure the load distribution, size,
and standby requirements are consistent. The load demand

Table 1: Parameter values of the DG units in the MG.

Unit Parameter
𝐶𝐹,𝑗 𝐶PV,𝑗 𝐶𝑊,𝑗

DG1 0.35 yuan/kWh — —
DG2 0.35 yuan/kWh — —
DG3 — 0.95 yuan/kWh —
DG4 — — 0.55 yuan/kWh

Table 2: Parameter values of the model.

Parameter Value
𝑁 8
𝑟 5%
𝑄𝐵 90%
𝐶BFI 16000 yuan
𝐶BVI
𝑃 2035 yuan/kW

𝐶BVI
𝐸 675 yuan/kWh

𝐶BFO 60 yuan/kW/year
𝐶BVO 0.01 yuan/kWh
𝐶buy,𝑗 0.8 yuan/kWh
𝐶sell,𝑗 0.4 yuan/kWh
𝛽EP 2–4
𝑃𝑗,max 300 kW
𝜇𝐷 3%
𝜇𝑉 6%
𝜇𝑊 15%
𝜃 1%

of the MG system on a typical summer day is as follows: the
power consumption is low from 22:00 to 7:00 because the
users are predominantly residential users, enterprise users,
and small business users. The power consumption is high
during the daytime and peaks at noon and in the evening.
Figure 2 shows the distribution of theMG’s load demand and
reserve demand.

The parameters for MHSA are set as follows: 𝐻 = 50,𝑃rob = 0.9,𝑃art = 0.1,𝜔 = 0.5, and 𝐼max = 200.The parameters
for HSA are set as follows: H = 50, 𝑃rob = 0.9, 𝑃art = 0.1,𝐼max = 200, and 𝜂 = 100. The parameters for PSO are as
follows: the population size is 50; the learning factors are𝑐1 = 𝑐2 = 2; the number of initial iterations is 1; the maximum
number of iterations is 200; the inertia weight is 0.9; and the
random number is 𝑟1 = 𝑟2 = 0.1.
5.2. Simulation Case Setting. To analyze the ESS model in
the MG and improve the effectiveness of the HSA, this paper
establishes three simulation scenarios and makes assump-
tions regarding the DG net power generation and reserve
condition based on different scenarios.

Case 1 (reference scenario). The power generation of MG is
sufficient to meet the reserve requirements. The reference
scenario is used to verify the effectiveness of the proposed
algorithm and is used primarily as a reference. Case 1
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Figure 2: Distribution of load demand in theMGunder three cases.

Table 3: Comparison of the computation time of the MHSA, HSA,
and PSO in Case 1.

Algorithm Calculating time (s)
Maximum value Minimum value Average value

MHSA 1.20 1.05 1.12
HSA 1.96 1.71 1.82
PSO 1.53 1.34 1.48

provides a comparison for the effects that the ESS has onMG
construction optimization.

Case 2 (reserve scenario). The power generation of theMG is
normally sufficient but cannotmeet the reserve requirements.
TheMGwould be unstable under this scenario. At this point,
the ESS may be an alternative reserve DG to optimize the
operation of the MG and meet reserve requirements.

Case 3 (extreme scenario). The power generation of MG is
insufficient and cannotmeet the reserve requirements. In this
scenario, the ESS may discharge to meet the demand load in
the peak, replacing the DG reserves to optimize system oper-
ation. The system reserve can be satisfied by ESS discharge.

5.3. Simulation Results

5.3.1. Results in Case 1. Case 1 is the reference used to both
verify the validity of the proposed algorithm and provide an
object of comparison to analyze the effect of the ESS on MG
construction optimization. In this section, three methods,
MHSA, HSA, and PSO, are chosen to solve the model. The
generation capacity and reserve requirement are satisfied in
this case. The methods can analyze the optimization effect of
the ESS on theMG. Figure 3 shows the comparison of the con-
vergence conditions of the MHSA, HSA, and PSO for Case 1.

The convergence rate of MHSA in scenario 1 is higher
than that of the HSA and PSO. Table 3 shows the comparison
of the computation time of theMHSA, HSA and PSO in Case
1.
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Figure 3: Comparison of the convergence condition of MHSA,
HSA, and PSO for Case 1.
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Figure 4: Supply and demand condition in Case 1.

In the calculation of the speed of the comparison, MHSA
is also faster than HSA and PSO in Case 1. Table 4 compara-
tively analyzes the optimal installation decisions and related
costs predicted by the MHSA, HSA, and PSO in Case 1.

In Case 1, because MG can satisfy both the load and
reserve demand, the ESS total cost is lowest in the second
year and is ¥340,318,800. Relative to the latter two types of
algorithms, the MHSA saves ¥3788 and ¥2208. The corre-
sponding rated power and capacity are 69 kW and 92 kW.
Figure 4 shows the supply and demand condition in Case 1.

The net power generation equals the load demand of MG
without ESS, which means that the MG power generation
is sufficient to meet the load demand. The ESS will charge
when the load demand is low at hour 3 and hour 4. The MG
power generation can meet the load demand when the load
demand is high, but to optimize system operation, the ESS
will discharge instead of beginning to reserve DG to optimize
the DG units’ operation and extend their service life. Whenℎ = 12, 18, and 19 and the demand load is high, the ESS will
discharge instead of running DG units to optimize system
operation. Figure 5 shows the reserve condition in Case 1.

The DG reserve is equal to the MG system reserve
requirements when the ESS are not considered, implying that
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Table 4: Comparison of optimal installation and related costs predicted by the MHSA, HSA, and PSO in Case 1.

Algorithm Output value Case 1
C (¥) Installation year BRP (kW) BRE (kWh)

MHSA
max𝐶 34060016 2 71 93
min𝐶 34053188 2 69 92
avg𝐶 34056764 2 70 92

HSA
max𝐶 34063974 2 70 92
min𝐶 34056976 2 71 94
avg𝐶 34058811 2 70 93

PSO
max𝐶 34062774 2 71 92
min𝐶 34055396 2 69 89
avg𝐶 34057871 2 71 91
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Figure 5: Reserve condition in Case 1.

the DG reserve is sufficient to meet reserve requirements.
At this point, the MG system can also meet the require-
ments without ESS. When an ESS is installed, however, the
operation of the DG reserve can be replaced by the ESS to
optimize system operation.The use of ESS supports replacing
the operation of theDG reserve with the system reserve whenℎ = 9, 11–13, 17–20.
5.3.2. Results in Case 2. Case 2 is the reserve case and is
used to verify the effects of ESS on system reserves and
MG optimization when the system is underutilized. Figure 6
shows the supply and demand conditions in Case 2.

The net power generation without ESS is equal to the
MG’s load demand, implying that theMGgeneration capacity
is sufficient to meet the load demand. At this time, the ESS
charge during valley hours, namely, ℎ = 3, 4, and discharge at
the times of peak load, namely, ℎ = 12, 13, and 17–19. After
continuous discharging, it is necessary to charge when the
load is slightly lower; that is, ℎ = 15. In this case, the ESS
discharge in the peak load periods to replace the DG reserve
and optimize MG operation. Figure 7 shows the reserve con-
dition in Case 2.

Figure 6 shows that the reserve system cannot meet
the requirements. The DG reserve is lower than reserve
requirement without ESS at h = 12–14 and 17–20, indicating
that the DG reserve cannot meet the reserve requirement. In
this case, ESS play a crucial role in supporting the reserve
to replace the operation of the DG reserve, and ESS can
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Figure 6: Supply and demand conditions in Case 2.
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Figure 7: Reserve condition in Case 2.

completely replace the DG reserve unit when h = 9, 13, and
19.When h = 8–20 and 23, the installation of ESS enables MG
operation to meet the reserve demand and to replace the DG
reserve to optimize MG operation.

5.3.3. Results in Case 3. Case 3 is the extreme case for
verifying ESS’ effectiveness in optimizing MG operation. In
this case, the power generation capacity is insufficient to
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Table 5: Comparison of optimal installation and related costs predicted by the MHSA, HSA, and PSO in Case 2.

Algorithm Output value Case 2
C (¥) Installation year BRP (kW) BRE (kWh)

MHSA
max𝐶 37877418 1 129 198
min𝐶 37870166 1 128 197
avg𝐶 37873329 1 129 198

HSA
max𝐶 37880195 1 129 199
min𝐶 37872733 1 128 198
avg𝐶 37875991 1 129 199

PSO
max𝐶 37878457 1 131 200
min𝐶 37872965 1 128 199
avg𝐶 37875229 1 130 200
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Figure 8: Supply and demand condition of Case 3.
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Figure 9: Reserve condition in Case 3.

meet the reserve requirement. Figure 8 shows the supply and
demand condition in Case 3.

When h = 12 and 18–20, the net power generation is less
than the load demand without ESS. In this scenario, the MG
generation cannot meet the load demand. At this point, the
ESS charge at the real and relative valley hours, h = 3, 4,
15, 16, and 22. At peak hours, namely, h = 11–13 and 17–20,
the ESS discharge to meet the demand load and replace the
DG reserve to optimize system operation. Figure 9 shows the
reserve condition in Case 3.

The DG reserve cannot meet the reserve requirements
without the installation of ESS when h = 8–11 and 20,
indicating that the DG reserve in the MG system cannot
meet the reserve requirements. The reserve even drops to
a negative value when h = 10 and 11. All DG reserve units
should be started to supply the demand load, and the reserve
requirement cannot be met. The system reserve is satisfied
when h = 4, 5, and 8–23 after installing ESS. The MG
system can meet system reserve requirements through ESS
completely when h = 4, 5, 12, 13, and 17–20.

5.3.4. Comparative Analysis. To analyze the application of
this model in three scenarios, this section selects data from
a typical summer day to apply to the processing model
(the load distribution, size, and reserve requirements are
the same in all three cases). This section also compares the
optimal installation decisions and the related cost results of
theMHSA,HSA, andPSO.The reserve demand curve and the
load demand curve of theMG system are essentially the same
because the system reserve capacity increases along with the
increase in users’ load demand. This phenomenon provides
sufficient reserves for high load demand. Table 5 compares
the optimal installation decisions and related costs predicted
by the MHSA, HSA, and PSO in Case 2.

In Case 2, the MG system cannot meet reserve require-
ments; thus, the total cost of ESS must be lowest in the
first year, ¥37,870,166, and the total cost calculated by the
MHSA is ¥2567 and ¥2799 less than the costs in the other
two algorithms.The corresponding rated power and capacity
are 128 kW and 197 kWh. Table 6 compares the optimal
installation decisions and related costs predicted by the
MHSA, HSA, and PSO in Case 3.

InCase 3, theMG system cannotmeet themost basic load
demand; thus, the total cost of ESS installation must also be
lowest in the first year, ¥43,967,861 as calculated by MHSA.
Compared with the costs of the latter two algorithms, MHSA
could save ¥2467 and ¥4934.The rated power and capacity of
ESS are 249 kW and 387 kWh.

6. Conclusions

MG has become a smart-energy comprehensive-utilization
and a multienergy complementary system with wide
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Table 6: Comparison of optimal installation and related costs predicted by the MHSA, HSA, and PSO in Case 3.

Algorithm Output value Case 3
C (¥) Installation year BRP (kW) BRE (kWh)

MHSA
max𝐶 43974937 1 246 391
min𝐶 43967861 1 249 387
avg𝐶 43972974 1 248 390

HSA
max𝐶 43978955 1 250 393
min𝐶 43970328 1 247 392
avg𝐶 43974018 1 248 392

PSO
max𝐶 43977421 1 247 394
min𝐶 43972795 1 250 392
avg𝐶 43974933 1 248 395

application potential across the world. ESS are an important
part of the MG system. Approaches to optimize MG
planning with ESS have important theoretical value and
practical significance. The paper studies the problem of MG
planning with ESS and solves the model using MHSA. The
results are as follows:

(1) If the operating cost of MG and the investment cost
of ESS were considered, the proposed model could find the
optimal scheme ofMGplanningwith ESS. Further, ESS could
support MG systems in meeting load demand and reserve
requirements under three cases by timely adjustment of the
charge-discharge power. ESS could also enhance the stability
and economy of MG operation.

(2) An MHSA is proposed to overcome the slow conver-
gence rate and poor robustness of the HSA. The improve-
ment occurs primarily through the promotion of the self-
adaptability and establishment of the sub-HM. By analyzing
scenarios, the convergence rate, computation time, and econ-
omy ofMHSA are found to be significantly higher than those
of the traditional HSA and PSO.
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