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In the present paper, we consider the following Hamiltonian elliptic system (HES): —Au +b(x) - Vu+ V(x)u = H,(x,u,v), x € RN,
-Av—-b(x)-Vv+V(x)v=H,(x,u,v), x € RY. A new existence result of nontrivial solutions is obtained for the system (HES) via
variational methods for strongly indefinite problems, which generalizes some known results in the literatures.

1. Introduction and Main Results

The goal of this paper is to study the existence of solutions for
the nonperiodic elliptic systems in Hamiltonian form

“Au+b(x)-Vu+V(x)u=H,(x,u,v),

x € RY,
(HES)
-Av-b(x)-Vv+V (x)v=H, (x,u,v),
x € RY,
where z = (u,v) : RY - R'x R b = (by,....by) €

CHRN,RM), V(x) € C(RY,R), and H € C(RY x R? R).
Such a system arises when one is looking for stationary
solutions to certain systems of optimal control (Lions [1]) or
systems of diffusion equations (It6 [2] and Nagasawa [3]).

In recent years, the systems like or similar to (HES) in the
whole space R™ were studied by a number of authors. Most
of these works focused on the case b(x) = 0. An usual way
to overcome this difficulty is to consider the corresponding
functional in the space of radially symmetric functions. In
this way, De Figueiredo and Yang [4] considered the system

-Au+u=H, (x,u,v) in RY,
@

-Av+v=H,(x,u,v) in IRN,

where H(x,u,v) = F(x,u) + G(x,v), F(x,u) = _[: f(x,t)dt,

and G(x,v) = jov g(x,t)dt. They proved that system (1)
has a radial solution pair under the assumptions that f(x,t)
and g(x,t) are superlinear in ¢ and radially symmetric with
respectto x, | f(x,t)| < c(1+ [£/?71) and lgCe, t)] < c(1+ [(]97)
with 2 < p,q < 2N/(N —2), N > 2. This result was later
generalized by Sirakov [5] to the system
-Au+b(x)u=H,(x,u,v) in RY,
(2)
-Av+b(x)v=H,(x,u,v) in RY.
In [6], Zhao et al. considered periodic asymptotically linear
elliptic systems

~Au+V (x)u=H,(x,u,v) inRY,
~Av+V (x)v=H,(x,u,v) inR",
u(x) —0, 3)

v(x) — 0
as |x| — oo,

where the potential V' is periodic and has a positive bound
from below and f(x,t) and g(x, t) are periodic in x, asymp-
totically linear in ¢ as [t| — co. By using critical point theory
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of strongly indefinite functionals, they obtained the existence
of a positive ground state solution as well as infinitely many
geometrically distinct solution for systems (3) under the
assumptions that f(x,t) and g(x,t) are odd in ¢. For other
results, we refer readers to [7-17].

Without assumption of periodicity or radially symmetric
about nonlinearities, the problem is quite different in nature
and there has not been much work done up to now. In a recent
paper [18], Wang et al. considered the following nonperiodic
elliptic systems in Hamiltonian form:

-Au+V(x)u=H,(x,u,v) in RY,
-Av+V (x)v=H,(x,u,v) in RY,
u(x) — 0, (4)

v(x) — 0
as |x| — oo
and obtained the following theorem.

Theorem A (see [18, Theorem 1.1]). Suppose that the follow-
ing conditions are satisfied:

(Vo) V(x) = 1.
(H,) There is y > 2 such that 0 < uH(x,z) < H,(x,2)z if
z#0.

(H)) H(x,z) € CY(RYN x R4 R), H,(x,z) = h(x,|z])z
where h : RN x R* — R with h(x,s) > 0, h(x,s) =
o(1) as s — 0 uniformly in x, and there exist p €
(4,2%), ¢, > 0 such that h(x,s) < ¢(1 + sP72), where
2* = 2N/(N - 2).

(H,) There is hy, € C'(R*,R") with hl_(s) > 0 fors >
0, and h(x,s) — hy(s) as |x| — +oo uniformly
in bounded set of s, ho (s) < h(x,s) and H(x,z) —
H,(z) > b(x)|z|* for all x € RY, where b(x) #

0, b(x) > 0 and Hy(2) = [ hoo(s)sds.
Then system (4) has one solution.

In the present paper, we are interested in the existence
of solutions for Hamiltonian-elliptic systems (HES) involving
gradient terms and nonperiodic superquadratic nonlineari-
ties. The class of problems treated here has several difficulties.
First, the problem is set on RY; a main difficulty when dealing
with this problem is the lack of compactness of the Sobolev
embedding theorem. Second, the variational functional is
strongly indefinite. Therefore, the classic critical point the-
orem cannot be applied directly. Third, the nonlinearities
H(x, u,v) are nonperiodic in variable x and superquadratic
at infinity; the method in [6] cannot be applied to obtain
the existence of solutions. Finally, the appearance of the
gradient terms in the systems also brings us some difficulties;
in this case, the variational framework in [18] cannot work
any longer. Inspired by recent works of Zhao and Ding
[19], we are going to investigate the existence of solutions
for the Hamiltonian elliptic systems (HES). By using the
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critical point theory of strongly indefinite functional which
was developed recently by Bartsch and Ding [10, 20] and
the reduction methods which was developed in [21, 22],
we obtain an existence result of problem (HES), which
generalizes Theorem A.

Our fundamental assumptions are as follows:

(Vp) Ve C(RN,R) is I-periodic in x; fori = 1,..., N and
Vi = min, v V(x) > 0.

(By) b € C' (RN, RY), and div(b) = 0.
(B,) bisl-periodicin x; fori =1,...,N.

(H;) H(x,z) € CHRY x R? [0, +00)), H,(x,z) = h(x,
|z])z, where h : RY x R* — R with h(x,s) >
0, h(x,s) = o(1) as s — 0 uniformly in x, and there
exist p € (2,2%),¢, > Osuch that h(x, s) < ¢;(1+s772),
where 2% = 2N/(N - 2).

(H,) H(x, 2)/|z)* - +o0 as |z| — +0c0 uniformly in x.

(Hs) infxeRNﬁ(x, z) > 0 whenever z # 0, where H(x, z) =
(1/2)H,(x,z)z — H(x, 2).

(Hy) |H,(x,2)|" < ¢H(x,z)|z|" for some ¢, > 0, T >
max{1, N/2} and all (x, z) with |z| large enough.

(H,) There is h,, € C'(R*,R*) with h/_(s) > 0 for s >
0, and h(x,s) — h.(s) as |x| — +oo uniformly in
bounded set of s, i, (s) < h(x,s) forall (x,s) € RY x
R* and h(s) < h(x, s) whenever s > 0.

Now we can state our main result.

Theorem 1. Let (V,), (By), (By), and (H;)-(H,) be satisfied.
Then system (HES) has at least one nontrivial solution.

Remark 2. Theorem 1 extends and improves Theorem A.
First, we only need to assume that the potential V(x) is
periodic and has a positive bound from below. Second, the
conditions (H,) and (H;) can be obtained by (H,) and (H;).
In fact, by (H;), we know that

|H, (x,2)| < ¢ (lzl +1z1P™), V(x,2) e RY xR (5)

Consequently, by the conditions (H,) and (5), it is easy to see
that (H,) and (Hs) hold. Furthermore, similar to the proof of
Lemma 2.2(i) in [23], the condition (Hy) can be obtained by
(H,) and (5). Indeed, since p € (2,2%), we can obtain that
p/(p —2) > max{l, N/2}. For some 7 € (N/2,p/(p - 2)),
7> 1.1f |z| > 1, then there exists ¢’ > 0 such that

|H, (x,2)| < ¢’ [P (6)

Choose r > 1 so large that

N1
B (C) )

1
< = PR A—
T2 |Z|P—(p—2)r’

1
u
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whenever |z| > r. Then, by (H,), (6), and (7), we obtain

1
H(x,z) < —H,(x,2)z
U

()

1
S(E_VWW4ﬁ>HJ*@Z (8)

1 |H, (x,2)"
< <§ - % HZ(X,Z)Z.

|z|
It follows that
H, (x,z)|" _
% < %HZ (6,2)z-H(x,2) = H(xz). )
z

Third, the condition (Hj) is weaker than the condition (H,)
and the condition (H,) is weaker than the condition (H,).
Finally, summing up the above discussion, Theorem A is the
special case of Theorem 1 corresponding to b(x) = 0.
Throughout this paper, we always assume that C denote
any positive constant and may be different in different places.
For0 #a = (a,,...,ay) € 7N, we define a * z(x) = z(x; +
aj,..., Xy +ay), where z = (u,v) : RY - R! x R".

2. Variational Setting

In this section, we will establish variational framework for the
system (HES). For the convenience of notation, let |- | » denote

the usual L -norm and (-, ), be the usual L*-inner product.
Let X and Y be two Banach spaces with norms |- ||y and || - [ly;
we always choose the equivalent norm [|(x, )|l xyy = (||x||§( +
||y||§,)1/2 on the product space X x Y. In particular, if X and
Y are two Hilbert spaces with inner products (-, -)x and (-, -)y,
we choose the inner product ((x, y), (w, 2)) xxy = (X, w)x +
(y,2)y on the product space X x Y. In order to continue the
discussion, we need the following notations. Set

(0 -1
;_CO),
(01
‘70_'(1 0)’

and V7 = (V) isa matrix operator. Let § = —~A+V denote
the Schrodinger operator. Denote A == & 7, and

(10)

A=A,+b-Vy7
0 ~-A-b-V+V (11)
:(—A+hV+V 0 )
Then (HES) can be rewritten as
Az =H,(x,z), z¢€ H' (RN, Rz). (12)

Denote by o(A) and 0, (A) the spectrum and the
essential spectrum of the operator A, respectively. Set y =

inf{o(A) N (0, 00)}; then we have the following lemmas.

Lemma 3 (see [19, Lemma 2.1]). Suppose that (B,) and (V,)
are satisfied. Then the operator A is a self-adjoint operator on
L*(RY, R?) with domain D(A) = H*(RY, R?).

Lemma 4 (see [19, Lemma 2.3]). Let (By), (B,), and (V) be
satisfied. Then

(1) 0(A) = 0. (A); that is, A has only essential spectrum;

(2) o(A) ¢ R\ (-V,, V) and a(A) is symmetric with
respect to origin;

(3) Vy € p < maxV.

It follows from Lemmas 3 and 4 that the space L*(R", R?)
possesses the orthogonal decomposition
L’=L oL,
(13)
z=z +2z',

such that A is negative definite (resp., positive definite) in L™
(resp. L"). Let | A| denote the absolute value of A and |A|1/2 be

the square root of |Al. Let E = D(|A|M?) be the Hilbert space
with the inner product

(z,w) = (1A' 2, |A"* w) (14)

2’
and norm |z| = (z, z)l/ 2 E possesses an induced decomposi-
tion
E=E ®E",
(15)
E*=EnL",

which are orthogonal with respect to the inner products (-, ),
and (-, -) (the above results can be found in [19]).

Lemma 5 (see [19, Lemma 2.4]). || - || and || - g ry g2
are equivalent norms. Therefore, E embeds continuously into

N p2 b . P (pN p2
LP(RY,R )f*oranyp € [2,2"] and compactly into L} _(R™, R")
for p € [2,27), and there exists constant a,, such that

|z, <a,lzll, Vze€E, pe [2,27]. (16)
On E we define the following functional:

°@=3(I'F-I-T)-v@,

where¥(z) = I[RN H(x, z)dx. It follows from (Hs) that, for any
e > 0, there is C(e) > 0 such that

|H, (x,2)| < elzl + C (e) |2IP7", (18)

€@ e, (19)

IH (6,2)| < 2 Jef +
for all (x,z). Thus, Lemma 5 implies that © is well defined
on E. Lemma 4 implies that © is strongly indefinite; such type
functional appeared extensively when one considers differential
equations via critical point theory; see, for example, [24-27]
and the references therein. Our hypotheses imply that ® €
C'(E,R) (see Lemma 3.10 in [27]) and a standard argument
shows that the critical points of O are solutions of (HES).



3. The Abstract Critical Point Theorem

In order to study the critical points of @, we now recall a
abstract critical point theorem developed recently in [10, 20].
Let E be a Banach space with direct sum E = X @ Y and
corresponding projections Py, Py onto X, Y. We assume that
the Banach space X is separable and reflexive. Let & ¢ X~
be a dense subset; for each s € & there is a seminorm on E
defined by

ps:E—R,
(20)

ps (2) = |s ()] +||y|| forz=x+ye€kE.

Denote by 5 and 7, the topology induced by seminorm
family {p,} and the weak-topology on E, respectively. 7 .
denotes the weak™ -topology on E*. Now, some notations and
definitions are needed.
For a functional ® € C'(E, R), we write O, ={z € E|
®(z) > a}, d" = {z € E| d(z) < b}, and ®° = 0, N O
Suppose
(®,) foranyc € R, @, is T ¢-closed, and @' : (D, T 5) —
(E*, T ) is continuous;
(®,) foranyc > 0, thereexists & > 0 such that ||z|| < &||P,z|
forallz € @

(D,) there exists p > 0 such that x := inf (S, nY) >0,
where S, = {z € E: |zl = p}.

Theorem 6 (see [10] or [20]). Let (Dy)-(D,) be satisfied and
suppose there are R > p > 0 and e € Y with |le| = 1 such that
sup®(0Q) < k whereQ:={z=x+te:x € X, t >0, |z|| <
R}. Then, ® has a (C,)-sequence with k < ¢ < ¢ = sup O(Q).
Moreover, if @ satisfies the (C),-condition for all ¢ < ¢ then ®
has a critical point z with k < O(z) <¢.

Lemma 7 (see [10] or [20]). Let
1 2 P
D(z)=- - -¥(2),
(2) = 5 (Y1 = I+l?) = ¥ (2) on
forz=x+yeE=X@aY.

Suppose

(1) ¥ € C'(E, R) is bounded from below;

() ¥ (E,T,)
continuous; that is, z
liminf, | Y(z,);

— R is sequentially lower semi-

., — z in E implies ¥(z) <

B)VY :(E,T,) — (E,T,.)is sequentially continuous;

(4)v: E - R, %z) = ||lz|* is C' and v : (E,7,) —
(E*, T ) is sequentially continuous.

Then O satisfies @,,.

4. The Limit Equation

In this section, we study the following limit equation related
to (HES),

Az =hy, (lz))z = H}, (2), (HES),,
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where h, is given in (H,), H(z) = I(lzl he(s)sds, and
H! (z) = V,Hy(2) = (V,Hy(z),V,Hy(z)). By virtue of
(H;)-(Hy;), we have firstly the following lemma.

Lemma 8. h, and H_ possess the following properties.
(1) hoo(l2]) = 0(1) as |z| — 0 and ho,(I2]) < ¢ (1+]21P%)
for some p € (2,27).
(ii) Hoo(z)/lzl2 — 400 as |z| — +oo.

(iii) FIOO(Z) > 0 whenever z # 0, where HOO(Z) = (1/
2)H! (2)z - Hy,(2).

(iv) |H('>O(z)|T < ¢,H,(2)|z|" whenever |z| large enough.
(v) ﬁm(z) — 400 as |z| = +oo.
Proof. (i) It is clear by (H;) and (H,).

(ii) By (Hy), for any M > 0, there is R); > 0 such that
H(x,2)/|z|* > M whenever |z| > R,,. Hence

H,(z) Hy(z)-H(x,2) H(x,z2)
= |2 + |2

2
|z |z

|z
(22)
L Ha@-H@a)
|z]
for all |z| > R,,. Observe that
0<H(x,z) - Hy (2)
(23)

1
= J (HZ (x,0z) — H(')O (9z)) z do;
0
it follows from (H,) that H(x,z) — H_(z) as |x| — +oo.
Letting |x| — +00 we get Hoo(z)/lzl2 > M for all |z] = Ry,.

(iii) Since H(x, z) — H,,(2z) as |x| — +00, it follows from
(Hs) that

Hy(z)= lim H(x,z)>0, ifz#0. (24)

|x|—=+00

(iv) By (Hy), for |z| large enough

|H, (2)] _ |H, (2) - H, (x,2)| | H.(x2)

|z| |z| |z]
(25)

H' (2)-H, (x,2) _

< | i z | +c21/TH(x,z)1/T.
|z|
Letting |x| — +00, we obtain
H, (2) _
% < CZI/THOO ()" (26)
z

(v) It follows from (ii)—(iv) that

_ H, (2)|\"  [2H,(2)\"
cm@)z(%) 2(%}2@) 400, (27)

as |z| — +oo.
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Now, we set
Y, (z) = J H,, (z)dx (28)
RN
and define the functional

1 112 -2
F():— - _\Ijoo()’
=3l -IT) ¥ o)

Vz=z +z €E.
By Lemma 8, for any € > 0, there is C(¢) > 0 such that

|H, (2)| <elzl +C(e) 21", V(x,2) e RV xR’ (30)

|Hy, (2)] < %IZI +C1(f) lzI?, V¥ (x,2) e R xR*. (31)

It follows from (30) and (31) that F € C'(E, R) is well defined
and its critical points are solutions of (HES),. O

Lemma 9. F possesses the following properties:

(1) ¥, is weakly sequentially lower semicontinuous and F'
is weak sequentially continuous.

(2) There is p > 0 such that k := inf F(0B, N E") > 0,
where aBP ={zeE: |zl = p}.

Proof. (1) Suppose z, — z in E. Going if necessary to a
subsequence, we can assume z, — z in Lfo C(IRN JR?) for
pel2,2")andz,(x) — z(x)a.e. in RN .Hence H  (z,(x)) —

H_ (z(x))a.e.in RY. Thus
Y, (z) = I H, (z)dx = J. lim H, (z,) dx
RN RN N—00
<lim ian Hg, (z,)dx (32)
RN

n—00

=lim inf ¥ (z,).

n—00

Next it is sufficient to show that ¥/ is weak sequentially
continuous. Indeed, by (30) and z, — =z in LIOC(IRN ,R?),
2 < p < 2%, it follows from Theorem A.2in [27] that

H., (z,) — H. (2), in LIP'(RY,R?). (33

loc

Furthermore, for each fixed ¢ € E, one has that, for any ¢, >
0, there exists 7, > 0 such that

1/p
(j lo | dx) <e (34)
RM\B,, (0)

Hence, for large , it follows from (30), (33), (34), and Holder
inequality that

[ (L @) -1 @) pas] < [ (1L ()

- H, (z)' || dx < (JB

|HL, (2,)
0)

0

- H., (2)|

. (JB ©) ol dx)l/P " JRN\B,O(O) [s (|z,] + 121)

0

(p-1)/
PID )P P
x

+C(e) (|Z,1|P_1 + |z|p_1)] || dx (35)

-1
- )(p /p
| dx

S(Lr( | (2,) - HL, (2)

1/p
([, , ol ax)
B, (0)
e j
( RN\B, (0)

0

172
lp (x)|2 dx) (|z,], + 121,)

+¢,C(e) (|zn|§_1 + |z|§’1) .

Therefore,
(¥, (2).9) = (¥ (2).9)]
= ”RN (Héo (z,) - H(I)o (Z)) godx| — 0, (36)

as n — 00.

(2) Forany z* € E*, it follows from (31) that
F() = L - j H () dx
2 RN
1 C
231 [ (Gl + <21 )ax -

> (5-Ce) I -cl"-

The conclusion follows because p > 2.

Now, we choose a number y > 0 such that
max,pvV(x) < p. From Lemma 8(ii), there is r > 0
such that H_ (z) > yIzI2 whenever |z| > r. Let {E, }, . be the
spectrum family of the operator A. It follows from Lemma 4
that (Ey - FO)L2 is a infinite dimension subspace of E* and

Volzls <ulely < llzI” < ylel;, Vze(E, -E,) L% (38)
O

We have the following result.



Lemma 10. For any finite dimensional subspace Ey, of (E, —
Ey)L?,

F(z) — —00, as ||z]| — 00, z€ E @ Ey,. (39)

Proof. If not, then there are M > 0 and {z,} ¢ E~ & E,,, with
lz,ll = oo such that F(z,) > —M for all n. Denote y, =
z,/z,|l, passing to a subsequence if necessary; we can assume
that y, — y,y, — y ,and yi — y".Then

(al - 1a ) = 5 (Il - 1 P)

[ Pl PG
ol el 4
.M
"=l
which yields that
LA (a1

We claim that y* # 0. Indeed, if not then it follows from (41)
that |y, || — 0. Thus |y, — 0, which contradicts with ||y, || =
1. By (38), we get

2 —n2 2
L =1y I =2vyl;

<yl -y -2y h-2vly (42
<—yly'h-ly P -2vlyf; <o.
Hence, there exists R > 0 such that
Pl -2 [ bax<o
where By = {x € R": |x| < R}. Note that
N N e

1 2 ") 2
=5@ﬁu4mu—wijdo
B

j H,, (2,) - 7|2/’ Ho (z0) = vl
By llz I’

1
s;@nu—wA—m{ pfdx)

J ) -vlal
Brn{xeRN:|z,|<r} “Zn"
1 2 12
< (DRIl =20 [ 1P ax)
By
T |BR|
.
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Hence
o= iy [ (bl il [, x|

1 i
<5 (||y+||2 -y - 2)/J |y|2dx> <o.
By

Now the desired conclusion follows from this contradiction.
O

(45)

As a consequence, we have the following.

Lemma 11. Let k > 0 be given by Lemma 9. Then, letting e €
Ey, with |le| = 1, there is R; > 0 such that Flyg < x, where

Q={z=2z +se:z €E, s>0, |zl <R}

Lemmal2. Let{z,} be any (C).-sequence for F. That is, {z,,} C
E is such that

Fz) —c
, (46)
1+ |z) F (@) — 0,

asn — 00. Then it is bounded and ¢ > 0. Moreover, there is
a subsequence still denoted by {z,} satisfying z,, — z, F(z, —
z) = c—F(z) and F'(z, - z) — 0, as n — o0.

Proof. Let{z,} C E be such that
F(z,) — ¢
(47)
(1+]za) F' (z,) — 0.

Then, for large n, one has
LG

L [%M

- j A, (z,)dx >0,
RN

c+o(l)>F(z

kmkx—ag%ﬂw (48)

which implies ¢ > 0. If {z,} is unbounded in E, up to a
subsequence if necessary, we can assume that |z,| — +oo.
Setw, = z,/lz,|. Then |w,| = 1 and Iwnlp < aPIIwnII =a,
for each 2 < p < 2". Note that

(F'(21) 2, - 2,)

EA &
(49)
P
R SCEACEE
RY EAl
Hence, one has
-
g [ PelEDaGEm),,

© o)

= lim J heo (|2,]) w,, (w,, -
—00 RN

n

w,)dx = 1.
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On the other hand, forr > 0and 0 < & < 3 < +00, set

g(r)=inf{H, (2): z € R?, |z| 21},

O, (o, B) = {x eRM a<lz, (0] < ﬁ}, 51)
Sﬁ::inf{Hloo—éz):zeRz, ocSIz|<ﬁ]>.
z

Then, by Lemma 8, we have g(r) > O forall» > 0 and g(r) —
+00 as ¥ — +co. For large « > 0, one has Sg > 0 and

Ay (2,(0) 2 |2, 0, VxeO,(wp).  (52)

Consequently, for large n and «, whenever « < f3 one has

c+o(1)zj H,, (z,)dx

H, (z,)dx + J
0O, (0,a)

O, ()

+ J H, (z,)dx
O, (B,+00) (53)

ZJ H,, (zn)dx+S£j
0,(0,a)

lz,,|2 dx
O, (e, B)

+9(B) [0, (B, +o0)].
Since H,,(z,) > 0, limg_, . 0,g(B) = +0o implies

/sl—i»IPoo |0, (B, +00)| =0, uniformly in n. (54

For any s € (2,2%), we choose r € (s,2"). Using the Holder
inequality we have

s/r
r=s)/T r 55
<10, (Boroo) ([ fwifax) Y

<a’ |0, (B, +00)|" " — o,

as 3 — +co uniformly in n and

J |w,|* dx <
O, ()

— 0,

C

Selzal®  (s6)

1 2
d
o Josen

as n — 00. Therefore,
J lw,| dx < (J |w,|" dx
Oﬂ(a’ﬁ) On(‘x’ﬁ)

5 (r=s)/(r-2)
(J |w, | dx)
O,(a.p)

5 (r=5)/(r-2)
< C(J |w,| dx) — 0,
O, ()

>(s—2)/(7—2>

(57)

asn — 00.Let 0 < € < 1/3 be given. It follows from Lemma 8
that there is a(e) such that |h (|z])] < s/a% for all |z| < a(e).
Consequently, we have

_ € 2
J hy, (|2,]) w, (w, - w,, ) dx < - lw,|, <& (58)
0,(0,a(e)) a

for all n. By Lemma 8, we define 4 = 27/(7— 1) and y' = u/2.
By (55), we can take S(¢) so large that

he (|2,]) w, (w,, - w,,) dx

JO,,(/S(S),+00)

1/t
([ elalax)
O, (B(e),+00)
’ 1u
([ =i )
O, (B(e),+00)
_ 1/t
<(| ol (2,)dx)
O, (B(e),+00)
1/u
([l - ax)
RN

1p
: <J |w, [ dx) <g,
O, (B(e),+00)

for all n. For fixed 0 < a(e) < B(e), it follows from (57) that
there is n,, such that

!

(59)

[ e, () - wp) dx
O, (a(e),(e))
(60)

SCJ- lw,|*dx <&, Vnzmn,

O, (a(e),B(e))

Now the combination of (58)-(60) implies that for n > n,
J he (|2,]) w, (w,, —w, ) dx < 3e < 1. (61)
RN

This contradicts with (50). Hence, {z,,} is bounded. Passing to
a subsequence if necessary, we can assume that z, — z in E,
z, — zin LfOC(IRN, R?) for p€l2,2%),and z,(x) — z(x) a.e.
in RY. Since (HES),, is an autonomous system, by (V;) and
Lemma 8, we know that all of the conditions of Lemma 5.7 in
[20] are satisfied. Hence we have F(z,, — z) — ¢ — F(z) and
F'(zn—z)—>0,asn—>oo. L]

Lemma 13. Let % = {z € E : F'(2) = 0} be the critical set of
F. Then # \ {0} # 0 and C = inf{F(z) : z € Z \ {0} > 0 is
attained.

Proof. Set X = E” andY = E*. ThenE = X®Y. Foranyc > 0
and z € F,, using the fact that ¥, > 0 one has

1 12 )
0<cs§<||z I-1=71). (62)



This yields [|z”|| < [lz*]l, and hence ||z| < 2||z*||. F satisfies
(®,). By virtue of Lemma 7 and conclusion (1) of Lemma 9,
it follows that (®,) holds. From conclusion (2) of Lemma 9,
we know that (®,) holds. Thus, combining with Lemma 11,
we know that all of the conditions of Theorem 6 hold. Then
there is (C), sequence {z,} for F with x < ¢ < sup F(Q).
By Lemma 12, (C), sequence {z,} is bounded in E. For the
concentration functions |zn|2, there are only two cases needed
to be considered: vanishing and nonvanishing. If vanishing
occurs, by the vanishing lemma

[ haleblefds=o0),
(63)

J H (z,)dx=0(1).
RN
Hence

o(1) = (F'(z,),2,)

2 -2 2
Nzl -l - | oo (2D [z dx,
R

(64)

which implies that [|z]|* - ||z, [|* = o(1). Hence F(z,,) — 0 as
n — 00. This contradicts with F(z,) — ¢ >k > 0asn — oo.
So nonvanishing occurs; that is, there exist & > 0, R < co and
{a,} c RY such that

n—00

lim ian 2,2 dx = a. (65)
B(a,,,R)

Choose g, € 7" such that lg,—a,l = min{lg-a,|: g € 7Ny,
Thus |g, — a,| < (1/2) VN. Setting Z,(x) = g, * z,, by the
invariance under translation of F, {Z,} is a (C).-sequence of
Fandz, — Z. From

lim inf

j 2, dx = a >0, (66)
n=09  JB(0,R+(1/2)VN)

we see that Z # 0, and hence Z is a nontrivial critical point of
F. Therefore

F\{0} 0. (67)
Ifz e 3’2, one has
F@)=F@)-5 (F(2),2)

~ [ oDl - Hy dx (6)
RN 2

J H,, (z)dx >0,
RN
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which implies C>0.IfC = 0, let z, € F \ {0} be such
that F(z,) — 0asn — oco. Then {z,} is (C),-sequence. By
Lemma 12, we can assume that z,, — z € E. Then

F(z,) = F(2) - 5 (F (2,).2,)
- | el el - Heo (2 dx (69
= J' Nﬁm(zn)dx — 0.

By Lemma 8(i), we see that, for any ¢ > 0, thereis 1 > r =
r(e) > 0 such that
hy, (|z]) <&, whenever |z| <. (70)

It follows from Lemma 8(iv) that there exists constant R >
r > 0 such that

he, (12]) < &' |IA:I00 (z)'l/r, whenever |z] > R.  (71)

By the continuity of H,(z), there exists M, = My(r,R) > 0
such that

H. (z) > M,, wheneverr < |z|<R. (72)

Note that h (|z]) < c1(1+|z|p_2) for some p € (2,2%). Hence,
there exists M, = M, (R) such that forall r < |z| <R

1/t

he, (I2]) < M, < M, |H,, (2)|

1
)|1/‘r

|He

(73)
< MM A, )]

Denote C, = ¢;/" + M; M, "'"; we obtain
—_ 1/t 2
heo (l2) <2+ C, |Hy, (2)| ", VzeR. (74)
By Holder inequality (1/7 + 1/7' = 1), we have
2 _
Iz = j o (lzal) 20 (2] - 23) dx
R

1
I dx

selal+C el -zl [ (@)

<elz,); (75)

. 1/t 2 17
+C, (J H, (z,) dx) (J |z, dx)
RN RN

< ea} |zl + atoC. (|

RN

_ 1/t 2
Ao (z,)dx) |z

Hence 1 < ea? + o(1), a contradiction. Hence C > 0. Finally,
we show that there is z € % with F(z) = C > 0. Let
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z, €  \ {0} be such that F(z,) — C. Then, as before, {z,} is
bounded, and one may assume z,, — z € & \ {0}. Now

C = limF(z,) = lim J H (z,)dx
n—00 RN

(76)
> J H,, (z)dx = F(z) = C;
RN
that is, F(z) = C. This completes the proof. O

Definition 14 (see Ackermann [28]). A mapping f from
Banach space X to another Banach space Y is called BL-
split, if for every weakly convergent sequence {x,} ¢ X with
x, — x it holds that f(x,) — f(x, —x) = f(x)inY.

In what follows, we use the idea of [21, 28]. For fixed w €
E", we introduce the functional ¢, : E- — R by

$u () = F(w+y)
P (77)
=5 (10l = ) = oo (w + ).

Hence one has
by ()2 == - W (w+ ) [2727]

- h (Jw+ -
== ||2‘JRNH((“’”)Z Vdx

- [ e (e sl

forall y, z= € E7, which implies that ¢,,(-) is strictly concave.
Moreover

60 () < 5 (1o = [yIP). 79)

which implies that ¢,(y) — —oco as [y — o00. Now, it
follows from Lemma 9 that ¢,, is weakly sequentially upper
semicontinuous. Hence, there is a unique strict maximum
point &(w) for ¢,,(-), which is also the only critical point of
¢, on E~ and satisfies

y#&(w) =

(80)
F(w+y) <Fw+§&w)),
(¢, Ew)).z") =0,

(81)

ie, (Ew),z7)+ (¥, w+Ew),z ) =0,

forall w € EY, y,z= € E". Now, we define the reduced
functional # : E* — R by

R w) =F (w+ & (w))
(82

~

= 2l = 3 g - Vo (0 + E ).

We have the following lemma.

Lemma 15. w € E' is a critical point of R if and only if w +
&(w) is a critical point of F. Moreover, the following conclusions
hold:

(1) & e CYEY,E7) and E(0) = 0.

(2) & is a bounded map.

(3) & Ew)IP, [E(w)3 are all BL-splits.
(4) éw,) — Ew) in E” ifw, — win E*,

(5) Eis ZN-invariant, i.e., E(a * w) = E(w) foralla € Z".

Proof. It follows from (H;) that H_ € C*(RY x R?, [0, 00))
and

H (2) 2, 2, = (b, (12]) |2l 2, + By (12D) 21) - 24
(83)
>0, Vz,z € RZ.

Hence, combining with (V;), (B,), and (B;), we know that
all of the conditions of Lemma 2.6 in [19] hold. So, by
Lemma 2.6 in [19], the desired conclusions can be obtained.

By Lemma 15, the critical points of % and F are in one-
to-one correspondence via the injective map w — w + &(w)
from E* into E. Consequently, let

H*={weE" &' (w)=0}. (84)
Then
H={w+Ew):weH'}. (85)
In particular
C=inf{%w): we X'} (86)
O

Lemma 16. The sequence {w,} ¢ E* is a bounded (C),-
sequence of R if and only if {w, + &(w,)} C E is a bounded
(C),-sequence of F.

Proof. Let {w,} < E' be a (C), sequence of &; that is,
R(w,) — cand (1 + |w,)%'(w,) — 0. Since H,, > 0,
we have

e ()l = el =2 | H w0, + £ () dx - 2¢
K (87)

+0(1) < (|w,| + C)Z.
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By (81) and Lemma 15, for all z = z* + z= € E, we have
&(w,)z" € E”and

(2 (w,),2")
= (w,,2") = (§(w,) & (w,)2")
- [ L G E ) (27 4 () ") dx
“ ()= | HL s E@) @)
(¢ (w,).2)
- [ L G E ) (24 2) dx

= (F (w, +§(w,)) ).

Hence, one has

= (wn’ Z+) -

|2 ()] = sup (&' (w,),2")

lz*ll<1
= sup <F' (w, +&(w,)) ,z+>
lz*ll<1 (89)
< s |7 o £ 1
< "F' (w, +& (wn))" .
Similarly
“F’ (w, +& (wn))“ = "'51"151 <F' (w, +&(w,)), z>
< sup <9$?’ (wn),z+> (90)
[EAlES
< |#' (w,)
Consequently
%" ()] = [F (o + £ ()], o
Hence
& @I [F' (w, + & ()]
< (Jwall + ) [ (w, +& (w,)]
= (lw + ) |#' (w,)] — o, (92)

(14w, + & () [F (w, + € (w,)]
< (1 | + € () [ (, + & ()| — 0.

That is, {w, + &(w,)} is (C). sequence of F. The inverse
is obvious. By Lemma 15, the boundedness of & yields the
equivalence between the boundedness of {w,} and {w, +
&(w,)}. This completes the proof. O
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Next, we discuss the mountain pass geometry of the
reduce functional %. One has the following Lemma.

Lemma 17. % possesses the mountain pass geometry:

(1) There is p > 0 such that inf Z(E* N aBP) > 0, where
BBP ={z € E: |zl = p}k

(2) There is some e € E* \EP(O) such that R(e) < 0.
Proof. (1) By (31) and (80), for any w € E*, we have

7 w) = 3 (ol = [§ @) - ¥ (w+ E )

= 2 Tl + (F 0+ § () — F () ~ Yo ()

1

2> lw]* - ¥, (w) (93)
1 € C(¢)

> =l - < Jwl; - —= [w]?
2 2 P

> (5 - Ce) el - Clui.
Hence, for small p > 0, conclusion (1) holds.
(2) Similar to the proof of Lemma 10, we can obtain that
R (w) — —00,
as |lw|| — oo, (94)
w € Ey.
Hence conclusion (2) holds. ]
Remark 18. Lemma 17 implies that 0 is an isolated critical

point of R. Therefore there is a v > 0 such that |w| > » for
allw € Ky, where Koy = {w € E" |w # 0 and %'(w) = 0}.

Remark 19. If we set
N ={we EN\{0}: (&' (w),w) =0},  (95)

then, by Lemma 4.7 in [18], we have that,. for each w € E*\
{0}, there is a unique s(w) > 0 such that s(w)w € 4 and
R(s(w)w) = sup,, R(sw).

Lemma 20. Let w € F* be such that Z(w) = C and set
E,=E &R w. Then

supF (z) < % (w) = C. (96)

z€E,

Proof. For any z = z~ + sw € E,, by (80), we obtain
F(z) < F(sw+ & (sw)) = X (sw). (97)
Since w € #*, we have w € . Hence, combining with

Remark 19, we obtain #(w) = sup,,,%(sw). Consequently,
one has

supF (z) < supZ (sw) = % (w) = C. (98)

z€E,, $20

O
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5. Proof of the Main Result

In this section we give the proof of Theorem 1. Let # = {z €
E : ®'(z) = 0} be the set of critical points for ®. First, we
study the linking structure for the functional ®. Similar to
the proof of Lemma 9, we have the following three lemmas.

Lemma 21. ¥ is nonnegative and weakly sequentially lower
semicontinuous.

Lemma 22. @' is weakly sequentially continuous.

Lemma 23. Thereexistsr > 0 such that k, = inf ®(S,NE") >
0, where S, ={z € E : | z| = r}.

Lemma 24. There is p > r > 0 such that for any e € E* with
lel =1andE, = E" @R"e
®(z) <0, VzeE,\B, (99)

Proof. For any z € E,, by (H,), we have

0@ =5 ("1 - 1-71) - JRNH(x,z)dx
< (ET-1F)- | Ho@ax 000
=F(z).

Thus, the conclusion follows easily from Lemma 10.

In particular, set z; € FH with R(zy) = Coe= z,, and
Q={z=2z +sz;:2 € E,s>0, |lz| < p}, where pis
given in Lemma 24. Then we have the following lemma. [

Lemma 25. d = sup{®(z): z € E,} = sup D(Q) < C.

Proof. By Lemmas 23 and 24, we have d = sup ®(Q) >
Since @ is weakly upper semicontinuous on E,, there is some
z; € Q with z; # 0 such that sup ®(Q) = ®(z;). From (H,)
and Lemma 20, we obtain

d=sup{®(z): z€ E,} =sup®(Q) = ®(z,)

i (101)
< F(z;) <supF(Q) < % (z,) =C.

O

In what follows, we discuss (C), sequences of ®. Firstly
we have the following.

Lemma 26. Any (C) -sequence for ® is bounded.

Proof. The proof is similar to Lemma 12. We omit the details
here. O]

Lemma 27 (see [23, Theorem A.2]). Let Q be an open set in
RY and f € C(Q xR, R) be a function such that | f (x,u)| <
a(lul” + |ul®) for somea > 0and 1 < r < s < co. Suppose
s < p<oor <q < 00, g > 1,{u,}isa bounded
sequence in L¥(Q) n LYQ), and u,, — u a.e. in Q and in
LP(Q n B,) N LYQ n B,) for all p > 0. Then, passing to

1

a subsequence, there exists a sequence {v,} such that v, — u
in LP(Q) N LI(Q) and
f o) = f (o, =v,) = f () — 0
(102)
in LY (Q) + P (),

where v, (x) = xQ2lx|/r,)u(x) and x € C™(R, [0,1]) is such
that x(t) = 1 fort < 1, x(t) = 0 fort > 2, r, > 0 is a sequence
of constants with r,, — 00 asn — 0o, the space LY (Q) N L1(Q)
with the norm

loal png = laal, + el (103)
and the space LF(Q) + LY(Q) with the norm
luall g = inf {Ivl, + lwl,: v € LP (), w
(104)

e L1(Q), u=v+w}.

Lemma 28. Let{z,} C E be (C).-sequence of ®. Then, passing
to a subsequence if necessary, we can assume that z, — z; in
E. Furthermore, either

(i) z, > z, € Eor
n 0

(ii) ¢ > C and there exist a positive integer | < [c/C),
V- ¥y € K\ {0} and sequences {g'} ¢ ZV, i =
1,2,...,1, such that, after extraction of a subsequence

of {z,}

Zy _Zn - Zg; * yl“ — 0,
i=1
(105)

I
+ ZF () =¢
i1

where Z,(x) =
off function such that y(t) = 1 fort < 1, y(t)

n(2|x|/n)zy(x) and n € CP(R, [0,1]) is a cut-
=0fort>2.

Proof. First, Lemma 26 implies that any (C), sequence of ®
is bounded; hence it is a bounded (PS), sequence. Passing to
a subsequence if necessary, we can assume that z, — z, € E
with CD'(ZO) =0, z,(x) = zy(x) a.e. in RY and z, — z,in
L1, (RN, R?). Let 7 € C®(R, [0, 1]) be a cut-off function such
that n(t) = 1fort < 1,4(t) = 0 for t > 2 and define Z,,(x) =
n(2|x|/n)zy(x); then Z,, — z, in E. Indeed, by Lemma 5, z,, €
E implies that for any ¢ > 0 there is a corresponding p =
p(e) > 0 such that

2
dx <e,
JRN\BP(0)|Z0| r=e

J |Vzo|2 dx <,
RN\B, (0)

(106)
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2 - 2ol” < C Iz, = zollin vy

SCJ |V(EH—ZO)|2dx+CJ En—zo|2dx
RN

N
R
2 |x|
=c| Jv(1(57 )=o)
J[RN n " Zp =%
2|x|> 2
C ol i} -
+ JRN 11< —)z0-=
2 |x]| 2 2
SCJ <11<—>—1> |Vz,|” dx
RN n
4C 21XV, 2
o O (50)) faaf ax
2 |x| 2 n
+CJ <;7<—>—1> |z|" dx
RN n
2
SCJ (n(m>—l> |Vzo| dx
B,(0) n
4C (2 ]x| S
o (1 (50) lail ax

2
+CJ (n<M>—1) |zo|2dx+Cs.
B,(0) n

Hence, using the Lebesgue dominated convergence theorem,
we obtain

2

dx

dx

(107)

|z, — zo]| — 0, asn — oo. (108)

Now we set z, = z, — Z,. Then, by z,, — z,, one has z, — 0.
Moreover, we claim that z is a bounded (PS),, -sequence for
F with ¢, = ¢ — ®(z;). In fact, by (H,), for any € > 0, there is
a p; > 0 such that

|h(x, s) —hy, (s)| <e¢, whenever |x|> p, (109)

uniformly in bounded set of s. On the one hand, by (19),
taking 7 = 2, s = p, and g = 2 in Lemma 27, we know that

JRN H(x,z,)dx = JRN H(x,z,)dx
(110)
+J H(x,zy)dx+0(1).
RN

On the other hand, by (18), takingr = 1,s = p—land g = 2.
It follows from Lemma 27 that

g, — 0, in L*(RY,R?) + LP/*"V(RN,R?), (1)
where

g, (x) = H, (x,z,(x)) - H, (x, z (x))

- H, (x,7 (x)).

(112)
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Hence, for each ¢ € E with ||¢|| = 1, one has

JRN [Hz (x,2,) - H, (x, z,ll) - H, (x, zo)] (pdx‘

(113)
< N9ullaup I 2lanp < Cllgulbyy -

where p' = p/(p — 1) and the constant C > 0 is independent
of ¢. Consequently

sup J [Hz (x,2,) - H, (x, Zrlt) - H, (x, ZO)] ¢ dx
RN

lpl=1 (114)
=o0(1).
For any z € E, observe that
D(z) = 1 (Az,z), - J H (x,z)dx,
2 RY (115)
Az, = Az} + Azy +0(1).
Hence, it follows from (110) and (114) that
®(z,) = @(z,) + (z) +o(1),
(116)
o' (z,) = (z,ll) + @' (z)) +0(1),
and then
d)(z:l) —c-D(z),
117)

@' (z,) — 0,

n

as n — 00. Consequently, by (19), (31), and (117), for large #,
we obtain

c—CD(z0)+o(1):(D(zl)SF(zl):CD(zl)

n n n

1 1
+ JRN H (x, zn) dx — JRN Hg, (zn) dx <c

—@(z0)+o(1)+J

lxI<py

-H, (zrll)|dx+J' |H (x,z,ll)

xI>py

- H,, (z;)|dx <c-®(zy)+o(1)

1\ _ 1
N jl » |H (x,28) - o (21)] dx o)

ol [ o) - ol

. |z;|2 dodx <c—-®(z) +0(1)

o] JH(ez) - Ha (o)
XI<py

ve |
x|>py

112 11P
*CJMS,,] (J2if* +=.| )dx+ej|

ZrllzdeC—(D(ZO)+O(l)

112
'zn' dx.
x|>p
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Consequently

F(zl) —c-0(z). (119)

n
In what follows, we claim that

‘I"(zl)—\l" (zl)—>0, as 1 — 00.

n o0 n

(120)

Indeed, since zrll — 0in LfOC(RN) for2 < p < 2%, by (18), (30),
and Theorem A.2 in [27], we have

H,(x,z}) — 0, in LI/P7'(RY,R?),

in L2771 (RN, R?).

loc

(121)
H,, (z,) — 0,

[o0] n

Hence, for any w € E with [|w| = 1, it follows from (109) and
(121) that

(¥ (21) = oo (20) )

[ [ (v2h) - H (n2)) | wals

[ ) HL () ol
1

bepl |H. (x.2,) - H, (,)
[(Lx|gpl 'Hz (x, Z;)|p/(1’_1) dx)

) (p-1/p
+ (Jlxlsp1 'H(’X) (Zrl;) pl(p-1) dx> ]

1/p
([ wirax) e [ (]
[xI<py [xI>py
~ o ([2])

(p-1/
< [(J .HZ (x,z:l)|p/(p71)dx) o
[xI<py
(] e a)
[xl<p,

1/p
(J |w|de> +e
lxI<py

: "w“LZ(RN,RZ) .

|lw| dx

+

(p-1/p
<

(122)

z|) |z| lwl dx

1
Z,w

L2(RN,R?)

Hence, we obtain
F'(z,) = @' (z,) +¥' (2) - ¥l (23) — 0. (123)

n (o) n

In addition, we have
a+o)=F(z) -3 (F ().2)

(124)
- | Au(a)axzo,
RN

13
and ¢, = 0 ifand only if z} — 0in E. In fact, if ¢; = 0, then
J A, (z,)dx — 0. (125)
RN

Hence, using (74) and Holder inequality (1/7+1 /7 =1), we
obtain

1

ZVI

1

ZVI

RN
Sg|z;|j+cs(j
RN

2
2

+C, <JRN FIOO (zrll) dx)l/T (JRN

+0(1)

)Zi ((zrll))r - (z},)_)dx +0(1)

12|

zn

H,, (zi) 1 dx) +0(1)

1

z

<gn

1

Zﬂ

7 1/t 126
2 dx) (126)

()as) " |2

< ed? 12 2 o 7
_8a2 Zn +a211 & an 0

+o(1).

This implies that z. — 0 in E. The inverse is obvious. Now,
assume that conclusion (i) is false. Then ¢, > 0. For the
concentration functions Izrlllz, there are only two cases needed
to be considered: vanishing and nonvanishing. If vanishing
occurs, by the vanishing lemma and (30)-(31), one has

J hoo(zrll) zrllzdxzo(l),
RN
(127)
1 p—
JRN H,, (zn)dx =o0(1).
Hence
¢ = r}LngOJ‘ . H,, (z,ll)dx
: (128)
~ lim j S (i) [l - oo (21) dx = 0.

This is a contradiction. Thus, nonvanishing occurs; that is,
there is a sequence {a'} ¢ R and constants r;, 8, > 0 such
that

9
“Z:l“LZ(B(u;,rl)) > ?1’ (129)

for large n. We may choose k. € Z~ and Z! = k.  z. such
that, passing to a subsequence,

[\

Iz a, (130)

L2(B(0,r,+(1/2)VN))

for all . Note that F(z.) = F(z)), IVE(Z))|l = |VF(z})|, and
IIEi | = ||Zi [I. We know that {E;} isbounded (PS) ¢ ~sequence of
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F.Hence, by Lemma 12, passing to a subsequence if necessary,
we can assume that Ei —z; e Z\{0},

n

F(wy) — c-®(z)) - F(z,),
(131)
F' (wrll) — 0,

-1 =
asn — co, where w! =z, — z,. Note that

c—D(zy) - F(z;)+0(1)

= F (wy) - % (F'(w)),w,) = JRN H,, (wy)dx (132)

> 0.
Hence

c-®(zy) - F(z,) > 0. (133)

Since ®(z,) > 0 and F(z,) > C, we obtain that ¢ > C and
C < F(z,) < ¢ - ®(z,). There are now two possibilities to
consider: F(z;) < ¢ — D(z,) or F(z;) = c — D(z).

Set¢, = c—®D(zy). If ¢, := ¢, — F(z;) = 0, repeat the above
arguments but replace {z} } and ¢, by {w'} and ¢, respectively.
We obtain that ¢, = 0 if and only if w, — 0. Consequently,
we obtain that w, — 0. Hence the lemma holds with I = 1,
y, = k, * Z, (where k; € Z" is chosen to ensure that y, €
F\{0}) and g, = ~k, ~ k.

If c, > 0, then we argue again as above with {z.} and ¢,
replaced by {w,} and c,, respectively, and we obtain z, € # \
{0} with C < F(z,) < ¢,. After at most [c/C] steps, we obtain
the desired conclusion. O

As a straight consequence of Lemma 28, we have the
following.

Lemma 29. @ satisfies (C), condition for all ¢ < C.

We are now in a position to complete the proof of
Theorem 1.

Lemma 30. @ satisfies (D).

Proof. For any ¢ > 0 and z € @, using the definition of ®
and H(x, z) > 0, one has

o< (P -1T).

This yields [|z7|| < [lz"[l, and hence [|z|| < 2[|z"|. @ satisfies
(D)) O

(134)

Proof of Theorem 1. By Lemma 30, @ satisfies (®,). It follows
from Lemmas 7, 21, and 22 that (@) holds. By Lemma 23, we
know that (®,) holds. Lemma 24 shows that the linking con-
dition of Theorem 6 holds. These, together with Lemma 25,
yield (C).-sequence {z,} with x; < ¢ < sup ®(Q) < C for .
By virtue of Lemma 29, we can assume thatz, — zasn — 0.
Furthermore, we have ®'(z) = 0 and ®(z) > ;. This implies
that % \ {0} # 0. The proof is completed. ]
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6. Summary

The purpose of this paper is to investigate the existence of
nontrivial solutions for a class of Hamiltonian elliptic system
in RY in the case that the nonlinearity may not satisfy the
standard Ambrosetti-Rabinowitz condition (H,). We obtain
rather general conditions for the existence of nontrivial
solutions, which extend and improve some recent results in
the literature. In this paper, since we have no assumption of
periodic about nonlinearity, the problem is more difficult and
interesting. We will point out that if the following condition
is satisfied:

(HP) H(x,z) is 1-periodic in x; fori =1,...,N,

then forany 0 # a = (a;,...,ay) € 7N, we have ®(a * z) =
O(2), [VO(a * 2)|| = [VO(2)ll, and |la * z|| = [z]. Hence,
combining with Lemmas 7, 21, 22, 23, and 30, similar to the
proof of Lemmas 11 and 13, we have the following.

Theorem 31. % \ {0} # 0 and inf{®D(z): z € I\ {0}} > 0is
attained; that is, the problem (HES) has a ground state solution.
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