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In the present paper, we consider the following Hamiltonian elliptic system (HES): −Δ𝑢+ 𝑏(𝑥) ⋅ ∇𝑢+𝑉(𝑥)𝑢 = 𝐻V(𝑥, 𝑢, V), 𝑥 ∈ R𝑁,−ΔV − 𝑏(𝑥) ⋅ ∇V + 𝑉(𝑥)V = 𝐻𝑢(𝑥, 𝑢, V), 𝑥 ∈ R𝑁. A new existence result of nontrivial solutions is obtained for the system (HES) via
variational methods for strongly indefinite problems, which generalizes some known results in the literatures.

1. Introduction and Main Results

The goal of this paper is to study the existence of solutions for
the nonperiodic elliptic systems in Hamiltonian form−Δ𝑢 + 𝑏 (𝑥) ⋅ ∇𝑢 + 𝑉 (𝑥) 𝑢 = 𝐻V (𝑥, 𝑢, V) ,

𝑥 ∈ R
𝑁,

−ΔV − 𝑏 (𝑥) ⋅ ∇V + 𝑉 (𝑥) V = 𝐻𝑢 (𝑥, 𝑢, V) ,
𝑥 ∈ R

𝑁,
(HES)

where 𝑧 = (𝑢, V) : R𝑁 → R1 × R1, 𝑏 = (𝑏1, . . . , 𝑏𝑁) ∈𝐶1(R𝑁,R𝑁), 𝑉(𝑥) ∈ 𝐶(R𝑁,R), and 𝐻 ∈ 𝐶1(R𝑁 × R2,R).
Such a system arises when one is looking for stationary
solutions to certain systems of optimal control (Lions [1]) or
systems of diffusion equations (Itô [2] and Nagasawa [3]).

In recent years, the systems like or similar to (HES) in the
whole space R𝑁 were studied by a number of authors. Most
of these works focused on the case 𝑏(𝑥) = 0. An usual way
to overcome this difficulty is to consider the corresponding
functional in the space of radially symmetric functions. In
this way, De Figueiredo and Yang [4] considered the system

−Δ𝑢 + 𝑢 = 𝐻V (𝑥, 𝑢, V) in R
𝑁,

−ΔV + V = 𝐻𝑢 (𝑥, 𝑢, V) in R
𝑁, (1)

where 𝐻(𝑥, 𝑢, V) = 𝐹(𝑥, 𝑢) + 𝐺(𝑥, V), 𝐹(𝑥, 𝑢) = ∫𝑢
0
𝑓(𝑥, 𝑡)𝑑𝑡,

and 𝐺(𝑥, V) = ∫V
0
𝑔(𝑥, 𝑡)𝑑𝑡. They proved that system (1)

has a radial solution pair under the assumptions that 𝑓(𝑥, 𝑡)
and 𝑔(𝑥, 𝑡) are superlinear in 𝑡 and radially symmetric with
respect to 𝑥, |𝑓(𝑥, 𝑡)| ≤ 𝑐(1+|𝑡|𝑝−1) and |𝑔(𝑥, 𝑡)| ≤ 𝑐(1+|𝑡|𝑞−1)
with 2 ≤ 𝑝, 𝑞 < 2𝑁/(𝑁 − 2), 𝑁 > 2. This result was later
generalized by Sirakov [5] to the system

−Δ𝑢 + 𝑏 (𝑥) 𝑢 = 𝐻V (𝑥, 𝑢, V) in R
𝑁,

−ΔV + 𝑏 (𝑥) V = 𝐻𝑢 (𝑥, 𝑢, V) in R
𝑁. (2)

In [6], Zhao et al. considered periodic asymptotically linear
elliptic systems

−Δ𝑢 + 𝑉 (𝑥) 𝑢 = 𝐻V (𝑥, 𝑢, V) in R
𝑁,

−ΔV + 𝑉 (𝑥) V = 𝐻𝑢 (𝑥, 𝑢, V) in R
𝑁,

𝑢 (𝑥) 󳨀→ 0,
V (𝑥) 󳨀→ 0

as |𝑥| 󳨀→ ∞,
(3)

where the potential 𝑉 is periodic and has a positive bound
from below and 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are periodic in 𝑥, asymp-
totically linear in 𝑡 as |𝑡| → ∞. By using critical point theory
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of strongly indefinite functionals, they obtained the existence
of a positive ground state solution as well as infinitely many
geometrically distinct solution for systems (3) under the
assumptions that 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are odd in 𝑡. For other
results, we refer readers to [7–17].

Without assumption of periodicity or radially symmetric
about nonlinearities, the problem is quite different in nature
and there has not beenmuchwork done up to now. In a recent
paper [18], Wang et al. considered the following nonperiodic
elliptic systems in Hamiltonian form:

−Δ𝑢 + 𝑉 (𝑥) 𝑢 = 𝐻V (𝑥, 𝑢, V) in R
𝑁,

−ΔV + 𝑉 (𝑥) V = 𝐻𝑢 (𝑥, 𝑢, V) in R
𝑁,

𝑢 (𝑥) 󳨀→ 0,
V (𝑥) 󳨀→ 0

as |𝑥| 󳨀→ ∞
(4)

and obtained the following theorem.

Theorem A (see [18, Theorem 1.1]). Suppose that the follow-
ing conditions are satisfied:

(𝑉0) 𝑉(𝑥) = 1.(𝐻0) There is 𝜇 > 2 such that 0 < 𝜇𝐻(𝑥, 𝑧) ≤ 𝐻𝑧(𝑥, 𝑧)𝑧 if𝑧 ̸= 0.(𝐻1) 𝐻(𝑥, 𝑧) ∈ 𝐶1(R𝑁 × R2,R), 𝐻𝑧(𝑥, 𝑧) = ℎ(𝑥, |𝑧|)𝑧,
where ℎ : R𝑁 × R+ → R with ℎ(𝑥, 𝑠) ≥ 0, ℎ(𝑥, 𝑠) =𝑜(1) as 𝑠 → 0 uniformly in 𝑥, and there exist 𝑝 ∈[𝜇, 2∗), 𝑐1 > 0 such that ℎ(𝑥, 𝑠) ≤ 𝑐1(1 + 𝑠𝑝−2), where2∗ = 2𝑁/(𝑁 − 2).(𝐻2) There is ℎ∞ ∈ 𝐶1(R+,R+) with ℎ󸀠∞(𝑠) > 0 for 𝑠 >0, and ℎ(𝑥, 𝑠) → ℎ∞(𝑠) as |𝑥| → +∞ uniformly
in bounded set of 𝑠, ℎ∞(𝑠) ≤ ℎ(𝑥, 𝑠) and 𝐻(𝑥, 𝑧) −𝐻∞(𝑧) ≥ 𝑏(𝑥)|𝑧|𝜇 for all 𝑥 ∈ R𝑁, where 𝑏(𝑥) ̸=0, 𝑏(𝑥) ≥ 0 and𝐻∞(𝑧) = ∫|𝑧|0

ℎ∞(𝑠)𝑠 𝑑𝑠.
Then system (4) has one solution.

In the present paper, we are interested in the existence
of solutions forHamiltonian-elliptic systems (HES) involving
gradient terms and nonperiodic superquadratic nonlineari-
ties.The class of problems treated here has several difficulties.
First, the problem is set onR𝑁; amain difficulty when dealing
with this problem is the lack of compactness of the Sobolev
embedding theorem. Second, the variational functional is
strongly indefinite. Therefore, the classic critical point the-
orem cannot be applied directly. Third, the nonlinearities𝐻(𝑥, 𝑢, V) are nonperiodic in variable 𝑥 and superquadratic
at infinity; the method in [6] cannot be applied to obtain
the existence of solutions. Finally, the appearance of the
gradient terms in the systems also brings us some difficulties;
in this case, the variational framework in [18] cannot work
any longer. Inspired by recent works of Zhao and Ding
[19], we are going to investigate the existence of solutions
for the Hamiltonian elliptic systems (HES). By using the

critical point theory of strongly indefinite functional which
was developed recently by Bartsch and Ding [10, 20] and
the reduction methods which was developed in [21, 22],
we obtain an existence result of problem (HES), which
generalizes Theorem A.

Our fundamental assumptions are as follows:

(𝑉1) 𝑉 ∈ 𝐶(R𝑁,R) is 1-periodic in 𝑥𝑖 for 𝑖 = 1, . . . , 𝑁 and𝑉0 fl min𝑥∈R𝑁𝑉(𝑥) > 0.
(𝐵0) 𝑏 ∈ 𝐶1(R𝑁,R𝑁), and div(𝑏) = 0.
(𝐵1) 𝑏 is 1-periodic in 𝑥𝑖 for 𝑖 = 1, . . . , 𝑁.

(𝐻3) 𝐻(𝑥, 𝑧) ∈ 𝐶1(R𝑁 × R2, [0, +∞)), 𝐻𝑧(𝑥, 𝑧) = ℎ(𝑥,|𝑧|)𝑧, where ℎ : R𝑁 × R+ → R with ℎ(𝑥, 𝑠) ≥0, ℎ(𝑥, 𝑠) = 𝑜(1) as 𝑠 → 0 uniformly in 𝑥, and there
exist 𝑝 ∈ (2, 2∗), 𝑐1 > 0 such that ℎ(𝑥, 𝑠) ≤ 𝑐1(1+𝑠𝑝−2),
where 2∗ = 2𝑁/(𝑁 − 2).

(𝐻4) 𝐻(𝑥, 𝑧)/|𝑧|2 → +∞ as |𝑧| → +∞ uniformly in 𝑥.
(𝐻5) inf𝑥∈R𝑁𝐻̃(𝑥, 𝑧) > 0 whenever 𝑧 ̸= 0, where 𝐻̃(𝑥, 𝑧) =(1/2)𝐻z(𝑥, 𝑧)𝑧 − 𝐻(𝑥, 𝑧).
(𝐻6) |𝐻𝑧(𝑥, 𝑧)|𝜏 ≤ 𝑐2𝐻̃(𝑥, 𝑧)|𝑧|𝜏 for some 𝑐2 > 0, 𝜏 >

max{1,𝑁/2} and all (𝑥, 𝑧) with |𝑧| large enough.
(𝐻7) There is ℎ∞ ∈ 𝐶1(R+,R+) with ℎ󸀠∞(𝑠) > 0 for 𝑠 >0, and ℎ(𝑥, 𝑠) → ℎ∞(𝑠) as |𝑥| → +∞ uniformly in

bounded set of 𝑠, ℎ∞(𝑠) ≤ ℎ(𝑥, 𝑠) for all (𝑥, 𝑠) ∈ R𝑁 ×
R+ and ℎ∞(𝑠) < ℎ(𝑥, 𝑠) whenever 𝑠 > 0.

Now we can state our main result.

Theorem 1. Let (𝑉1), (𝐵0), (𝐵1), and (𝐻3)–(𝐻7) be satisfied.
Then system (HES) has at least one nontrivial solution.
Remark 2. Theorem 1 extends and improves Theorem A.
First, we only need to assume that the potential 𝑉(𝑥) is
periodic and has a positive bound from below. Second, the
conditions (𝐻4) and (𝐻5) can be obtained by (𝐻0) and (𝐻3).
In fact, by (𝐻3), we know that

󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧)󵄨󵄨󵄨󵄨 ≤ 𝑐1 (|𝑧| + |𝑧|𝑝−1) , ∀ (𝑥, 𝑧) ∈ R
𝑁 ×R

2. (5)

Consequently, by the conditions (𝐻0) and (5), it is easy to see
that (𝐻4) and (𝐻5) hold. Furthermore, similar to the proof of
Lemma 2.2(i) in [23], the condition (𝐻6) can be obtained by(𝐻0) and (5). Indeed, since 𝑝 ∈ (2, 2∗), we can obtain that𝑝/(𝑝 − 2) > max{1,𝑁/2}. For some 𝜏 ∈ (𝑁/2, 𝑝/(𝑝 − 2)),𝜏 > 1. If |𝑧| ≥ 1, then there exists 𝑐󸀠 > 0 such that

󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧)󵄨󵄨󵄨󵄨 ≤ 𝑐󸀠 |𝑧|𝑝−1 . (6)

Choose 𝑟 ≥ 1 so large that
1𝜇 ≤ 12 − (𝑐󸀠)𝜏−1

|𝑧|𝑝−(𝑝−2)𝜏 , (7)
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whenever |𝑧| ≥ 𝑟. Then, by (𝐻0), (6), and (7), we obtain

𝐻(𝑥, 𝑧) ≤ 1𝜇𝐻𝑧 (𝑥, 𝑧) 𝑧
≤ (12 − (𝑐󸀠)𝜏−1

|𝑧|𝑝−(𝑝−2)𝜏)𝐻𝑧 (𝑥, 𝑧) 𝑧
≤ (12 −

󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧)󵄨󵄨󵄨󵄨𝜏−1|𝑧|𝜏+1 )𝐻𝑧 (𝑥, 𝑧) 𝑧.
(8)

It follows that󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧)󵄨󵄨󵄨󵄨𝜏|𝑧|𝜏 ≤ 12𝐻𝑧 (𝑥, 𝑧) 𝑧 − 𝐻 (𝑥, 𝑧) = 𝐻̃ (𝑥, 𝑧) . (9)

Third, the condition (𝐻3) is weaker than the condition (𝐻1)
and the condition (𝐻7) is weaker than the condition (𝐻2).
Finally, summing up the above discussion, Theorem A is the
special case of Theorem 1 corresponding to 𝑏(𝑥) = 0.

Throughout this paper, we always assume that 𝐶 denote
any positive constant andmay be different in different places.
For 0 ̸= 𝑎 = (𝑎1, . . . , 𝑎𝑁) ∈ Z𝑁, we define 𝑎 ∗ 𝑧(𝑥) fl 𝑧(𝑥1 +𝑎1, . . . , 𝑥𝑁 + 𝑎𝑁), where 𝑧 = (𝑢, V) : R𝑁 → R1 ×R1.

2. Variational Setting

In this section, wewill establish variational framework for the
system (HES). For the convenience of notation, let |⋅|𝑝 denote
the usual 𝐿𝑝-norm and (⋅, ⋅)2 be the usual 𝐿2-inner product.
Let𝑋 and𝑌 be two Banach spaces with norms ‖ ⋅‖𝑋 and ‖ ⋅‖𝑌;
we always choose the equivalent norm ‖(𝑥, 𝑦)‖𝑋×𝑌 = (‖𝑥‖2𝑋 +‖𝑦‖2𝑌)1/2 on the product space 𝑋 × 𝑌. In particular, if 𝑋 and𝑌 are twoHilbert spaces with inner products (⋅, ⋅)𝑋 and (⋅, ⋅)𝑌,
we choose the inner product ((𝑥, 𝑦), (𝑤, 𝑧))𝑋×𝑌 = (𝑥, 𝑤)𝑋 +(𝑦, 𝑧)𝑌 on the product space 𝑋 × 𝑌. In order to continue the
discussion, we need the following notations. Set

J = (0 −11 0 ) ,
J0 = (0 11 0) ,

(10)

and∇J = ( 0 −∇
∇ 0 ) is amatrix operator. LetS = −Δ+𝑉 denote

the Schrödinger operator. Denote 𝐴0 fl SJ0 and

𝐴 fl 𝐴0 + 𝑏 ⋅ ∇J
= ( 0 −Δ − 𝑏 ⋅ ∇ + 𝑉−Δ + 𝑏 ⋅ ∇ + 𝑉 0 ) . (11)

Then (HES) can be rewritten as

𝐴𝑧 = 𝐻𝑧 (𝑥, 𝑧) , 𝑧 ∈ 𝐻1 (R𝑁,R2) . (12)

Denote by 𝜎(𝐴) and 𝜎ess(𝐴) the spectrum and the
essential spectrum of the operator 𝐴, respectively. Set 𝜇 fl
inf{𝜎(𝐴) ∩ (0,∞)}; then we have the following lemmas.

Lemma 3 (see [19, Lemma 2.1]). Suppose that (𝐵0) and (𝑉1)
are satisfied. Then the operator 𝐴 is a self-adjoint operator on𝐿2(R𝑁,R2) with domainD(𝐴) = 𝐻2(R𝑁,R2).
Lemma 4 (see [19, Lemma 2.3]). Let (𝐵0), (𝐵1), and (𝑉1) be
satisfied. Then

(1) 𝜎(𝐴) = 𝜎ess(𝐴); that is, 𝐴 has only essential spectrum;
(2) 𝜎(𝐴) ⊂ R \ (−𝑉0, 𝑉0) and 𝜎(𝐴) is symmetric with

respect to origin;
(3) 𝑉0 ≤ 𝜇 ≤ max𝑉.
It follows from Lemmas 3 and 4 that the space 𝐿2(R𝑁,R2)

possesses the orthogonal decomposition

𝐿2 = 𝐿− ⊕ 𝐿+,
𝑧 = 𝑧− + 𝑧+, (13)

such that 𝐴 is negative definite (resp., positive definite) in 𝐿−
(resp. 𝐿+). Let |𝐴| denote the absolute value of 𝐴 and |𝐴|1/2 be
the square root of |𝐴|. Let 𝐸 = D(|𝐴|1/2) be the Hilbert space
with the inner product

(𝑧, 𝑤) = (|𝐴|1/2 𝑧, |𝐴|1/2 𝑤)
𝐿2
, (14)

and norm ‖𝑧‖ = (𝑧, 𝑧)1/2. 𝐸 possesses an induced decomposi-
tion 𝐸 = 𝐸− ⊕ 𝐸+,

𝐸± = 𝐸 ∩ 𝐿±, (15)

which are orthogonal with respect to the inner products (⋅, ⋅)2
and (⋅, ⋅) (the above results can be found in [19]).

Lemma 5 (see [19, Lemma 2.4]). ‖ ⋅ ‖ and ‖ ⋅ ‖𝐻1(R𝑁,R2)
are equivalent norms. Therefore, 𝐸 embeds continuously into𝐿𝑝(𝑅𝑁, 𝑅2) for any𝑝 ∈ [2, 2∗] and compactly into𝐿𝑝loc(𝑅𝑁, 𝑅2)
for 𝑝 ∈ [2, 2∗), and there exists constant 𝑎𝑝 such that

|𝑧|𝑝 ≤ 𝑎𝑝 ‖𝑧‖ , ∀𝑧 ∈ 𝐸, 𝑝 ∈ [2, 2∗] . (16)

On 𝐸 we define the following functional:

Φ (𝑧) = 12 (󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑧−󵄩󵄩󵄩󵄩2) − Ψ (𝑧) , (17)

whereΨ(𝑧) = ∫
R𝑁

𝐻(𝑥, 𝑧)𝑑𝑥. It follows from (𝐻3) that, for any𝜀 > 0, there is 𝐶(𝜀) > 0 such that󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧)󵄨󵄨󵄨󵄨 ≤ 𝜀 |𝑧| + 𝐶 (𝜀) |𝑧|𝑝−1 , (18)

|𝐻 (𝑥, 𝑧)| ≤ 𝜀2 |𝑧|2 + 𝐶 (𝜀)𝑝 |𝑧|𝑝 , (19)

for all (𝑥, 𝑧). Thus, Lemma 5 implies that Φ is well defined
on 𝐸. Lemma 4 implies that Φ is strongly indefinite; such type
functional appeared extensively when one considers differential
equations via critical point theory; see, for example, [24–27]
and the references therein. Our hypotheses imply that Φ ∈𝐶1(𝐸,R) (see Lemma 3.10 in [27]) and a standard argument
shows that the critical points of Φ are solutions of (HES).
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3. The Abstract Critical Point Theorem

In order to study the critical points of Φ, we now recall a
abstract critical point theorem developed recently in [10, 20].
Let 𝐸 be a Banach space with direct sum 𝐸 = 𝑋 ⊕ 𝑌 and
corresponding projections 𝑃𝑋, 𝑃𝑌 onto 𝑋,𝑌. We assume that
the Banach space 𝑋 is separable and reflexive. Let S ⊂ 𝑋∗

be a dense subset; for each 𝑠 ∈ S there is a seminorm on 𝐸
defined by

𝑝𝑠 : 𝐸 󳨀→ 𝑅,
𝑝𝑠 (𝑧) = |𝑠 (𝑥)| + 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩 for 𝑧 = 𝑥 + 𝑦 ∈ 𝐸. (20)

Denote by TS and T𝑤 the topology induced by seminorm
family {𝑝𝑠} and the weak-topology on 𝐸, respectively. T𝑤∗

denotes the weak∗-topology on 𝐸∗. Now, some notations and
definitions are needed.

For a functional Φ ∈ 𝐶1(𝐸,R), we write Φ𝑎 = {𝑧 ∈ 𝐸 |Φ(𝑧) ≥ 𝑎}, Φ𝑏 = {𝑧 ∈ 𝐸 | Φ(𝑧) ≤ 𝑏}, and Φ𝑏
𝑎 = Φ𝑎 ∩ Φ𝑏.

Suppose

(Φ0) for any 𝑐 ∈ R,Φ𝑐 isTS-closed, andΦ󸀠 : (Φ𝑐,TS) →(𝐸∗,T𝑤∗) is continuous;
(Φ1) for any 𝑐 > 0, there exists 𝜉 > 0 such that ‖𝑧‖ < 𝜉‖𝑃𝑌𝑧‖

for all 𝑧 ∈ Φ𝑐;
(Φ2) there exists 𝜌 > 0 such that 𝜅 fl inf Φ(𝑆𝜌 ∩ 𝑌) > 0,

where 𝑆𝜌 fl {𝑧 ∈ 𝐸 : ‖𝑧‖ = 𝜌}.
Theorem 6 (see [10] or [20]). Let (Φ0)–(Φ2) be satisfied and
suppose there are 𝑅 > 𝜌 > 0 and 𝑒 ∈ 𝑌 with ‖𝑒‖ = 1 such that
supΦ(𝜕𝑄) ≤ 𝜅 where 𝑄 fl {𝑧 = 𝑥 + 𝑡𝑒 : 𝑥 ∈ 𝑋, 𝑡 ≥ 0, ‖𝑧‖ ≤𝑅}. Then, Φ has a (𝐶𝑐)-sequence with 𝜅 ≤ 𝑐 ≤ 𝑐 fl supΦ(𝑄).
Moreover, if Φ satisfies the (𝐶)𝑐-condition for all 𝑐 ≤ 𝑐 then Φ
has a critical point 𝑧 with 𝜅 ≤ Φ(𝑧) ≤ 𝑐.
Lemma 7 (see [10] or [20]). Let

Φ (𝑧) = 12 (󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2 − ‖𝑥‖2) − Ψ (𝑧) ,
for 𝑧 = 𝑥 + 𝑦 ∈ 𝐸 = 𝑋 ⊕ 𝑌. (21)

Suppose

(1) Ψ ∈ 𝐶1(𝐸,R) is bounded from below;
(2) Ψ : (𝐸,T𝑤) → R is sequentially lower semi-

continuous; that is, 𝑧𝑛 ⇀ 𝑧 in 𝐸 implies Ψ(𝑧) ≤
lim inf𝑛→∞Ψ(𝑧𝑛);

(3) Ψ󸀠 : (𝐸,T𝑤) → (𝐸∗,T𝑤∗) is sequentially continuous;
(4) ] : 𝐸 → 𝑅, ](𝑧) = ‖𝑧‖2 is 𝐶1 and ]󸀠 : (𝐸,T𝑤) →(𝐸∗,T𝑤∗) is sequentially continuous.
Then Φ satisfies Φ0.

4. The Limit Equation

In this section, we study the following limit equation related
to (HES),

𝐴𝑧 = ℎ∞ (|𝑧|) 𝑧 = 𝐻󸀠
∞ (𝑧) , (HES)∞

where ℎ∞ is given in (𝐻2), 𝐻∞(𝑧) = ∫|𝑧|
0
ℎ∞(𝑠)𝑠 𝑑𝑠, and𝐻󸀠

∞(𝑧) = ∇𝑧𝐻∞(𝑧) = (∇𝑢𝐻∞(𝑧), ∇V𝐻∞(𝑧)). By virtue of(𝐻3)–(𝐻7), we have firstly the following lemma.

Lemma 8. ℎ∞ and𝐻∞ possess the following properties.

(i) ℎ∞(|𝑧|) = 𝑜(1) as |𝑧| → 0 and ℎ∞(|𝑧|) ≤ 𝑐1(1+ |𝑧|𝑝−2)
for some 𝑝 ∈ (2, 2∗).

(ii) 𝐻∞(𝑧)/|𝑧|2 → +∞ as |𝑧| → +∞.
(iii) 𝐻̃∞(𝑧) > 0 whenever 𝑧 ̸= 0, where 𝐻̃∞(𝑧) = (1/2)𝐻󸀠

∞(𝑧)𝑧 − 𝐻∞(𝑧).
(iv) |𝐻󸀠

∞(𝑧)|𝜏 ≤ 𝑐2𝐻̃∞(𝑧)|𝑧|𝜏 whenever |𝑧| large enough.
(v) 𝐻̃∞(𝑧) → +∞ as |𝑧| → +∞.

Proof. (i) It is clear by (𝐻3) and (𝐻7).
(ii) By (𝐻4), for any 𝑀 > 0, there is 𝑅𝑀 > 0 such that𝐻(𝑥, 𝑧)/|𝑧|2 ≥ 𝑀 whenever |𝑧| ≥ 𝑅𝑀. Hence

𝐻∞ (𝑧)|𝑧|2 = 𝐻∞ (𝑧) − 𝐻 (𝑥, 𝑧)|𝑧|2 + 𝐻 (𝑥, 𝑧)|𝑧|2
≥ 𝐻∞ (𝑧) − 𝐻 (𝑥, 𝑧)|𝑧|2 +𝑀, (22)

for all |𝑧| ≥ 𝑅𝑀. Observe that

0 ≤ 𝐻 (𝑥, 𝑧) − 𝐻∞ (𝑧)
= ∫1

0
(𝐻𝑧 (𝑥, 𝜃𝑧) − 𝐻󸀠

∞ (𝜃𝑧)) 𝑧 𝑑𝜃; (23)

it follows from (𝐻7) that 𝐻(𝑥, 𝑧) → 𝐻∞(𝑧) as |𝑥| → +∞.
Letting |𝑥| → +∞ we get𝐻∞(𝑧)/|𝑧|2 ≥ 𝑀 for all |𝑧| ≥ 𝑅𝑀.

(iii) Since𝐻(𝑥, 𝑧) → 𝐻∞(𝑧) as |𝑥| → +∞, it follows from(𝐻5) that
𝐻̃∞ (𝑧) = lim

|𝑥|→+∞
𝐻̃ (𝑥, 𝑧) > 0, if 𝑧 ̸= 0. (24)

(iv) By (𝐻6), for |𝑧| large enough󵄨󵄨󵄨󵄨󵄨𝐻󸀠
∞ (𝑧)󵄨󵄨󵄨󵄨󵄨|𝑧| ≤ 󵄨󵄨󵄨󵄨󵄨𝐻󸀠

∞ (𝑧) − 𝐻𝑧 (𝑥, 𝑧)󵄨󵄨󵄨󵄨󵄨|𝑧| + 󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧)󵄨󵄨󵄨󵄨|𝑧|
≤ 󵄨󵄨󵄨󵄨󵄨𝐻󸀠

∞ (𝑧) − 𝐻𝑧 (𝑥, 𝑧)󵄨󵄨󵄨󵄨󵄨|𝑧| + 𝑐1/𝜏2 𝐻̃ (𝑥, 𝑧)1/𝜏 .
(25)

Letting |𝑥| → +∞, we obtain󵄨󵄨󵄨󵄨󵄨𝐻󸀠
∞ (𝑧)󵄨󵄨󵄨󵄨󵄨|𝑧| ≤ 𝑐1/𝜏2 𝐻̃∞ (𝑧)1/𝜏 . (26)

(v) It follows from (ii)–(iv) that

𝑐2𝐻̃∞ (𝑧) ≥ (󵄨󵄨󵄨󵄨󵄨𝐻󸀠
∞ (𝑧)󵄨󵄨󵄨󵄨󵄨|𝑧| )𝜏 ≥ (2𝐻∞ (𝑧)|𝑧|2 )𝜏 󳨀→ +∞, (27)

as |𝑧| → +∞.
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Now, we set

Ψ∞ (𝑧) = ∫
𝑅𝑁
𝐻∞ (𝑧) 𝑑𝑥 (28)

and define the functional

𝐹 (𝑧) = 12 (󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑧−󵄩󵄩󵄩󵄩2) − Ψ∞ (𝑧) ,
∀𝑧 = 𝑧− + 𝑧+ ∈ 𝐸. (29)

By Lemma 8, for any 𝜀 > 0, there is 𝐶(𝜀) > 0 such that

󵄨󵄨󵄨󵄨󵄨𝐻󸀠
∞ (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀 |𝑧| + 𝐶 (𝜀) |𝑧|𝑝−1 , ∀ (𝑥, 𝑧) ∈ 𝑅𝑁 × 𝑅2, (30)

󵄨󵄨󵄨󵄨𝐻∞ (𝑧)󵄨󵄨󵄨󵄨 ≤ 𝜀2 |𝑧|2 + 𝐶 (𝜀)𝑝 |𝑧|𝑝 , ∀ (𝑥, 𝑧) ∈ 𝑅𝑁 × 𝑅2. (31)

It follows from (30) and (31) that 𝐹 ∈ 𝐶1(𝐸,R) is well defined
and its critical points are solutions of (HES)∞.

Lemma 9. 𝐹 possesses the following properties:

(1) Ψ∞ is weakly sequentially lower semicontinuous and𝐹󸀠

is weak sequentially continuous.

(2) There is 𝜌 > 0 such that 𝜅 := inf 𝐹(𝜕𝐵𝜌 ∩ 𝐸+) > 0,
where 𝜕𝐵𝜌 fl {𝑧 ∈ 𝐸 : ‖𝑧‖ = 𝜌}.

Proof. (1) Suppose 𝑧𝑛 ⇀ 𝑧 in 𝐸. Going if necessary to a
subsequence, we can assume 𝑧𝑛 → 𝑧 in 𝐿𝑝loc(R𝑁,R2) for𝑝 ∈ [2, 2∗) and 𝑧𝑛(𝑥) → 𝑧(𝑥) a.e. inR𝑁. Hence𝐻∞(𝑧𝑛(𝑥)) →𝐻∞(𝑧(𝑥)) a.e. in R𝑁. Thus

Ψ∞ (𝑧) = ∫
R𝑁

𝐻∞ (𝑧) 𝑑𝑥 = ∫
R𝑁

lim
𝑛→∞

𝐻∞ (𝑧𝑛) 𝑑𝑥
≤ lim inf

𝑛→∞
∫
R𝑁

𝐻∞ (𝑧𝑛) 𝑑𝑥
= lim inf

𝑛→∞
Ψ∞ (𝑧𝑛) .

(32)

Next it is sufficient to show that Ψ󸀠
∞ is weak sequentially

continuous. Indeed, by (30) and 𝑧𝑛 → 𝑧 in 𝐿𝑝loc(R𝑁,R2),2 ≤ 𝑝 < 2∗, it follows fromTheorem A.2 in [27] that

𝐻󸀠
∞ (𝑧𝑛) 󳨀→ 𝐻󸀠

∞ (𝑧) , in 𝐿𝑝/𝑝−1loc (R𝑁,R2) . (33)

Furthermore, for each fixed 𝜑 ∈ 𝐸, one has that, for any 𝜀1 >0, there exists 𝑟0 > 0 such that

(∫
R𝑁\𝐵𝑟0 (0)

󵄨󵄨󵄨󵄨𝜑 (𝑥)󵄨󵄨󵄨󵄨𝑝 𝑑𝑥)1/𝑝 < 𝜀1. (34)

Hence, for large 𝑛, it follows from (30), (33), (34), and Hölder
inequality that󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R𝑁 (𝐻󸀠

∞ (𝑧𝑛) − 𝐻󸀠
∞ (𝑧)) 𝜑𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∫R𝑁 󵄨󵄨󵄨󵄨󵄨𝐻󸀠

∞ (𝑧𝑛)
− 𝐻󸀠

∞ (𝑧)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ (∫
𝐵𝑟0 (0)

󵄨󵄨󵄨󵄨󵄨𝐻󸀠
∞ (𝑧𝑛)

− 𝐻󸀠
∞ (𝑧)󵄨󵄨󵄨󵄨󵄨𝑝/(𝑝−1) 𝑑𝑥)

(𝑝−1)/𝑝

⋅ (∫
𝐵𝑟0 (0)

󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨𝑝 𝑑𝑥)1/𝑝 + ∫
R𝑁\𝐵𝑟0 (0)

[𝜀 (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨 + |𝑧|)
+ 𝐶 (𝜀) (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨𝑝−1 + |𝑧|𝑝−1)] 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨 𝑑𝑥
≤ (∫

𝐵𝑟0 (0)

󵄨󵄨󵄨󵄨󵄨𝐻󸀠
∞ (𝑧𝑛) − 𝐻󸀠

∞ (𝑧)󵄨󵄨󵄨󵄨󵄨𝑝/(𝑝−1) 𝑑𝑥)
(𝑝−1)/𝑝

⋅ (∫
𝐵𝑟0 (0)

󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨𝑝 𝑑𝑥)1/𝑝

+ 𝜀(∫
R𝑁\𝐵𝑟0 (0)

󵄨󵄨󵄨󵄨𝜑 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑥)1/2 (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2 + |𝑧|2)
+ 𝜀1𝐶 (𝜀) (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨𝑝−1𝑝 + |𝑧|𝑝−1𝑝 ) .

(35)

Therefore,󵄨󵄨󵄨󵄨󵄨⟨Ψ󸀠
∞ (𝑧𝑛) , 𝜑⟩ − ⟨Ψ󸀠

∞ (𝑧) , 𝜑⟩󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R𝑁 (𝐻󸀠

∞ (𝑧𝑛) − 𝐻󸀠
∞ (𝑧)) 𝜑 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 󳨀→ 0,

as 𝑛 󳨀→ ∞.
(36)

(2) For any 𝑧+ ∈ 𝐸+, it follows from (31) that

𝐹 (𝑧+) = 12 󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩2 − ∫𝑅𝑁𝐻∞ (𝑧+) 𝑑𝑥
≥ 12 󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩2 − ∫𝑅𝑁 ( 𝜀2 󵄨󵄨󵄨󵄨𝑧+󵄨󵄨󵄨󵄨2 + 𝐶 (𝜀)𝑝 󵄨󵄨󵄨󵄨𝑧+󵄨󵄨󵄨󵄨𝑝)𝑑𝑥
≥ (12 − 𝐶𝜀) 󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩2 − 𝐶 󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩𝑝 .

(37)

The conclusion follows because 𝑝 > 2.
Now, we choose a number 𝛾 > 0 such that

max𝑥∈𝑅𝑁𝑉(𝑥) < 𝛾. From Lemma 8(ii), there is 𝑟 > 0
such that𝐻∞(𝑧) ≥ 𝛾|𝑧|2 whenever |𝑧| ≥ 𝑟. Let {𝐸𝜆}𝜆∈𝑅 be the
spectrum family of the operator 𝐴. It follows from Lemma 4
that (𝐸𝛾 − 𝐹0)𝐿2 is a infinite dimension subspace of 𝐸+ and

𝑉0 |𝑧|22 ≤ 𝜇 |𝑧|22 ≤ ‖𝑧‖2 ≤ 𝛾 |𝑧|22 , ∀𝑧 ∈ (𝐸𝛾 − 𝐸0) 𝐿2. (38)

We have the following result.
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Lemma 10. For any finite dimensional subspace 𝐸𝑊 of (𝐸𝛾 −𝐸0)𝐿2,𝐹 (𝑧) 󳨀→ −∞, as ‖𝑧‖ 󳨀→ ∞, 𝑧 ∈ 𝐸− ⊕ 𝐸𝑊. (39)

Proof. If not, then there are𝑀 > 0 and {𝑧𝑛} ⊂ 𝐸− ⊕ 𝐸𝑊 with‖𝑧𝑛‖ → ∞ such that 𝐹(𝑧𝑛) ≥ −𝑀 for all 𝑛. Denote 𝑦𝑛 fl𝑧𝑛/‖𝑧𝑛‖, passing to a subsequence if necessary; we can assume
that 𝑦𝑛 ⇀ 𝑦, 𝑦−𝑛 ⇀ 𝑦−, and 𝑦+𝑛 → 𝑦+. Then

12 (󵄩󵄩󵄩󵄩𝑦+𝑛 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−𝑛 󵄩󵄩󵄩󵄩2) ≥ 12 (󵄩󵄩󵄩󵄩𝑦+𝑛 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−𝑛 󵄩󵄩󵄩󵄩2)
− ∫

𝑅𝑁

𝐻∞ (𝑧𝑛)󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 𝑑𝑥 = 𝐹 (𝑧𝑛)󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2
≥ −𝑀󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 ,

(40)

which yields that

12 󵄩󵄩󵄩󵄩𝑦−𝑛 󵄩󵄩󵄩󵄩2 ≤ 12 󵄩󵄩󵄩󵄩𝑦+𝑛 󵄩󵄩󵄩󵄩2 + 𝑀󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 . (41)

We claim that 𝑦+ ̸= 0. Indeed, if not then it follows from (41)
that ‖𝑦−𝑛 ‖ → 0.Thus ‖𝑦𝑛‖ → 0, which contradicts with ‖𝑦𝑛‖ =1. By (38), we get󵄩󵄩󵄩󵄩𝑦+󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−󵄩󵄩󵄩󵄩2 − 2𝛾 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨22

≤ 𝛾 󵄨󵄨󵄨󵄨𝑦+󵄨󵄨󵄨󵄨22 − 󵄩󵄩󵄩󵄩𝑦−󵄩󵄩󵄩󵄩2 − 2𝛾 󵄨󵄨󵄨󵄨𝑦+󵄨󵄨󵄨󵄨22 − 2𝛾 󵄨󵄨󵄨󵄨𝑦−󵄨󵄨󵄨󵄨22
≤ −𝛾 󵄨󵄨󵄨󵄨𝑦+󵄨󵄨󵄨󵄨22 − 󵄩󵄩󵄩󵄩𝑦−󵄩󵄩󵄩󵄩2 − 2𝛾 󵄨󵄨󵄨󵄨𝑦−󵄨󵄨󵄨󵄨22 < 0.

(42)

Hence, there exists 𝑅 > 0 such that󵄩󵄩󵄩󵄩𝑦+󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−󵄩󵄩󵄩󵄩2 − 2𝛾∫
𝐵𝑅

󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2 𝑑𝑥 < 0, (43)

where 𝐵𝑅 fl {𝑥 ∈ 𝑅𝑁: |𝑥| ≤ 𝑅}. Note that
𝐹 (𝑧𝑛)󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 ≤ 12 (󵄩󵄩󵄩󵄩𝑦+𝑛 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−𝑛 󵄩󵄩󵄩󵄩2) − ∫𝐵𝑅

𝐻∞ (𝑧𝑛)󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 𝑑𝑥
= 12 (󵄩󵄩󵄩󵄩𝑦+𝑛 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−𝑛 󵄩󵄩󵄩󵄩2 − 2𝛾∫𝐵𝑅 󵄨󵄨󵄨󵄨𝑦𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥)
− ∫

𝐵𝑅

𝐻∞ (𝑧𝑛) − 𝛾 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 𝑑𝑥
≤ 12 (󵄩󵄩󵄩󵄩𝑦+𝑛 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−𝑛 󵄩󵄩󵄩󵄩2 − 2𝛾∫𝐵𝑅 󵄨󵄨󵄨󵄨𝑦𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥)
− ∫

𝐵𝑅∩{𝑥∈𝑅
𝑁:|𝑧𝑛|≤𝑟}

𝐻∞ (𝑧𝑛) − 𝛾 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 𝑑𝑥
≤ 12 (󵄩󵄩󵄩󵄩𝑦+𝑛 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−𝑛 󵄩󵄩󵄩󵄩2 − 2𝛾∫𝐵𝑅 󵄨󵄨󵄨󵄨𝑦𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥)
+ 𝛾𝑟2 󵄨󵄨󵄨󵄨𝐵𝑅󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 .

(44)

Hence

0 ≤ lim
𝑛→∞

[12 (󵄩󵄩󵄩󵄩𝑦+𝑛 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−𝑛 󵄩󵄩󵄩󵄩2) − ∫𝐵𝑅
𝐻∞ (𝑧𝑛)󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 𝑑𝑥]

≤ 12 (󵄩󵄩󵄩󵄩𝑦+󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦−󵄩󵄩󵄩󵄩2 − 2𝛾∫𝐵𝑅 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨2 𝑑𝑥) < 0.
(45)

Now the desired conclusion follows from this contradiction.

As a consequence, we have the following.

Lemma 11. Let 𝜅 > 0 be given by Lemma 9. Then, letting 𝑒 ∈𝐸𝑊 with ‖𝑒‖ = 1, there is 𝑅1 > 0 such that 𝐹|𝜕𝑄 ≤ 𝜅, where𝑄 fl {𝑧 = 𝑧− + 𝑠𝑒 : 𝑧− ∈ 𝐸−, 𝑠 ≥ 0, ‖𝑧‖ ≤ 𝑅1}.
Lemma 12. Let {𝑧𝑛} be any (𝐶)𝑐-sequence for𝐹.That is, {𝑧𝑛} ⊂𝐸 is such that 𝐹 (𝑧𝑛) 󳨀→ 𝑐,

(1 + 󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩) 𝐹󸀠 (𝑧𝑛) 󳨀→ 0, (46)

as 𝑛 → ∞. Then it is bounded and 𝑐 ≥ 0. Moreover, there is
a subsequence still denoted by {𝑧𝑛} satisfying 𝑧𝑛 ⇀ 𝑧, 𝐹(𝑧𝑛 −𝑧) → 𝑐 − 𝐹(𝑧) and 𝐹󸀠(𝑧𝑛 − 𝑧) → 0, as 𝑛 → ∞.

Proof. Let {𝑧𝑛} ⊂ 𝐸 be such that

𝐹 (𝑧𝑛) 󳨀→ 𝑐,
(1 + 󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩) 𝐹󸀠 (𝑧𝑛) 󳨀→ 0. (47)

Then, for large 𝑛, one has
𝑐 + 𝑜 (1) ≥ 𝐹 (𝑧𝑛) − 12 ⟨𝐹󸀠 (𝑧𝑛) , 𝑧𝑛⟩

= ∫
R𝑁

[12ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2 − 𝐻∞ (𝑧𝑛)] 𝑑𝑥
= ∫

R𝑁
𝐻̃∞ (𝑧𝑛) 𝑑𝑥 ≥ 0,

(48)

which implies 𝑐 ≥ 0. If {𝑧𝑛} is unbounded in 𝐸, up to a
subsequence if necessary, we can assume that ‖𝑧𝑛‖ → +∞.
Set 𝑤𝑛 = 𝑧𝑛/‖𝑧𝑛‖. Then ‖𝑤𝑛‖ = 1 and |𝑤𝑛|𝑝 ≤ 𝑎𝑝‖𝑤𝑛‖ = 𝑎𝑝
for each 2 ≤ 𝑝 ≤ 2∗. Note that

⟨𝐹󸀠 (𝑧𝑛) , 𝑧+𝑛 − 𝑧−𝑛⟩󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2
= 1 − ∫

R𝑁

ℎ∞ (󵄨󵄨󵄨󵄨z𝑛󵄨󵄨󵄨󵄨) 𝑧𝑛 (𝑧+𝑛 − 𝑧−𝑛 )󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 𝑑𝑥.
(49)

Hence, one has

lim
𝑛→∞

∫
R𝑁

ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 𝑧𝑛 (𝑧+𝑛 − 𝑧−𝑛 )󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 𝑑𝑥
= lim

𝑛→∞
∫
R𝑁

ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 𝑤𝑛 (𝑤+
𝑛 − 𝑤−

𝑛 ) 𝑑𝑥 = 1.
(50)
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On the other hand, for 𝑟 ≥ 0 and 0 ≤ 𝛼 < 𝛽 ≤ +∞, set

𝑔 (𝑟) fl inf {𝐻̃∞ (𝑧) : 𝑧 ∈ R
2, |𝑧| ≥ 𝑟} ,

𝑂𝑛 (𝛼, 𝛽) fl {𝑥 ∈ R
𝑁: 𝛼 ≤ 󵄨󵄨󵄨󵄨𝑧𝑛 (𝑥)󵄨󵄨󵄨󵄨 < 𝛽} ,

𝑆𝛽𝛼 fl inf {𝐻̃∞ (𝑧)|𝑧|2 : 𝑧 ∈ R
2, 𝛼 ≤ |𝑧| < 𝛽} .

(51)

Then, by Lemma 8, we have 𝑔(𝑟) > 0 for all 𝑟 > 0 and 𝑔(𝑟) →+∞ as 𝑟 → +∞. For large 𝛼 > 0, one has 𝑆𝛽𝛼 > 0 and
𝐻̃∞ (𝑧𝑛 (𝑥)) ≥ 𝑆𝛽𝛼 󵄨󵄨󵄨󵄨𝑧𝑛 (𝑥)󵄨󵄨󵄨󵄨2 , ∀𝑥 ∈ 𝑂𝑛 (𝛼, 𝛽) . (52)

Consequently, for large 𝑛 and 𝛼, whenever 𝛼 < 𝛽 one has

𝑐 + 𝑜 (1) ≥ ∫
𝑂𝑛(0,𝛼)

𝐻̃∞ (𝑧𝑛) 𝑑𝑥 + ∫
𝑂𝑛(𝛼,𝛽)

𝐻̃∞ (𝑧𝑛) 𝑑𝑥
+ ∫

𝑂𝑛(𝛽,+∞)
𝐻̃∞ (𝑧𝑛) 𝑑𝑥

≥ ∫
𝑂𝑛(0,𝛼)

𝐻̃∞ (𝑧𝑛) 𝑑𝑥 + 𝑆𝛽𝛼 ∫
𝑂𝑛(𝛼,𝛽)

󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥
+ 𝑔 (𝛽) 󵄨󵄨󵄨󵄨𝑂𝑛 (𝛽, +∞)󵄨󵄨󵄨󵄨 .

(53)

Since 𝐻̃∞(𝑧𝑛) ≥ 0, lim𝛽→+∞𝑔(𝛽) = +∞ implies

lim
𝛽→+∞

󵄨󵄨󵄨󵄨𝑂𝑛 (𝛽, +∞)󵄨󵄨󵄨󵄨 = 0, uniformly in 𝑛. (54)

For any 𝑠 ∈ (2, 2∗), we choose 𝑟 ∈ (𝑠, 2∗). Using the Hölder
inequality we have

∫
𝑂𝑛(𝛽,+∞)

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨𝑠 𝑑𝑥

≤ 󵄨󵄨󵄨󵄨𝑂𝑛 (𝛽, +∞)󵄨󵄨󵄨󵄨(𝑟−𝑠)/𝑟 (∫
𝑅𝑁

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨𝑟 𝑑𝑥)𝑠/𝑟

≤ 𝑎𝑠𝑟 󵄨󵄨󵄨󵄨𝑂𝑛 (𝛽, +∞)󵄨󵄨󵄨󵄨(𝑟−𝑠)/𝑟 󳨀→ 0,
(55)

as 𝛽 → +∞ uniformly in 𝑛 and
∫
𝑂𝑛(𝛼,𝛽)

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨2 𝑑𝑥 ≤ 1󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 ∫𝑂𝑛(𝛼,𝛽)

󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥 ≤ 𝐶𝑆𝛽𝛼 󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2󳨀→ 0,
(56)

as 𝑛 → ∞. Therefore,

∫
𝑂𝑛(𝛼,𝛽)

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨𝑠 𝑑𝑥 ≤ (∫

𝑂𝑛(𝛼,𝛽)

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨𝑟 𝑑𝑥)(𝑠−2)/(𝑟−2)

⋅ (∫
𝑂𝑛(𝛼,𝛽)

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨2 𝑑𝑥)(𝑟−𝑠)/(𝑟−2)

≤ 𝐶(∫
𝑂𝑛(𝛼,𝛽)

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨2 𝑑𝑥)(𝑟−𝑠)/(𝑟−2) 󳨀→ 0,

(57)

as 𝑛 → ∞. Let 0 < 𝜀 < 1/3 be given. It follows from Lemma 8
that there is 𝛼(𝜀) such that |ℎ∞(|𝑧|)| < 𝜀/𝑎22 for all |𝑧| ≤ 𝛼(𝜀).
Consequently, we have

∫
𝑂𝑛(0,𝛼(𝜀))

ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 𝑤𝑛 (𝑤+
𝑛 − 𝑤−

𝑛 ) 𝑑𝑥 ≤ 𝜀𝑎22 󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨22 ≤ 𝜀, (58)

for all 𝑛. By Lemma 8, we define 𝜇 = 2𝜏/(𝜏 − 1) and 𝜇󸀠 = 𝜇/2.
By (55), we can take 𝛽(𝜀) so large that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑂𝑛(𝛽(𝜀),+∞)

ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 𝑤𝑛 (𝑤+
𝑛 − 𝑤−

𝑛 ) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (∫

𝑂𝑛(𝛽(𝜀),+∞)

󵄨󵄨󵄨󵄨ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨)󵄨󵄨󵄨󵄨𝜏 𝑑𝑥)1/𝜏

⋅ (∫
𝑂𝑛(𝛽(𝜀),+∞)

(󵄨󵄨󵄨󵄨𝑤+
𝑛 − 𝑤−

𝑛
󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑤𝑛

󵄨󵄨󵄨󵄨)𝜇󸀠 𝑑𝑥)1/𝜇󸀠

≤ (∫
𝑂𝑛(𝛽(𝜀),+∞)

𝑐2𝐻̃∞ (𝑧𝑛) 𝑑𝑥)1/𝜏

⋅ (∫
R𝑁

󵄨󵄨󵄨󵄨𝑤+
𝑛 − 𝑤−

𝑛
󵄨󵄨󵄨󵄨𝜇 𝑑𝑥)1/𝜇

⋅ (∫
𝑂𝑛(𝛽(𝜀),+∞)

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨𝜇 𝑑𝑥)1/𝜇 ≤ 𝜀,

(59)

for all 𝑛. For fixed 0 < 𝛼(𝜀) < 𝛽(𝜀), it follows from (57) that
there is 𝑛0 such that

∫
𝑂𝑛(𝛼(𝜀),𝛽(𝜀))

ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 𝑤𝑛 (𝑤+
𝑛 − 𝑤−

𝑛 ) 𝑑𝑥
≤ 𝐶∫

𝑂𝑛(𝛼(𝜀),𝛽(𝜀))

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨2 𝑑𝑥 ≤ 𝜀, ∀𝑛 ≥ 𝑛0.

(60)

Now the combination of (58)–(60) implies that for 𝑛 ≥ 𝑛0
∫
R𝑁

ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 𝑤𝑛 (𝑤+
𝑛 − 𝑤−

𝑛 ) 𝑑𝑥 ≤ 3𝜀 < 1. (61)

This contradicts with (50). Hence, {𝑧𝑛} is bounded. Passing to
a subsequence if necessary, we can assume that 𝑧𝑛 ⇀ 𝑧 in 𝐸,𝑧𝑛 → 𝑧 in 𝐿𝑝loc(R𝑁,R2) for 𝑝 ∈ [2, 2∗), and 𝑧𝑛(𝑥) → 𝑧(𝑥) a.e.
in R𝑁. Since (HES)∞ is an autonomous system, by (𝑉1) and
Lemma 8, we know that all of the conditions of Lemma 5.7 in
[20] are satisfied. Hence we have 𝐹(𝑧𝑛 − 𝑧) → 𝑐 − 𝐹(𝑧) and𝐹󸀠(𝑧𝑛 − 𝑧) → 0, as 𝑛 → ∞.

Lemma 13. Let K̂ fl {𝑧 ∈ 𝐸 : 𝐹󸀠(𝑧) = 0} be the critical set of𝐹. Then K̂ \ {0} ̸= 0 and 𝐶 fl inf{𝐹(𝑧) : 𝑧 ∈ K̂ \ {0}} > 0 is
attained.

Proof. Set𝑋 = 𝐸− and𝑌 = 𝐸+.Then𝐸 = 𝑋⊕𝑌. For any 𝑐 > 0
and 𝑧 ∈ 𝐹𝑐, using the fact that Ψ∞ ≥ 0 one has

0 < 𝑐 ≤ 12 (󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑧−󵄩󵄩󵄩󵄩2) . (62)
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This yields ‖𝑧−‖ < ‖𝑧+‖, and hence ‖𝑧‖ ≤ 2‖𝑧+‖. 𝐹 satisfies(Φ1). By virtue of Lemma 7 and conclusion (1) of Lemma 9,
it follows that (Φ0) holds. From conclusion (2) of Lemma 9,
we know that (Φ2) holds. Thus, combining with Lemma 11,
we know that all of the conditions of Theorem 6 hold. Then
there is (𝐶)𝑐 sequence {𝑧𝑛} for 𝐹 with 𝜅 ≤ 𝑐 ≤ sup𝐹(𝑄).
By Lemma 12, (𝐶)𝑐 sequence {𝑧𝑛} is bounded in 𝐸. For the
concentration functions |𝑧𝑛|2, there are only two cases needed
to be considered: vanishing and nonvanishing. If vanishing
occurs, by the vanishing lemma

∫
R𝑁

ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥 = 𝑜 (1) ,
∫
R𝑁

𝐻∞ (𝑧𝑛) 𝑑𝑥 = 𝑜 (1) .
(63)

Hence

𝑜 (1) = ⟨𝐹󸀠 (𝑧𝑛) , 𝑧𝑛⟩
= 󵄩󵄩󵄩󵄩𝑧+𝑛 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑧−𝑛 󵄩󵄩󵄩󵄩2 − ∫

R𝑁
ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥, (64)

which implies that ‖𝑧+𝑛 ‖2 − ‖𝑧−𝑛 ‖2 = 𝑜(1). Hence 𝐹(𝑧𝑛) → 0 as𝑛 → ∞. This contradicts with 𝐹(𝑧𝑛) → 𝑐 ≥ 𝜅 > 0 as 𝑛 → ∞.
So nonvanishing occurs; that is, there exist 𝛼 > 0, 𝑅 < ∞ and{𝑎𝑛} ⊂ R𝑁 such that

lim inf
𝑛→∞

∫
𝐵(𝑎𝑛 ,𝑅)

󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥 ≥ 𝛼. (65)

Choose 𝑔𝑛 ∈ Z𝑁 such that |𝑔𝑛−𝑎𝑛| = min{|𝑔−𝑎𝑛| : 𝑔 ∈ Z𝑁}.
Thus |𝑔𝑛 − 𝑎𝑛| ≤ (1/2)√𝑁. Setting 𝑧̃𝑛(𝑥) = 𝑔𝑛 ∗ 𝑧𝑛, by the
invariance under translation of 𝐹, {𝑧̃𝑛} is a (𝐶)𝑐-sequence of𝐹 and 𝑧̃𝑛 ⇀ 𝑧̃. From

lim inf
𝑛→∞

∫
𝐵(0,𝑅+(1/2)√𝑁)

󵄨󵄨󵄨󵄨𝑧̃𝑛󵄨󵄨󵄨󵄨2 𝑑𝑥 ≥ 𝛼 > 0, (66)

we see that 𝑧̃ ̸= 0, and hence 𝑧̃ is a nontrivial critical point of𝐹. Therefore

K̂ \ {0} ̸= 0. (67)

If 𝑧 ∈ K̂, one has

𝐹 (𝑧) = 𝐹 (𝑧) − 12 ⟨𝐹󸀠 (𝑧) , 𝑧⟩
= ∫

R𝑁

12ℎ∞ (|𝑧|) |𝑧|2 − 𝐻∞ (𝑧) 𝑑𝑥
= ∫

R𝑁
𝐻̃∞ (𝑧) 𝑑𝑥 ≥ 0,

(68)

which implies 𝐶 ≥ 0. If 𝐶 = 0, let 𝑧𝑛 ∈ K̂ \ {0} be such
that 𝐹(𝑧𝑛) → 0 as 𝑛 → ∞. Then {𝑧𝑛} is (𝐶)0-sequence. By
Lemma 12, we can assume that 𝑧𝑛 ⇀ 𝑧 ∈ 𝐸. Then

𝐹 (𝑧𝑛) = 𝐹 (𝑧𝑛) − 12 ⟨𝐹󸀠 (𝑧𝑛) , 𝑧𝑛⟩
= ∫

R𝑁

12ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2 − 𝐻∞ (𝑧𝑛) 𝑑𝑥
= ∫

R𝑁
𝐻̃∞ (𝑧𝑛) 𝑑𝑥 󳨀→ 0.

(69)

By Lemma 8(i), we see that, for any 𝜀 > 0, there is 1 > 𝑟 =𝑟(𝜀) > 0 such that

ℎ∞ (|𝑧|) ≤ 𝜀, whenever |𝑧| < 𝑟. (70)

It follows from Lemma 8(iv) that there exists constant 𝑅 >𝑟 > 0 such that

ℎ∞ (|𝑧|) ≤ 𝑐1/𝜏2

󵄨󵄨󵄨󵄨󵄨𝐻̃∞ (𝑧)󵄨󵄨󵄨󵄨󵄨1/𝜏 , whenever |𝑧| > 𝑅. (71)

By the continuity of 𝐻̃∞(𝑧), there exists𝑀0 = 𝑀0(𝑟, 𝑅) > 0
such that

𝐻̃∞ (𝑧) ≥ 𝑀0, whenever 𝑟 ≤ |𝑧| ≤ 𝑅. (72)

Note that ℎ∞(|𝑧|) ≤ 𝑐1(1+|𝑧|𝑝−2) for some 𝑝 ∈ (2, 2∗). Hence,
there exists𝑀1 = 𝑀1(𝑅) such that for all 𝑟 ≤ |𝑧| ≤ 𝑅

ℎ∞ (|𝑧|) ≤ 𝑀1 ≤ 1󵄨󵄨󵄨󵄨󵄨𝐻̃∞ (𝑧)󵄨󵄨󵄨󵄨󵄨1/𝜏𝑀1

󵄨󵄨󵄨󵄨󵄨𝐻̃∞ (𝑧)󵄨󵄨󵄨󵄨󵄨1/𝜏

≤ 𝑀1𝑀−1/𝜏
0

󵄨󵄨󵄨󵄨󵄨𝐻̃∞ (𝑧)󵄨󵄨󵄨󵄨󵄨1/𝜏 .
(73)

Denote 𝐶𝜀 = 𝑐1/𝜏2 +𝑀1𝑀−1/𝜏
0 ; we obtain

ℎ∞ (|𝑧|) ≤ 𝜀 + 𝐶𝜀

󵄨󵄨󵄨󵄨󵄨𝐻̃∞ (𝑧)󵄨󵄨󵄨󵄨󵄨1/𝜏 , ∀𝑧 ∈ 𝑅2. (74)

By Hölder inequality (1/𝜏 + 1/𝜏󸀠 = 1), we have
󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 = ∫

R𝑁
ℎ∞ (󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨) 𝑧𝑛 (𝑧+𝑛 − 𝑧−𝑛 ) 𝑑𝑥

≤ 𝜀 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨22 + 𝐶𝜀 ∫
R𝑁

󵄨󵄨󵄨󵄨𝑧+𝑛 − 𝑧−𝑛 󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝐻̃∞ (𝑧𝑛)󵄨󵄨󵄨󵄨󵄨1/𝜏 𝑑𝑥
≤ 𝜀 󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨22
+ 𝐶𝜀 (∫

R𝑁
𝐻̃∞ (𝑧𝑛) 𝑑𝑥)1/𝜏 (∫

R𝑁

󵄨󵄨󵄨󵄨𝑧𝑛󵄨󵄨󵄨󵄨2𝜏󸀠 𝑑𝑥)1/𝜏󸀠

≤ 𝜀𝑎22 󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 + 𝑎22𝜏󸀠𝐶𝜀 (∫
R𝑁

𝐻̃∞ (𝑧𝑛) 𝑑𝑥)1/𝜏 󵄩󵄩󵄩󵄩𝑧𝑛󵄩󵄩󵄩󵄩2 .

(75)

Hence 1 ≤ 𝜀𝑎22 + 𝑜(1), a contradiction. Hence 𝐶 > 0. Finally,
we show that there is 𝑧 ∈ K̂ with 𝐹(𝑧) = 𝐶 > 0. Let



Discrete Dynamics in Nature and Society 9

𝑧𝑛 ∈ K̂ \ {0} be such that 𝐹(𝑧𝑛) → 𝐶. Then, as before, {𝑧𝑛} is
bounded, and one may assume 𝑧𝑛 ⇀ 𝑧 ∈ K̂ \ {0}. Now

𝐶 = lim
𝑛→∞

𝐹 (𝑧𝑛) = lim
𝑛→∞

∫
R𝑁

𝐻̃∞ (𝑧𝑛) 𝑑𝑥
≥ ∫

R𝑁
𝐻̃∞ (𝑧) 𝑑𝑥 = 𝐹 (𝑧) ≥ 𝐶; (76)

that is, 𝐹(𝑧) = 𝐶. This completes the proof.

Definition 14 (see Ackermann [28]). A mapping 𝑓 from
Banach space 𝑋 to another Banach space 𝑌 is called BL-
split, if for every weakly convergent sequence {𝑥𝑛} ⊂ 𝑋 with𝑥𝑛 ⇀ 𝑥 it holds that 𝑓(𝑥𝑛) − 𝑓(𝑥𝑛 − 𝑥) → 𝑓(𝑥) in 𝑌.

In what follows, we use the idea of [21, 28]. For fixed 𝑤 ∈𝐸+, we introduce the functional 𝜙𝑤 : 𝐸− → R by

𝜙𝑤 (𝑦) fl 𝐹 (𝑤 + 𝑦)
= 12 (‖𝑤‖2 − 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2) − Ψ∞ (𝑤 + 𝑦) . (77)

Hence one has

𝜙󸀠󸀠𝑤 (𝑦) [𝑧−, 𝑧−] = − 󵄩󵄩󵄩󵄩𝑧−󵄩󵄩󵄩󵄩2 − Ψ󸀠󸀠
∞ (𝑤 + 𝑦) [𝑧−, 𝑧−]

= − 󵄩󵄩󵄩󵄩𝑧−󵄩󵄩󵄩󵄩2 − ∫
R𝑁

ℎ󸀠∞ (󵄨󵄨󵄨󵄨𝑤 + 𝑦󵄨󵄨󵄨󵄨)󵄨󵄨󵄨󵄨𝑤 + 𝑦󵄨󵄨󵄨󵄨 ((𝑤 + 𝑦) 𝑧−)2 𝑑𝑥
− ∫

R𝑁
ℎ∞ (󵄨󵄨󵄨󵄨𝑤 + 𝑦󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨𝑧−󵄨󵄨󵄨󵄨2 𝑑𝑥,

(78)

for all𝑦, 𝑧− ∈ 𝐸−, which implies that 𝜙𝑤(⋅) is strictly concave.
Moreover

𝜙𝑤 (𝑦) ≤ 12 (‖𝑤‖2 − 󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩2) , (79)

which implies that 𝜙𝑤(𝑦) → −∞ as ‖𝑦‖ → ∞. Now, it
follows from Lemma 9 that 𝜙𝑤 is weakly sequentially upper
semicontinuous. Hence, there is a unique strict maximum
point 𝜉(𝑤) for 𝜙𝑤(⋅), which is also the only critical point of𝜙𝑤 on 𝐸− and satisfies

𝑦 ̸= 𝜉 (𝑤) ⇐⇒
𝐹 (𝑤 + 𝑦) < 𝐹 (𝑤 + 𝜉 (𝑤)) , (80)

⟨𝜙󸀠𝑤 (𝜉 (𝑤)) , 𝑧−⟩ = 0,
i.e., (𝜉 (𝑤) , 𝑧−) + ⟨Ψ󸀠

∞ (𝑤 + 𝜉 (𝑤)) , 𝑧−⟩ = 0, (81)

for all 𝑤 ∈ 𝐸+, 𝑦, 𝑧− ∈ 𝐸−. Now, we define the reduced
functionalR : 𝐸+ → R by

R (𝑤) fl 𝐹 (𝑤 + 𝜉 (𝑤))
= 12 ‖𝑤‖2 − 12 󵄩󵄩󵄩󵄩𝜉𝑤󵄩󵄩󵄩󵄩2 − Ψ∞ (𝑤 + 𝜉 (𝑤)) . (82)

We have the following lemma.

Lemma 15. 𝑤 ∈ 𝐸+ is a critical point of R if and only if 𝑤 +𝜉(𝑤) is a critical point of𝐹. Moreover, the following conclusions
hold:

(1) 𝜉 ∈ 𝐶1(𝐸+, 𝐸−) and 𝜉(0) = 0.
(2) 𝜉 is a bounded map.

(3) 𝜉, ‖𝜉(𝑤)‖2, |𝜉(𝑤)|22 are all BL-splits.
(4) 𝜉(𝑤𝑛) ⇀ 𝜉(𝑤) in 𝐸− if 𝑤𝑛 ⇀ 𝑤 in 𝐸+.

(5) 𝜉 is Z𝑁-invariant, i.e., 𝜉(𝑎 ∗ 𝑤) = 𝜉(𝑤) for all 𝑎 ∈ Z𝑁.

Proof. It follows from (𝐻7) that 𝐻∞ ∈ 𝐶2(R𝑁 × R2, [0,∞))
and

𝐻󸀠󸀠
∞ (𝑧) 𝑧1 ⋅ 𝑧1 = (ℎ󸀠∞ (|𝑧|) |𝑧| 𝑧1 + ℎ∞ (|𝑧|) 𝑧1) ⋅ 𝑧1

≥ 0, ∀𝑧, 𝑧1 ∈ R
2. (83)

Hence, combining with (𝑉1), (𝐵0), and (𝐵1), we know that
all of the conditions of Lemma 2.6 in [19] hold. So, by
Lemma 2.6 in [19], the desired conclusions can be obtained.

By Lemma 15, the critical points of R and 𝐹 are in one-
to-one correspondence via the injective map 𝑤 → 𝑤 + 𝜉(𝑤)
from 𝐸+ into 𝐸. Consequently, let

K̂
+ fl {𝑤 ∈ 𝐸+: R󸀠 (𝑤) = 0} . (84)

Then

K̂ = {𝑤 + 𝜉 (𝑤) : 𝑤 ∈ K̂
+} . (85)

In particular

𝐶 = inf {R (𝑤) : 𝑤 ∈ K̂
+} . (86)

Lemma 16. The sequence {𝑤𝑛} ⊂ 𝐸+ is a bounded (𝐶)𝑐-
sequence of R if and only if {𝑤𝑛 + 𝜉(𝑤𝑛)} ⊂ 𝐸 is a bounded(𝐶)𝑐-sequence of 𝐹.
Proof. Let {𝑤𝑛} ⊂ 𝐸+ be a (𝐶)𝑐 sequence of R; that is,
R(𝑤𝑛) → 𝑐 and (1 + ‖𝑤𝑛‖)R󸀠(𝑤𝑛) → 0. Since 𝐻∞ ≥ 0,
we have

󵄩󵄩󵄩󵄩𝜉 (𝑤𝑛)󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩2 − 2∫

𝑅𝑁
𝐻∞ (𝑤𝑛 + 𝜉 (𝑤𝑛)) 𝑑𝑥 − 2𝑐

+ 𝑜 (1) ≤ (󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩 + 𝐶)2 .

(87)
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By (81) and Lemma 15, for all 𝑧 = 𝑧+ + 𝑧− ∈ 𝐸, we have𝜉󸀠(𝑤𝑛)𝑧+ ∈ 𝐸− and

⟨R󸀠 (𝑤𝑛) , 𝑧+⟩
= (𝑤𝑛, 𝑧+) − (𝜉 (𝑤𝑛) , 𝜉󸀠 (𝑤𝑛) 𝑧+)
− ∫

R𝑁
𝐻󸀠

∞ (𝑤𝑛 + 𝜉 (𝑤𝑛)) (𝑧+ + 𝜉󸀠 (𝑤𝑛) 𝑧+) 𝑑𝑥
= (𝑤𝑛, 𝑧+) − ∫

R𝑁
𝐻󸀠

∞ (𝑤𝑛 + 𝜉 (𝑤𝑛)) 𝑧+𝑑𝑥
= (𝑤𝑛, 𝑧+) − (𝜉 (𝑤𝑛) , 𝑧−)
− ∫

R𝑁
𝐻󸀠

∞ (𝑤𝑛 + 𝜉 (𝑤𝑛)) (𝑧+ + 𝑧−) 𝑑𝑥
= ⟨𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛)) , 𝑧⟩ .

(88)

Hence, one has󵄩󵄩󵄩󵄩󵄩R󸀠 (𝑤𝑛)󵄩󵄩󵄩󵄩󵄩 = sup
‖𝑧+‖≤1

⟨R󸀠 (𝑤𝑛) , 𝑧+⟩
= sup

‖𝑧+‖≤1

⟨𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛)) , 𝑧+⟩
≤ sup

‖𝑧+‖≤1

󵄩󵄩󵄩󵄩󵄩𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛))󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩󵄩𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛))󵄩󵄩󵄩󵄩󵄩 .

(89)

Similarly󵄩󵄩󵄩󵄩󵄩𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛))󵄩󵄩󵄩󵄩󵄩 = sup
‖𝑧‖≤1

⟨𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛)) , 𝑧⟩
≤ sup

‖𝑧+‖≤1

⟨R󸀠 (𝑤𝑛) , 𝑧+⟩
≤ 󵄩󵄩󵄩󵄩󵄩R󸀠 (𝑤𝑛)󵄩󵄩󵄩󵄩󵄩 .

(90)

Consequently 󵄩󵄩󵄩󵄩󵄩R󸀠 (𝑤𝑛)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛))󵄩󵄩󵄩󵄩󵄩 . (91)

Hence󵄩󵄩󵄩󵄩𝜉 (𝑤𝑛)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛))󵄩󵄩󵄩󵄩󵄩
≤ (󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩 + 𝐶) 󵄩󵄩󵄩󵄩󵄩𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛))󵄩󵄩󵄩󵄩󵄩
= (󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩 + 𝐶) 󵄩󵄩󵄩󵄩󵄩R󸀠 (𝑤𝑛)󵄩󵄩󵄩󵄩󵄩 󳨀→ 0,
(1 + 󵄩󵄩󵄩󵄩𝑤𝑛 + 𝜉 (𝑤𝑛)󵄩󵄩󵄩󵄩) 󵄩󵄩󵄩󵄩󵄩𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛))󵄩󵄩󵄩󵄩󵄩
≤ (1 + 󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝜉 (𝑤𝑛)󵄩󵄩󵄩󵄩) 󵄩󵄩󵄩󵄩󵄩𝐹󸀠 (𝑤𝑛 + 𝜉 (𝑤𝑛))󵄩󵄩󵄩󵄩󵄩 󳨀→ 0.

(92)

That is, {𝑤𝑛 + 𝜉(𝑤𝑛)} is (𝐶)𝑐 sequence of 𝐹. The inverse
is obvious. By Lemma 15, the boundedness of 𝜉 yields the
equivalence between the boundedness of {𝑤𝑛} and {𝑤𝑛 +𝜉(𝑤𝑛)}. This completes the proof.

Next, we discuss the mountain pass geometry of the
reduce functionalR. One has the following Lemma.

Lemma 17. R possesses the mountain pass geometry:
(1) There is 𝜌 > 0 such that inf R(𝐸+ ∩ 𝜕𝐵𝜌) > 0, where𝜕𝐵𝜌 = {𝑧 ∈ 𝐸 : ‖𝑧‖ = 𝜌}.
(2) There is some 𝑒 ∈ 𝐸+ \ 𝐵𝜌(0) such thatR(𝑒) ≤ 0.

Proof. (1) By (31) and (80), for any 𝑤 ∈ 𝐸+, we have

R (𝑤) = 12 (‖𝑤‖2 − 󵄩󵄩󵄩󵄩𝜉 (𝑤)󵄩󵄩󵄩󵄩2) − Ψ∞ (𝑤 + 𝜉 (𝑤))
= 12 ‖𝑤‖2 + (𝐹 (𝑤 + 𝜉 (𝑤)) − 𝐹 (𝑤)) − Ψ∞ (𝑤)
≥ 12 ‖𝑤‖2 − Ψ∞ (𝑤)
≥ 12 ‖𝑤‖2 − 𝜀2 |𝑤|22 − 𝐶 (𝜀)𝑝 |𝑤|𝑝𝑝
≥ (12 − 𝐶𝜀) ‖𝑤‖2 − 𝐶 ‖𝑤‖𝑝 .

(93)

Hence, for small 𝜌 > 0, conclusion (1) holds.(2) Similar to the proof of Lemma 10, we can obtain that

R (𝑤) 󳨀→ −∞,
as ‖𝑤‖ 󳨀→ ∞,

𝑤 ∈ 𝐸𝑊.
(94)

Hence conclusion (2) holds.

Remark 18. Lemma 17 implies that 0 is an isolated critical
point of R. Therefore there is a ] > 0 such that ‖𝑤‖ ≥ ] for
all 𝑤 ∈ 𝐾R, where𝐾R fl {𝑤 ∈ 𝐸+ | 𝑤 ̸= 0 and R󸀠(𝑤) = 0}.
Remark 19. If we set

N
+ fl {𝑤 ∈ 𝐸+ \ {0} : ⟨R󸀠 (𝑤) , 𝑤⟩ = 0} , (95)

then, by Lemma 4.7 in [18], we have that,. for each 𝑤 ∈ 𝐸+ \{0}, there is a unique 𝑠(𝑤) > 0 such that 𝑠(𝑤)𝑤 ∈ N+ and
R(𝑠(𝑤)𝑤) = sup𝑠≥0R(𝑠𝑤).
Lemma 20. Let 𝑤 ∈ K̂+ be such that R(𝑤) = 𝐶 and set𝐸𝑤 = 𝐸− ⊕R+𝑤. Then

sup
𝑧∈𝐸𝑤

𝐹 (𝑧) ≤ R (𝑤) = 𝐶. (96)

Proof. For any 𝑧 = 𝑧− + 𝑠𝑤 ∈ 𝐸𝑤, by (80), we obtain𝐹 (𝑧) ≤ 𝐹 (𝑠𝑤 + 𝜉 (𝑠𝑤)) = R (𝑠𝑤) . (97)

Since 𝑤 ∈ K̂+, we have 𝑤 ∈ N+. Hence, combining with
Remark 19, we obtain R(𝑤) = sup𝑠≥0R(𝑠𝑤). Consequently,
one has

sup
𝑧∈𝐸𝑤

𝐹 (𝑧) ≤ sup
𝑠≥0

R (𝑠𝑤) = R (𝑤) = 𝐶. (98)
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5. Proof of the Main Result

In this section we give the proof of Theorem 1. LetK fl {𝑧 ∈𝐸 : Φ󸀠(𝑧) = 0} be the set of critical points for Φ. First, we
study the linking structure for the functional Φ. Similar to
the proof of Lemma 9, we have the following three lemmas.

Lemma 21. Ψ is nonnegative and weakly sequentially lower
semicontinuous.

Lemma 22. Φ󸀠 is weakly sequentially continuous.

Lemma 23. There exists 𝑟 > 0 such that 𝜅1 fl inf Φ(𝑆𝑟∩𝐸+) >0, where 𝑆𝑟 fl {𝑧 ∈ 𝐸 : ‖𝑧‖ = 𝑟}.
Lemma 24. There is 𝜌 > 𝑟 > 0 such that for any 𝑒 ∈ 𝐸+ with‖𝑒‖ = 1 and 𝐸𝑒 = 𝐸− ⊕R+𝑒

Φ (𝑧) < 0, ∀𝑧 ∈ 𝐸𝑒 \ 𝐵𝜌. (99)

Proof. For any 𝑧 ∈ 𝐸𝑒, by (𝐻7), we have
Φ (𝑧) = 12 (󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑧−󵄩󵄩󵄩󵄩2) − ∫R𝑁𝐻(𝑥, 𝑧) 𝑑𝑥

≤ 12 (󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑧−󵄩󵄩󵄩󵄩2) − ∫R𝑁𝐻∞ (𝑧) 𝑑𝑥
= 𝐹 (𝑧) .

(100)

Thus, the conclusion follows easily from Lemma 10.
In particular, set 𝑧+0 ∈ K̂+ with R(𝑧+0 ) = 𝐶, 𝑒 = 𝑧+0 , and𝑄 = {𝑧 = 𝑧− + 𝑠𝑧+0 : 𝑧− ∈ 𝐸−, 𝑠 ≥ 0, ‖𝑧‖ ≤ 𝜌}, where 𝜌 is

given in Lemma 24. Then we have the following lemma.

Lemma 25. 𝑑 = sup{Φ(𝑧): 𝑧 ∈ 𝐸𝑒} = supΦ(𝑄) < 𝐶.
Proof. By Lemmas 23 and 24, we have 𝑑 = supΦ(𝑄) ≥ 𝜅1.
SinceΦ is weakly upper semicontinuous on 𝐸𝑒, there is some𝑧1 ∈ 𝑄 with 𝑧1 ̸= 0 such that supΦ(𝑄) = Φ(𝑧1). From (𝐻7)
and Lemma 20, we obtain

𝑑 = sup {Φ (𝑧) : 𝑧 ∈ 𝐸𝑒} = supΦ (𝑄) = Φ (𝑧1)
< 𝐹 (𝑧1) ≤ sup𝐹 (𝑄) ≤ R (𝑧+0 ) = 𝐶. (101)

In what follows, we discuss (𝐶)𝑐 sequences of Φ. Firstly
we have the following.

Lemma 26. Any (𝐶)𝑐-sequence forΦ is bounded.

Proof. The proof is similar to Lemma 12. We omit the details
here.

Lemma 27 (see [23, Theorem A.2]). Let Ω be an open set in
R𝑁 and 𝑓 ∈ 𝐶(Ω × R,R) be a function such that |𝑓(𝑥, 𝑢)| ≤𝑎(|𝑢|𝑟 + |𝑢|𝑠) for some 𝑎 > 0 and 1 ≤ 𝑟 < 𝑠 < ∞. Suppose𝑠 ≤ 𝑝 < ∞, 𝑟 ≤ 𝑞 < ∞, 𝑞 > 1, {𝑢𝑛} is a bounded
sequence in 𝐿𝑝(Ω) ∩ 𝐿𝑞(Ω), and 𝑢𝑛 → 𝑢 𝑎.𝑒. 𝑖𝑛 Ω and in𝐿𝑝(Ω ∩ 𝐵𝜌) ∩ 𝐿𝑞(Ω ∩ 𝐵𝜌) for all 𝜌 > 0. Then, passing to

a subsequence, there exists a sequence {V𝑛} such that V𝑛 → 𝑢
in 𝐿𝑝(Ω) ∩ 𝐿𝑞(Ω) and
𝑓 (𝑥, 𝑢𝑛) − 𝑓 (𝑥, 𝑢𝑛 − V𝑛) − 𝑓 (𝑥, 𝑢) 󳨀→ 0

in 𝐿𝑞/𝑟 (Ω) + 𝐿𝑝/𝑠 (Ω) , (102)

where V𝑛(𝑥) = 𝜒(2|𝑥|/𝑟𝑛)𝑢(𝑥) and 𝜒 ∈ 𝐶∞(R, [0, 1]) is such
that 𝜒(𝑡) = 1 for 𝑡 ≤ 1, 𝜒(𝑡) = 0 for 𝑡 ≥ 2, 𝑟𝑛 > 0 is a sequence
of constants with 𝑟𝑛 →∞ as 𝑛 → ∞, the space 𝐿𝑝(Ω)∩𝐿𝑞(Ω)
with the norm

‖𝑢‖𝑝∧𝑞 fl ‖𝑢‖𝑝 + ‖𝑢‖𝑞 , (103)

and the space 𝐿𝑝(Ω) + 𝐿𝑞(Ω) with the norm
‖𝑢‖𝑝∨𝑞 fl inf {‖V‖𝑝 + ‖𝑤‖𝑞 : V ∈ 𝐿𝑝 (Ω) , 𝑤
∈ 𝐿𝑞 (Ω) , 𝑢 = V + 𝑤} . (104)

Lemma 28. Let {𝑧𝑛} ⊂ 𝐸 be (𝐶)𝑐-sequence ofΦ. Then, passing
to a subsequence if necessary, we can assume that 𝑧𝑛 ⇀ 𝑧0 in𝐸. Furthermore, either

(i) 𝑧𝑛 → 𝑧0 ∈ 𝐸 or

(ii) 𝑐 ≥ 𝐶 and there exist a positive integer 𝑙 ≤ [𝑐/𝐶],𝑦1, . . . , 𝑦𝑙 ∈ K̂ \ {0} and sequences {𝑔𝑖𝑛} ⊂ 𝑍𝑁, 𝑖 =1, 2, . . . , 𝑙, such that, after extraction of a subsequence
of {𝑧𝑛}

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧̃𝑛 −
𝑙∑

𝑖=1

𝑔𝑖𝑛 ∗ 𝑦𝑖󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 󳨀→ 0,
Φ (𝑧0) + 𝑙∑

𝑖=1

𝐹 (𝑦𝑖) = 𝑐,
(105)

where 𝑧̃𝑛(𝑥) = 𝜂(2|𝑥|/𝑛)𝑧0(𝑥) and 𝜂 ∈ 𝐶∞(R, [0, 1]) is a cut-
off function such that 𝜂(𝑡) = 1 for 𝑡 ≤ 1, 𝜂(𝑡) = 0 for 𝑡 ≥ 2.
Proof. First, Lemma 26 implies that any (𝐶)𝑐 sequence of Φ
is bounded; hence it is a bounded (PS)𝑐 sequence. Passing to
a subsequence if necessary, we can assume that 𝑧𝑛 ⇀ 𝑧0 ∈ 𝐸
with Φ󸀠(𝑧0) = 0, 𝑧𝑛(𝑥) → 𝑧0(𝑥) a.e. in R𝑁 and 𝑧𝑛 → 𝑧0 in𝐿 loc(R𝑁,R2). Let 𝜂 ∈ 𝐶∞(R, [0, 1]) be a cut-off function such
that 𝜂(𝑡) = 1 for 𝑡 ≤ 1, 𝜂(𝑡) = 0 for 𝑡 ≥ 2 and define 𝑧̃𝑛(𝑥) =𝜂(2|𝑥|/𝑛)𝑧0(𝑥); then 𝑧̃𝑛 → 𝑧0 in 𝐸. Indeed, by Lemma 5, 𝑧0 ∈𝐸 implies that for any 𝜀 > 0 there is a corresponding 𝜌 =𝜌(𝜀) > 0 such that

∫
R𝑁\𝐵𝜌(0)

󵄨󵄨󵄨󵄨𝑧0󵄨󵄨󵄨󵄨2 𝑑𝑥 ≤ 𝜀,
∫
R𝑁\𝐵𝜌(0)

󵄨󵄨󵄨󵄨∇𝑧0󵄨󵄨󵄨󵄨2 𝑑𝑥 ≤ 𝜀,
(106)
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󵄩󵄩󵄩󵄩𝑧̃𝑛 − 𝑧0󵄩󵄩󵄩󵄩2 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑧̃𝑛 − 𝑧0󵄩󵄩󵄩󵄩2𝐻1(R𝑁,R2)
≤ 𝐶∫

R𝑁

󵄨󵄨󵄨󵄨∇ (𝑧̃𝑛 − 𝑧0)󵄨󵄨󵄨󵄨2 𝑑𝑥 + 𝐶∫
R𝑁

󵄨󵄨󵄨󵄨𝑧̃𝑛 − 𝑧0󵄨󵄨󵄨󵄨2 𝑑𝑥
= 𝐶∫

R𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∇ (𝜂 (2 |𝑥|𝑛 ) 𝑧0 − 𝑧0)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑥

+ 𝐶∫
R𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂 (2 |𝑥|𝑛 ) 𝑧0 − 𝑧0󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝑥

≤ C∫
R𝑁

(𝜂 (2 |𝑥|𝑛 ) − 1)2 󵄨󵄨󵄨󵄨∇𝑧0󵄨󵄨󵄨󵄨2 𝑑𝑥
+ 4𝐶𝑛2 ∫R𝑁 (𝜂󸀠 (2 |𝑥|𝑛 ))2 󵄨󵄨󵄨󵄨𝑧0󵄨󵄨󵄨󵄨2 𝑑𝑥
+ 𝐶∫

R𝑁
(𝜂 (2 |𝑥|𝑛 ) − 1)2 󵄨󵄨󵄨󵄨𝑧0󵄨󵄨󵄨󵄨2 𝑑𝑥

≤ 𝐶∫
𝐵𝜌(0)

(𝜂 (2 |𝑥|𝑛 ) − 1)2 󵄨󵄨󵄨󵄨∇𝑧0󵄨󵄨󵄨󵄨2 𝑑𝑥
+ 4𝐶𝑛2 ∫R𝑁 (𝜂󸀠 (2 |𝑥|𝑛 ))2 󵄨󵄨󵄨󵄨𝑧0󵄨󵄨󵄨󵄨2 𝑑𝑥
+ 𝐶∫

𝐵𝜌(0)
(𝜂 (2 |𝑥|𝑛 ) − 1)2 󵄨󵄨󵄨󵄨𝑧0󵄨󵄨󵄨󵄨2 𝑑𝑥 + 𝐶𝜀.

(107)

Hence, using the Lebesgue dominated convergence theorem,
we obtain

󵄩󵄩󵄩󵄩𝑧̃𝑛 − 𝑧0󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞. (108)

Now we set 𝑧1𝑛 = 𝑧𝑛 − 𝑧̃𝑛. Then, by 𝑧𝑛 ⇀ 𝑧0, one has 𝑧1𝑛 ⇀ 0.
Moreover, we claim that 𝑧1𝑛 is a bounded (PS)𝑐1-sequence for𝐹 with 𝑐1 = 𝑐 − Φ(𝑧0). In fact, by (𝐻7), for any 𝜀 > 0, there is
a 𝜌1 > 0 such that

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑠) − ℎ∞ (𝑠)󵄨󵄨󵄨󵄨 ≤ 𝜀, whenever |𝑥| > 𝜌1, (109)

uniformly in bounded set of 𝑠. On the one hand, by (19),
taking 𝑟 = 2, 𝑠 = 𝑝, and 𝑞 = 2 in Lemma 27, we know that

∫
R𝑁

𝐻(𝑥, 𝑧𝑛) 𝑑𝑥 = ∫
R𝑁

𝐻(𝑥, 𝑧1𝑛) 𝑑𝑥
+ ∫

R𝑁
𝐻(𝑥, 𝑧0) 𝑑𝑥 + 𝑜 (1) .

(110)

On the other hand, by (18), taking 𝑟 = 1, 𝑠 = 𝑝 − 1 and 𝑞 = 2.
It follows from Lemma 27 that

𝑔𝑛 󳨀→ 0, in 𝐿2 (R𝑁,R2) + 𝐿𝑝/(𝑝−1) (R𝑁,R2) , (111)

where

𝑔𝑛 (𝑥) fl 𝐻𝑧 (𝑥, 𝑧𝑛 (𝑥)) − 𝐻𝑧 (𝑥, 𝑧1𝑛 (𝑥))
− 𝐻𝑧 (𝑥, 𝑧0 (𝑥)) . (112)

Hence, for each 𝜑 ∈ 𝐸 with ‖𝜑‖ = 1, one has󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R𝑁 [𝐻𝑧 (𝑥, 𝑧𝑛) − 𝐻𝑧 (𝑥, 𝑧1𝑛) − 𝐻𝑧 (𝑥, 𝑧0)] 𝜑 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩𝑔𝑛󵄩󵄩󵄩󵄩2∨𝑝󸀠 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩2∧𝑝 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑔𝑛󵄩󵄩󵄩󵄩2∨𝑝󸀠 ,

(113)

where 𝑝󸀠 = 𝑝/(𝑝 − 1) and the constant 𝐶 > 0 is independent
of 𝜑. Consequently

sup
‖𝜑‖=1

∫
R𝑁

[𝐻𝑧 (𝑥, 𝑧𝑛) − 𝐻𝑧 (𝑥, 𝑧1𝑛) − 𝐻𝑧 (𝑥, 𝑧0)] 𝜑 𝑑𝑥
= 𝑜 (1) . (114)

For any 𝑧 ∈ 𝐸, observe that
Φ (𝑧) = 12 (𝐴𝑧, 𝑧)2 − ∫𝑅𝑁𝐻(𝑥, 𝑧) 𝑑𝑥,
𝐴𝑧𝑛 = 𝐴𝑧1𝑛 + 𝐴𝑧0 + 𝑜 (1) .

(115)

Hence, it follows from (110) and (114) that

Φ(𝑧𝑛) = Φ (𝑧1𝑛) + Φ (𝑧0) + 𝑜 (1) ,
Φ󸀠 (𝑧𝑛) = Φ󸀠 (𝑧1𝑛) + Φ󸀠 (𝑧0) + 𝑜 (1) , (116)

and then Φ(𝑧1𝑛) 󳨀→ 𝑐 − Φ (𝑧0) ,
Φ󸀠 (𝑧1𝑛) 󳨀→ 0, (117)

as 𝑛 → ∞. Consequently, by (19), (31), and (117), for large 𝑛,
we obtain𝑐 − Φ (𝑧0) + 𝑜 (1) = Φ (𝑧1𝑛) ≤ 𝐹 (𝑧1𝑛) = Φ (𝑧1𝑛)

+ ∫
R𝑁

𝐻(𝑥, 𝑧1𝑛) 𝑑𝑥 − ∫
R𝑁

𝐻∞ (𝑧1𝑛) 𝑑𝑥 ≤ 𝑐
− Φ (𝑧0) + 𝑜 (1) + ∫

|𝑥|≤𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻 (𝑥, 𝑧1𝑛)
− 𝐻∞ (𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 + ∫

|𝑥|>𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻 (𝑥, 𝑧1𝑛)
− 𝐻∞ (𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝑐 − Φ (𝑧0) + 𝑜 (1)
+ ∫

|𝑥|≤𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻 (𝑥, 𝑧1𝑛) − 𝐻∞ (𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
+ ∫

|𝑥|>𝜌1

∫1

0

󵄨󵄨󵄨󵄨󵄨ℎ (𝑥, 𝜃 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨) − ℎ∞ (𝜃 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨)󵄨󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨2 𝑑𝜃 𝑑𝑥 ≤ 𝑐 − Φ (𝑧0) + 𝑜 (1)
+ ∫

|𝑥|≤𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻 (𝑥, 𝑧1𝑛) − 𝐻∞ (𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
+ 𝜀∫

|𝑥|>𝜌1

󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 ≤ 𝑐 − Φ (𝑧0) + 𝑜 (1)
+ 𝐶∫

|𝑥|≤𝜌1

(󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨𝑝) 𝑑𝑥 + 𝜀∫
|𝑥|>𝜌1

󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥.

(118)
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Consequently

𝐹 (𝑧1𝑛) 󳨀→ 𝑐 − Φ (𝑧0) . (119)

In what follows, we claim that

Ψ󸀠 (𝑧1𝑛) − Ψ󸀠
∞ (𝑧1𝑛) 󳨀→ 0, as 𝑛 󳨀→ ∞. (120)

Indeed, since 𝑧1𝑛 → 0 in 𝐿𝑝loc(𝑅𝑁) for 2 ≤ 𝑝 < 2∗, by (18), (30),
andTheorem A.2 in [27], we have

𝐻𝑧 (𝑥, 𝑧1𝑛) 󳨀→ 0, in 𝐿𝑝/𝑝−1loc (R𝑁,R2) ,
𝐻󸀠

∞ (𝑧1𝑛) 󳨀→ 0, in 𝐿𝑝/𝑝−1loc (R𝑁,R2) . (121)

Hence, for any 𝑤 ∈ 𝐸 with ‖𝑤‖ = 1, it follows from (109) and
(121) that󵄨󵄨󵄨󵄨󵄨⟨Ψ󸀠 (𝑧1𝑛) − Ψ󸀠

∞ (𝑧1𝑛) , 𝑤⟩󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R𝑁 [𝐻𝑧 (𝑥, 𝑧1𝑛) − 𝐻󸀠

∞ (𝑥, 𝑧1𝑛)]𝑤𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= ∫

|𝑥|≤𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧1𝑛) − 𝐻󸀠
∞ (𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨 |𝑤| 𝑑𝑥

+ ∫
|𝑥|>𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧1𝑛) − 𝐻󸀠
∞ (𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨 |𝑤| 𝑑𝑥

≤ [(∫
|𝑥|≤𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨𝑝/(𝑝−1) 𝑑𝑥)(𝑝−1)/𝑝

+ (∫
|𝑥|≤𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻󸀠
∞ (𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨𝑝/(𝑝−1) 𝑑𝑥)(𝑝−1)/𝑝]

⋅ (∫
|𝑥|≤𝜌1

|𝑤|𝑝 𝑑𝑥)1/𝑝 + ∫
|𝑥|>𝜌1

󵄨󵄨󵄨󵄨󵄨ℎ𝑧 (𝑥, 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨)󵄨󵄨󵄨󵄨󵄨
− ℎ∞ (󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨 |𝑤| 𝑑𝑥
≤ [(∫

|𝑥|≤𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻𝑧 (𝑥, 𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨𝑝/(𝑝−1) 𝑑𝑥)(𝑝−1)/𝑝

+ (∫
|𝑥|≤𝜌1

󵄨󵄨󵄨󵄨󵄨𝐻󸀠
∞ (𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨𝑝/(𝑝−1) 𝑑𝑥)(𝑝−1)/𝑝]

⋅ (∫
|𝑥|≤𝜌1

|𝑤|𝑝 𝑑𝑥)1/𝑝 + 𝜀 󵄩󵄩󵄩󵄩󵄩𝑧1𝑛𝑤󵄩󵄩󵄩󵄩󵄩𝐿2(R𝑁,R2)
⋅ ‖𝑤‖𝐿2(R𝑁,R2) .

(122)

Hence, we obtain

𝐹󸀠 (𝑧1𝑛) = Φ󸀠 (𝑧1𝑛) + Ψ󸀠 (𝑧1𝑛) − Ψ󸀠
∞ (𝑧1𝑛) 󳨀→ 0. (123)

In addition, we have

𝑐1 + 𝑜 (1) = 𝐹 (𝑧1𝑛) − 12 ⟨𝐹󸀠 (𝑧1𝑛) , 𝑧1𝑛⟩
= ∫

R𝑁
𝐻̃∞ (𝑧1𝑛) 𝑑𝑥 ≥ 0,

(124)

and 𝑐1 = 0 if and only if 𝑧1𝑛 → 0 in 𝐸. In fact, if 𝑐1 = 0, then
∫
R𝑁

𝐻̃∞ (𝑧1𝑛) 𝑑𝑥 󳨀→ 0. (125)

Hence, using (74) and Hölder inequality (1/𝜏 + 1/𝜏󸀠 = 1), we
obtain

󵄩󵄩󵄩󵄩󵄩𝑧1𝑛󵄩󵄩󵄩󵄩󵄩2 = ∫
R𝑁

ℎ∞ (󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨) 𝑧1𝑛 ((𝑧1𝑛)+ − (𝑧1𝑛)−) 𝑑𝑥 + 𝑜 (1)
≤ 𝜀 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨22 + 𝐶𝜀 (∫

R𝑁

󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨󵄨𝐻̃∞ (𝑧1𝑛)󵄨󵄨󵄨󵄨󵄨1/𝜏 𝑑𝑥) + 𝑜 (1)
≤ 𝜀 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨22
+ 𝐶𝜀 (∫

R𝑁
𝐻̃∞ (𝑧1𝑛) 𝑑𝑥)1/𝜏 (∫

R𝑁

󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨2𝜏󸀠 𝑑𝑥)1/𝜏
󸀠

+ 𝑜 (1)
≤ 𝜀𝑎22 󵄩󵄩󵄩󵄩󵄩𝑧1𝑛󵄩󵄩󵄩󵄩󵄩2 + 𝑎22𝜏󸀠𝐶𝜀 (∫

R𝑁
𝐻̃∞ (𝑧1𝑛) 𝑑𝑥)1/𝜏 󵄩󵄩󵄩󵄩󵄩𝑧1𝑛󵄩󵄩󵄩󵄩󵄩2

+ 𝑜 (1) .

(126)

This implies that 𝑧1𝑛 → 0 in 𝐸. The inverse is obvious. Now,
assume that conclusion (i) is false. Then 𝑐1 > 0. For the
concentration functions |𝑧1𝑛|2, there are only two cases needed
to be considered: vanishing and nonvanishing. If vanishing
occurs, by the vanishing lemma and (30)-(31), one has

∫
R𝑁

ℎ∞ (󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥 = 𝑜 (1) ,
∫
R𝑁

𝐻∞ (𝑧1𝑛) 𝑑𝑥 = 𝑜 (1) .
(127)

Hence

𝑐1 = lim
𝑛→∞

∫
R𝑁

𝐻̃∞ (𝑧1𝑛) 𝑑𝑥
= lim

𝑛→∞
∫
R𝑁

12ℎ∞ (󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨󵄨𝑧1𝑛󵄨󵄨󵄨󵄨󵄨2 − 𝐻∞ (𝑧1𝑛) 𝑑𝑥 = 0.
(128)

This is a contradiction. Thus, nonvanishing occurs; that is,
there is a sequence {𝑎1𝑛} ⊂ R𝑁 and constants 𝑟1, 𝛿1 > 0 such
that

󵄩󵄩󵄩󵄩󵄩𝑧1𝑛󵄩󵄩󵄩󵄩󵄩𝐿2(𝐵(𝑎1𝑛 ,𝑟1)) ≥ 𝛿12 , (129)

for large 𝑛. We may choose 𝑘1𝑛 ∈ Z𝑁 and 𝑧1𝑛 fl 𝑘1𝑛 ∗ 𝑧1𝑛 such
that, passing to a subsequence,

󵄩󵄩󵄩󵄩󵄩𝑧1𝑛󵄩󵄩󵄩󵄩󵄩𝐿2(𝐵(0,𝑟1+(1/2)√𝑁))
≥ 𝛿12 , (130)

for all 𝑛. Note that 𝐹(𝑧1𝑛) = 𝐹(𝑧1𝑛), ‖∇𝐹(𝑧1𝑛)‖ = ‖∇𝐹(𝑧1𝑛)‖, and‖𝑧1𝑛‖ = ‖𝑧1𝑛‖.We know that {𝑧1𝑛} is bounded (PS)𝑐1-sequence of
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𝐹. Hence, by Lemma 12, passing to a subsequence if necessary,
we can assume that 𝑧1𝑛 ⇀ 𝑧1 ∈ K̂ \ {0},

𝐹 (𝑤1
𝑛) 󳨀→ 𝑐 − Φ (𝑧0) − 𝐹 (𝑧1) ,

𝐹󸀠 (𝑤1
𝑛) 󳨀→ 0, (131)

as 𝑛 → ∞, where 𝑤1
𝑛 = 𝑧1𝑛 − 𝑧1. Note that

𝑐 − Φ (𝑧0) − 𝐹 (𝑧1) + 𝑜 (1)
= 𝐹 (𝑤1

𝑛) − 12 ⟨𝐹󸀠 (𝑤1
𝑛) , 𝑤1

𝑛⟩ = ∫
R𝑁

𝐻̃∞ (𝑤1
𝑛) 𝑑𝑥

≥ 0.
(132)

Hence

𝑐 − Φ (𝑧0) − 𝐹 (𝑧1) ≥ 0. (133)

Since Φ(𝑧0) ≥ 0 and 𝐹(𝑧1) ≥ 𝐶, we obtain that 𝑐 ≥ 𝐶 and𝐶 ≤ 𝐹(𝑧1) ≤ 𝑐 − Φ(𝑧0). There are now two possibilities to
consider: 𝐹(𝑧1) < 𝑐 − Φ(𝑧0) or 𝐹(𝑧1) = 𝑐 − Φ(𝑧0).

Set 𝑐1 = 𝑐−Φ(𝑧0). If 𝑐2 := 𝑐1 −𝐹(𝑧1) = 0, repeat the above
arguments but replace {𝑧1𝑛} and 𝑐1 by {𝑤1

𝑛} and 𝑐2, respectively.
We obtain that 𝑐2 = 0 if and only if 𝑤1

𝑛 → 0. Consequently,
we obtain that 𝑤1

𝑛 → 0. Hence the lemma holds with 𝑙 = 1,𝑦1 = 𝑘1 ∗ 𝑧1 (where 𝑘1 ∈ Z𝑁 is chosen to ensure that 𝑦1 ∈
K̂ \ {0}) and 𝑔1𝑛 = −𝑘1𝑛 − 𝑘1.

If 𝑐2 > 0, then we argue again as above with {𝑧1𝑛} and 𝑐1
replaced by {𝑤𝑛} and 𝑐2, respectively, and we obtain 𝑧2 ∈ K̂ \{0} with 𝐶 ≤ 𝐹(𝑧2) ≤ 𝑐2. After at most [𝑐/𝐶] steps, we obtain
the desired conclusion.

As a straight consequence of Lemma 28, we have the
following.

Lemma 29. Φ satisfies (𝐶)𝑐 condition for all 𝑐 < 𝐶.
We are now in a position to complete the proof of

Theorem 1.

Lemma 30. Φ satisfies (Φ1).
Proof. For any 𝑐 > 0 and 𝑧 ∈ Φ𝑐, using the definition of Φ
and𝐻(𝑥, 𝑧) ≥ 0, one has

0 < 𝑐 ≤ 12 (󵄩󵄩󵄩󵄩𝑧+󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑧−󵄩󵄩󵄩󵄩2) . (134)

This yields ‖𝑧−‖ < ‖𝑧+‖, and hence ‖𝑧‖ < 2‖𝑧+‖. Φ satisfies(Φ1).
Proof of Theorem 1. By Lemma 30, Φ satisfies (Φ1). It follows
from Lemmas 7, 21, and 22 that (Φ0) holds. By Lemma 23, we
know that (Φ2) holds. Lemma 24 shows that the linking con-
dition of Theorem 6 holds. These, together with Lemma 25,
yield (𝐶)𝑐-sequence {𝑧𝑛} with 𝜅1 ≤ 𝑐 ≤ supΦ(𝑄) < 𝐶 for Φ.
By virtue of Lemma29,we can assume that 𝑧𝑛 → 𝑧 as 𝑛 → ∞.
Furthermore, we have Φ󸀠(𝑧) = 0 and Φ(𝑧) ≥ 𝜅1. This implies
thatK \ {0} ̸= 0. The proof is completed.

6. Summary

The purpose of this paper is to investigate the existence of
nontrivial solutions for a class of Hamiltonian elliptic system
in R𝑁 in the case that the nonlinearity may not satisfy the
standard Ambrosetti-Rabinowitz condition (𝐻0). We obtain
rather general conditions for the existence of nontrivial
solutions, which extend and improve some recent results in
the literature. In this paper, since we have no assumption of
periodic about nonlinearity, the problem ismore difficult and
interesting. We will point out that if the following condition
is satisfied:
(HP) 𝐻(𝑥, 𝑧) is 1-periodic in 𝑥𝑖 for 𝑖 = 1, . . . , 𝑁,

then for any 0 ̸= 𝑎 = (𝑎1, . . . , 𝑎𝑁) ∈ Z𝑁, we have Φ(𝑎 ∗ 𝑧) =Φ(𝑧), ‖∇Φ(𝑎 ∗ 𝑧)‖ = ‖∇Φ(𝑧)‖, and ‖𝑎 ∗ 𝑧‖ = ‖𝑧‖. Hence,
combining with Lemmas 7, 21, 22, 23, and 30, similar to the
proof of Lemmas 11 and 13, we have the following.

Theorem 31. K \ {0} ̸= 0 and inf{Φ(𝑧): 𝑧 ∈ K \ {0}} > 0 is
attained; that is, the problem (HES) has a ground state solution.
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