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We analyze the convergence time of opinion dynamics in a social network with community structure. Using matrix analysis,
we prove that the convergence time is determined by the second largest eigenvalue modulus. This modulus is close to 1 if the
social influence matrix is nearly uncoupled. Furthermore, we discuss and analyze the factors of community structure affecting the
convergence time.

1. Introduction

Community structure is ubiquitous in reality. It means that
many social networks can be divided into some groups such
that the connection within each group is dense, while con-
nection between groups is very sparse. Community structure
is always relevant to many social and biological phenomena.
Previous works have shown that community structure affects
the evolution of macroscopic phenomena taking place on
a network, such as synchronization [1, 2], the spread of
epidemics [3, 4], rumors [5], and opinion dynamics [6–8].

In opinion dynamics, various versions of the opinion
models have been proposed. First types are discrete opinion
models, among which are the Sznajd model [9], the voter
model [10, 11], the majority rule model [12], and the social
impact model [13]. Other models are continuous, using
concepts and methods based on ideas from statistical physics
or control theory. The most famous are bounded confidence
model [14, 15] and an earlier model, Degroot model [16],
including some agent-based models such as [17].

There are two interesting questions in opinion dynamics.
First, under what conditions will the opinions’ updating
processes converge to a well-defined limit? The second
question is about the convergence time or convergence rate
problem; that is, how quickly the consensus is reached if
opinions can converge ultimately. Previousworks have shown

that the convergence time is determined by the topology
of social network and the updating rule of individuals’
opinion. For example, in bounded confidence model [15],
the convergence time is determined by bounded confidence
parameter, which is expressed by a real number 𝜀, such that
an agent, with opinion 𝑥, only interacts with its peers whose
opinion lies in the range of [𝑥−𝜀, 𝑥+𝜀]. In another bounded
confidencemodel, Deffuantmodel [14], the convergence time
is only determined by convergence parameter 𝜇. In [18], the
authors studied the effects of adding shortcuts connecting
randomly chosen pairs of sites in a regular lattice on the
consensus time, using a local majority updating rule. They
showed that the consensus time dropped sensitively with the
addition of a small number of shortcuts. In [19], the author
introduced a two-state opinion dynamicsmodel where agents
evolve by majority rule, finding that consensus is reached
in a time that scales to log𝑁, where 𝑁 is the number of
agents. On finite-dimensional lattices, where a group is a
contiguous cluster, the consensus time fluctuates strongly
between realizations and grows as a dimension-dependent
power of𝑁.The upper critical dimension appears to be larger
than 4. In [20] the authors found that, for the voter model,
if the network is with an arbitrary but uncorrelated degree
distribution, the convergence time 𝑇𝑁 scales as 𝑁𝜇21/𝜇2,
where 𝜇𝑘 is the 𝑘th moment of the degree distribution and𝑁 is the size of the network. In [21], the authors found in
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a coevolving network that if the number of committed agents
added exceeds a critical value, the consensus time growth
becomes logarithmic in network size 𝑁. Slight changes in
the interaction rule can produce strikingly different results of
consensus time.

Although it is shown that interaction rules or network
topologies have an important impact on the evolution of
group opinions, the continuous opinion dynamics issue with
community structure is still not well understood. Unlike all
the research above, here we mainly discuss the impact of a
community structure on convergence time, which applies to
situations of how we control the opinion evolution in a social
network with community structure. First, through matrix
analysis method, we prove that the convergence time is deter-
mined by the second largest eigenvalue modulus of social
influence matrix. Furthermore, we prove that this modulus
is close to 1 if the social influence matrix is nearly uncoupled.
Second, in our model the influence of interpersonal is ran-
dom,which is closer to reality.Wepropose the concept, distri-
bution of interpersonal influence, which can better describe
the interaction situations. We examine this issue from three
points of view: the number of nodes connected (including
the number of nodes connected between subgroups, the
number of nodes connected within subgroups, and the con-
nection density between subgroups), the size of subgroups,
and influence distribution. We find that the number of con-
nections between subgroups and the number of subgroups
within the subgroups exert a strong influence on the con-
vergence time. In addition, the impact of distribution of
influence on the convergence time shows the following fact:
the convergence time of the group opinions in an autocratic
society is longer than that in a democratic society in average,
but various connection patterns may bring much more
uncertainty.

The remaining of this paper is organized as follows: in
Section 2, we discuss the proposed model in detail. Then in
Section 3 we analyze the impact of community structure on
the consensus time. Section 4 concludes this paper.

2. Continuous Opinion Dynamics Model

2.1. Notations, Assumptions, and the Opinion Dynamic Model.
This section introduces the notations and the assumptions
and defines the consensus time of continuous opinion
dynamics.

Mathematically, a social network with community struc-
ture can be characterized by a big graph in which the
nodes represent people, and the edges evaluate their relation
strength.

We consider a set of 𝑛 individuals in a social network.𝑉 = {1, 2, . . . , 𝑛}. A relation𝐸 ⊆ 𝑉×𝑉models the interactions
between individuals. We assume the relationship is mutual
((𝑖, 𝑗) ∈ 𝐸 if and only if (𝑗, 𝑖) ∈ 𝐸).𝑉 is the set of vertices and𝐸
is a set of edges of undirected graph𝐺 = (𝑉, 𝐸), describing the
social network of individuals. Each individual has an opinion
modeled by a real number 𝑥𝑖(𝑡) ∈ 𝑅. Initially, individual 𝑖
has an opinion 𝑥𝑖(0) independent from others.Then, at every
time step, the individuals update their opinion by taking

a weighted average of their own opinion and opinions of
others

𝑥𝑖 (𝑡 + 1) = 𝑛∑
𝑗=1

𝑎𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡) (1)

with the coefficients 𝑎𝑖𝑗(𝑡) satisfying∀𝑖, 𝑗 ∈ 𝑉, 𝑎𝑖𝑗 (𝑡) ̸= 0 ⇐⇒ 𝑗 ∈ {𝑖} ∪ {𝑁𝑖 (𝑡)} ,
𝑛∑
𝑗=1

𝑎𝑖𝑗 (𝑡) = 1, (2)

where the coefficient 𝑎𝑖𝑖 denotes the force of self-confidence
of individual 𝑖 and 𝑎𝑖𝑗 denotes to what extent individual 𝑖 is
affected by individual 𝑗. 𝑁𝑖(𝑡) denotes the neighborhood of
individual 𝑖 at time 𝑡 step.

Let 𝑋(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡))𝑇, 𝐴(𝑡) = (𝑎𝑖𝑗(𝑡))𝑛×𝑛;
thus, the group opinion dynamics can be written as follows:𝑋 (𝑡 + 1) = 𝐴 (𝑡) 𝑋 (𝑡) , (3)

where 𝐴 is a row stochastic and nonnegative matrix. In this
following, we call it social influence matrix whose entry 𝑎𝑖𝑗
represents the influence strength from individuals 𝑗 to 𝑖.

In this paper, we assume that (1) 𝐺 is static and strongly
connected; (2) the relationship and interaction between
individuals are mutual; (3) every individual has a little self-
confidence. Under these conditions, it is easy to find that 𝐴
is constant and row stochastic matrix.The diagonal entries in𝐴 are all positive, and zero-entries in 𝐴 are symmetric. Using
nonnegative matrix theories, we can get some properties as
follows.

Proposition 1. Consensus will be reached ultimately.

Proof. Under assumption (1), it can easily be seen that 𝐴 is
an irreducible, row stochastic and nonnegative matrix. The
summation of each row is equal to 1.Thus, the spectral radius
of𝐴 denoted by 𝜌(𝐴) = 1.𝛼1 = (1, 1, . . . , 1)𝑇 is an eigenvector
of 𝜆 = 1. Since all the diagonal entries are positive, using
Perron-Frobenius theory, we can get 𝐴 is primitive. The
algebraic multiplicity of 𝜆 = 1 is equal to 1. So the spectrum
of 𝐴 can be denoted by

spec (𝐴) = {𝜆𝑖 | 󵄨󵄨󵄨󵄨𝜆𝑛󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝜆𝑛−1󵄨󵄨󵄨󵄨 ≤ ⋅ ⋅ ⋅ ≤ 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 < 𝜆1 = 1} . (4)

For any initial opinion vector 𝑋(0) = (𝑥1(0), 𝑥2(0),. . . , 𝑥𝑛(0))𝑇, it can be written as a linear combination as
follows:

𝑋 (0) = 𝑛∑
𝑖=1

𝑘𝑖𝛼𝑖, (5)

where 𝛼𝑖 is eigenvector corresponding to the eigenvalue 𝜆𝑖 of𝐴.Thus, for all 𝑡 > 0,𝛼𝑡𝑖 is an eigenvector corresponding to the
eigenvalue 𝜆𝑡𝑖 of 𝐴𝑡. Since |𝜆𝑛| ≤ |𝜆𝑛−1| ≤ ⋅ ⋅ ⋅ ≤ |𝜆2| < 𝜆1 = 1,
it follows that

lim
𝑡→∞

𝑋 (𝑡) = lim
𝑡→∞

𝐴𝑡 ⋅ 𝑋 (0) = lim
𝑡→∞

𝐴𝑡 𝑛∑
𝑖=1

𝑘𝑖𝛼𝑖



Discrete Dynamics in Nature and Society 3

= lim
𝑡→∞

( 𝑛∑
𝑖=1

𝑘𝑖𝛼𝑖 ⋅ 𝜆𝑡𝑖) = lim
𝑡→∞

(𝑘1𝛼1 + 𝑜 (1))
= (𝑘1, 𝑘1, . . . , 𝑘1)𝑇 .

(6)

So the opinions converge to a constant vector, whose compo-
nents are all equal.That means the consensus can be reached,
and the convergence time is consensus time.

Remark. Assumption (2) is not necessary condition but
sufficient for convergence of opinions. For example, if 𝐴 =( 0 0.5 0.51 0 0
0 1 0

), we can get lim𝑡→∞𝐴𝑡 = ( 0.4 0.4 0.20.4 0.4 0.2
0.4 0.4 0.2

), so opinions
converge to a fixed vector, but the diagonal of 𝐴 is not
positive.

Proposition 2. The convergence time is determined by the
second largest eigenvalue modulus |𝜆2|.
Proof. First we introduce the definition of convergence time:𝑡∗ = inf {𝑡0 | ∀𝑡 > 𝑡0, ‖𝑋 (𝑡) − 𝑋‖ ≤ 𝛿} , (7)

where 𝛿 can be arbitrarily small, 𝑋(𝑡) represents a series of
vector, and 𝑋 is the limit of 𝑋(𝑡).‖ ⋅ ‖ represents a vector norm (1-norm, 2-norm, or ∞-
norm). If ‖𝑋(𝑡) − 𝑋‖ < 𝛿, it follows that󵄩󵄩󵄩󵄩󵄩𝑘2𝛼2 ⋅ 𝜆𝑡2 + 𝑜 (𝜆𝑡2)󵄩󵄩󵄩󵄩󵄩 ≤ 𝛿; (8)

when 𝛿 is small enough, 𝑜(𝜆𝑡2) can be omitted. So (7) can be
rewritten as ‖𝑘2𝛼2 ⋅ 𝜆𝑡2‖ ≤ 𝛿.

Thus, we can get

𝑡 ≥ −𝑐 ln 𝛿
ln (1/ 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨) = −𝑐 ln 𝛿− ln 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (9)

satisfying (7). So the convergence time 𝑡∗ = −𝑐 ln 𝛿/ − ln |𝜆2|,
where 𝑐 is a constant determined by the initial opinion vector
and eigenvector of weighted matrix 𝐴.

From the analysis above, it is obvious that the larger|𝜆2| is, the longer the consensus time is and vice versa.
For simplicity, we analyze the convergence time only by the
second largest eigenvalue modulus |𝜆2| or − ln |𝜆2|.
Proposition 3. For a nonnegative row stochastic partitioned
matrix 𝐴 = ( 𝐵 𝐷𝐸 𝐶 )𝑛×𝑛, where 𝐵 = (𝑏𝑖𝑗)𝑛

1
×𝑛
1

, 𝐶 = (𝑐𝑖𝑗)𝑛
2
×𝑛
2

, 𝑛 =𝑛1 + 𝑛2. Let 𝜎(𝐴) be the summation of entries in 𝐷 and 𝐸; then
for any 𝜀 > 0, ∃𝛿 > 0, if |𝜎(𝐴)| < 𝛿, satisfying ||𝜆2| − 1| < 𝜀.
Proof. First, we prove that if all the entries in a matrix change
a little, the eigenvalues of the new matrix will also change.
Denote 𝐵 by

(
(

𝑏11 𝑏12 ⋅ ⋅ ⋅ 𝑏1,𝑛
1𝑏21 𝑏22 ⋅ ⋅ ⋅ 𝑏2,𝑛
1... ... ... ...𝑏𝑛

1
,1 𝑏𝑛

1
,2 ⋅ ⋅ ⋅ 𝑏𝑛

1
,𝑛
1

)
)

; (10)

step 1 𝐵 is transformed into

𝐵(1) = (
(

𝑏11 + Δ(1) 𝑏12 ⋅ ⋅ ⋅ 𝑏1,𝑛
1𝑏21 𝑏22 ⋅ ⋅ ⋅ 𝑏2,𝑛
1... ... ... ...𝑏𝑛

1
,1 𝑏𝑛

1
,2 ⋅ ⋅ ⋅ 𝑏𝑛1,𝑛

1

)
)

. (11)

Thanks to the continuity of eigenvalues, we can get that, for
any 𝜀 > 0, there exists 𝛿(1) > 0, if |Δ(1)| < 𝛿(1), satisfying|𝜆(𝐵(1)) − 𝜆(𝐵)| < 𝜀. For step 2 when 𝐵(1) is transformed into

𝐵(2) = (
(

𝑏11 + Δ(1) 𝑏12 + Δ(2) ⋅ ⋅ ⋅ 𝑏1,𝑛1𝑏21 𝑏22 ⋅ ⋅ ⋅ 𝑏2,𝑛1... ... ... ...𝑏𝑛1,1 𝑏𝑛1,2 ⋅ ⋅ ⋅ 𝑏𝑛1,𝑛1
)
)

, (12)

we can get that, ∀𝜀 > 0, ∃𝛿(2) > 0, if |Δ(2)| < 𝛿(2),|𝜆(𝐵(2)) − 𝜆(𝐵(1))| < 𝜀. Repeat this process, at the last step,∃𝛿(𝑛21) > 0, if |Δ(𝑛21)| < 𝛿(𝑛21), |𝜆(𝐵(𝑛21)) − 𝜆(𝐵(𝑛21−1))| < 𝜀, so
for any 𝜀 > 0, there exists 𝛿󸀠 = min(𝛿(1), 𝛿(2), . . . , 𝛿(𝑛21)), if|Δ(1)|, |Δ(2)|, . . . , |Δ(𝑛21)| < 𝛿󸀠, satisfying |𝜆(𝐵(𝑛21))−𝜆(𝐵)| < 𝑛21𝜀.

That is to say, if the matrix perturbation is small enough,
the eigenvalues will vary little accordingly. Secondly, let 𝐴󸀠 =( 𝐵󸀠 0
0 𝐶󸀠

)
𝑛×𝑛

. So it is reducible, and naturally the spectral of𝐴󸀠 spec(𝐴󸀠) = spec(𝐵󸀠) ∪ spec(𝐶󸀠). If 𝜎(𝐴) is small enough,
then all the entries in 𝐷 and 𝐸 are also small. When 𝜎(𝐴)
trends toward 0, the entries in 𝐵 and 𝐶 must change a little
accordingly to keep 𝐴 as a row stochastic matrix. Without
loss of generality, we can assume only one element 𝑑11 > 0 in
matrix 𝐷 (or 𝑐11 in 𝐶). For these reasons, we can obtain that,
for any 𝜀 > 0, there exists 𝛿, if 𝑑11 < 𝛿, |𝜆(𝐴) − 𝜆(𝐴󸀠)| < 𝜀,
since𝑑11 < 𝜎(𝐴); if𝜎(𝐴) < 𝛿, then,𝑑11 < 𝛿, |𝜆(𝐴)−𝜆(𝐴󸀠)| < 𝜀
or specially ||𝜆2| − 1| < 𝜀. That is to say, if 𝜎(𝐴) → 0, then the
second largest eigenvalue modulus is nearly 1. The inverse of
Proposition 3 has been proved by [22]. If second largest eigen-
value is sufficiently close to 1, then 𝐴 is nearly uncoupled.

A social network with community structure means
partitioned matrix 𝐴 with 𝜎(𝐴) is very small. According to
the above analysis, if individuals in different subgroups of a
society rarely interact with each other, then 𝜆2 will be very
close to 1. As a result, it is hard to reach a consensus.

3. The Impact of Community Structure on
Convergence Time

Althoughwehave some analytical results of the second largest
eigenvalue modulus of the social influence matrix with com-
munity structure, the exact results depend on entries of this
matrix. Different network structures or different influence
distributions will affect the second largest eigenvalue mod-
ulus, which in turn affects the convergence time of the group
opinion. Therefore, the analysis of the impact of community
structure on the convergence of time includes the following
three aspects: the number of connection nodes, the size of
subgroups, and the distribution of interpersonal influence.
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Figure 1: The relationship between the number of edges added
between two subgroups and the convergence time.
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Figure 2: The relationship between the number of edges added in
one subgroup and the convergence time.

3.1. The Number of Connection Nodes. First of all, using the
famousWSmodel [23], we build a social network containing
two subgroups, respectively. Each social network is a small
world. To ensure the whole network is linked, the nodes
between subgroups are connected sparsely and randomly.
And thenwe investigatewhether the increasing of connection
can influence the convergence time.

Figure 1 shows that the convergence rate of opinion evolu-
tion is highly dependent on the connection pattern between
subgroups. If the number of connections or connection
densities between subgroups increases, the convergence rate
of the group opinions is faster. At the beginning, when there
is only one connection between subgroups, there is almost
no connection between two subgroups, and the convergence
rate is almost zero. This is the result of the aforementioned
Proposition 3, and in this case, the social influence matrix
associated the social network is nearly uncoupled. So con-
sensus is hardly reached. However, when the number of
connections (or densities) between the groups increases, for
example, when the number of nodes increases to 10 pairs,
the second largest eigenvalue modulus |𝜆2| will reduce from
0.9972 to 0.9881. When the number of connections nodes
goes up to 100, |𝜆2| will drop to 0.9081 accordingly.

However, the convergence rate in Figure 2 declines with
the rise of the number of internal connections in one
subgroup. But the rate of weakening is much slower than
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Figure 3: Example of the frequency of interaction between different
subgroups impact on the second largest eigenvalue modulus, with𝑛1 = 100, 𝑛2 = 50, 𝑝1 = 0.2, and 𝑝2 = 0.4 (repeatedly calculating 30
times).

that in Figure 1. In Figure 2, with the ascent in the internal
connection of the subgroup (from the beginning of the
connection density 0.1 is 0.9512; the second largest eigenvalue
modulus decreases slightly to 0.9561 when the number of
connected nodes ascends to 100 pairs).

In Figure 3, we explore the impact of two subgroups
interaction frequency on the consensus time. Frequency of
interaction in the first subgroup is denoted by 𝑝1, and the
second is 𝑝2.The interaction frequency between subgroups is
denoted by 𝑝3, which is the proportion of positive entries to
all the entries in 𝐷 and 𝐸 (or the connection density between
different subgroups).

In Figure 3, it is easily to be observed that if the parameter𝑝3 goes up, the second largest eigenvaluemodulus will fall off.
Thus, the consensus time will be shorter with the increasing
frequency of interaction between subgroups.

3.2. The Size of Subgroups. In this section, we examine the
impact of the size of subgroups on the convergence time. For
a fixed size, for example, 150, of the social network, Figure 4
shows that |𝜆2| will be the largest when 𝑛1 is close to 𝑛2.
More precisely, if 𝑝1 = 𝑝2, when 𝑛1 = 𝑛2 = 75, |𝜆2| will
be the largest. That is to say, if a social network has a small
subgroup and a large subgroup simultaneously, it will always
be easy to reach a consensus. On the contrary, if the sizes of
two subgroups are about the same, it is difficult to reach a
consensus.

Simulation results show that the second largest eigenvalue
modulus is negatively correlated to the size of the correspond-
ing graph of 𝐴, as well as the density (or average degrees)
of the underling graph. For convenience, they are roughly
denoted by 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 = 𝑓 (𝑛, 𝑝) ,𝜕𝑓𝜕𝑛 < 0,

𝜕𝑓𝜕𝑝 < 0.
(13)
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Figure 4: The relationship between the size of subgroups and the second largest eigenvalue modulus. 𝑥-axis is the size of one subgroup and𝑦-axis is the second largest eigenvalue modulus. Here we assume the size of 𝐺 is 150, 𝑝3 = 0.02, in (a), 𝑝1 = 𝑝2 = 0.2; in (b), 𝑝1 = 0.2, 𝑝2 = 0.4;
in (c), 𝑝1 = 0.4, 𝑝2 = 0.2.

If the interaction between subgroups is very small, 𝐴 is
nearly uncoupled; using Proposition 3 we can get

spec (𝐴) ≈ spec (𝐵) ∪ spec (𝐶) ; (14)

thus, 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (𝐴) ≈ max (󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (𝐵) , 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (𝐶)) ,
i.e., 󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 (𝐴) ≈ max (𝑓 (𝑛1, 𝑝) , 𝑓 (𝑛 − 𝑛1, 𝑝))= 𝑓 (min (𝑛1, 𝑛 − 𝑛1) , 𝑝) . (15)

So for fixed 𝑛, if 𝑛1 = 𝑛/2,min(𝑛1, 𝑛−𝑛1) can be the largest,
accordingly |𝜆2| is the largest.
3.3. The Distribution of Interpersonal Influence. Finally, we
study three different distributions of influence strength of
individuals. In Figure 5 Case 1, power law distribution

represents an autocratic society, where minority-influential
individuals or opinion leaders exist, and the latter two both
represent a democratic society. In Case 2, the influence
of individuals follows normal distribution. In Case 3, all
individuals are affected by their neighbors with the same
influence. Repeatedly calculating 1000 times, we can get the
distribution of convergence rate as illustrated in Figure 5. It
can be seen that, in an autocratic society (Case 1), the con-
vergence of rate is slow with high probability, but sometimes
is very fast. This is due to the asymmetry and heterogeneity
of the power law distribution. If a few influential nodes
belonging to different subgroups connect with each other,
it will accelerate the convergence of groups opinions. On
the contrary, if influential nodes form links only by inner-
group, it will slightly slow down the convergence of group
opinions. Thus, to some extent, the convergence time or
convergence rate of group opinions is uncertain in this case.
In a democratic society (Case 2 and Case 3), the convergence
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Figure 5:The distribution of convergence rate of group opinion is determined by the distribution of influence. 𝑥-axis is the convergence rate− log(|𝜆2|) and 𝑦-axis is the frequency (total frequency is 1000). (a) represents autocratic society; (b) and (c) represent democratic society.

time follows a narrow-range distribution. In general, the
average convergence rate is faster than that of Case 1. In Case3, the influence matrix can be expressed as 𝐴 = (𝐷 + 𝐼)−1𝑀𝐴,
where 𝑀𝐴 is the adjacency matrix of the graph. In this case,
all the eigenvalues are real, and the second largest eigenvalue
is determined by the maximum degree of the graph.

4. Conclusions

Based on the framework of the Degroot model, this paper
studies the impact of the community structure topology
on the consensus time by introducing the second largest
eigenvalues modulus of social influence matrix. We prove
that if the interaction between subgroups is tiny, then the

consensus time will be very long. This means that opinions
profiles in a social network with community structure are
difficult to reach a consensus.

In order to study how the community structure impacts
on the convergence time (or the convergence rate), using the
second largest eigenvalue modulus, we examine this issue
from three points of view: the number of nodes connected
(including the number of subgroups connected, the number
of subgroups within the connection, and the connection den-
sity), subgroup size, and influence distribution. We find that
increasing the number of connections between subgroups
can accelerate the convergence of group opinions, while
increasing the number of subgroups within the subgroups
slows the convergence rate. The closer the subgroups’ size is,
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the longer the convergence time of the group opinions is. On
the other hand, the smaller the size of the subgroup is, the
shorter the convergence time is. Thus, the community struc-
ture depends not only on the density of the subgroups but also
on the relative size of the subgroups. In addition, the impact
of distribution of influence strength on the convergence time
shows that the convergence time of group opinions in an
autocratic society is longer than that in a democratic society
in average, but may involve more uncertainty, which depends
on the various connection pattern.

The implication of all the above is network intervene [24].
In order to accelerate the consensus, we must strengthen
the communication of individuals in different subgroups. On
the contrary, to maintain the discrepancy of group opinions,
we can strengthen the communication of individuals in the
same subgroups. Another effective way to control opinion
evolution is to vary the size of subgroups.
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