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The dynamic behavior of a discrete-time predator-prey system of Leslie type with simplified Holling type IV functional response is
examined. We algebraically show that the system undergoes a bifurcation (flip or Neimark-Sacker) in the interior ofR2+. Numerical
simulations are presented not only to validate analytical results but also to show chaotic behaviorswhich include bifurcations, phase
portraits, period 2, 4, 6, 8, 10, and 20 orbits, invariant closed cycle, and attracting chaotic sets. Furthermore,we compute numerically
maximum Lyapunov exponents and fractal dimension to justify the chaotic behaviors of the system. Finally, a strategy of feedback
control is applied to stabilize chaos existing in the system.

1. Introduction

In ecology and mathematical biology, the dynamics of
predator-prey interaction when the growth of predator
depends on the ratio of predator and prey have been exten-
sively investigated by ecologist and mathematician [1, 2] and
the reference therein. Qualitative analyses of these works
found many rich dynamics which include limit cycle, states
of stability, codimension 1 subcritical Hopf bifurcation, codi-
mension 2 Bogdanov-Takens bifurcation, and codimension 3
degenerate focus type Bogdanov-Takens bifurcation around
positive equilibrium. But lots of exploratory works have
suggested that the discretization of predator-prey models is
more suitable compared to continuous ones when size of
populations is small [3–10]. These researches have mainly
focused onGauss-type predator-prey interaction withmono-
tonic functional responses. They obtained many complex
properties in discrete-time models including the possibility
of bifurcations (flip and Neimark-Sacker) and chaos phe-
nomenon which had been derived either by using numerical
simulations or by using center manifold theory.

In recent times, a few number of articles in litera-
ture discussed the dynamics of discrete-time predator-prey
systems of Leslie type [11, 12]. For example, a discrete-
time predator-prey system of Holling and Leslie type with
constant-yield prey harvesting was investigated in [11], and a
discrete predator-preymodel with Holling-Tanner functional
response was studied in [12]. In their studies, the authors paid
their attention to drive the existence of flip and Neimark-
Sacker bifurcations by using center manifold theory.

In this paper, we consider the following predator-prey
system of Leslie type [1]:

𝑥̇ = 𝑟𝑥 (1 − 𝑥𝐾) − 𝑚𝑥𝑦𝑥2 + 𝑏 ,
̇𝑦 = 𝑠𝑦 (1 − 𝑦ℎ𝑥) ,

(1)

where 𝑥 and 𝑦 stand for densities of prey and predator,
respectively; 𝑟, 𝐾,𝑚, 𝑏, 𝑠, and ℎ are all positive constants, and𝑚𝑥𝑦/(𝑥2 + 𝑏) denotes the functional response of simplified
Holling type IV. In [1], it is shown that model (1) has a
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degenerate Bogdanov-Takens bifurcation of codimension 3 at
positive equilibrium. For simplicity, we scale the variables and
parameters as 𝑥𝐾 󳨀→ 𝑥,

𝑚𝑦𝑟𝐾2 󳨀→ 𝑦,
𝑟𝑡 󳨀→ 𝑡,
𝑎 = 𝑏𝐾2 ,
𝛼 = 𝑠𝑟 ,
𝛽 = 𝑠𝐾ℎ𝑚.

(2)

Then we write system (1) in the form

𝑥̇ = 𝑥 (1 − 𝑥) − 𝑥𝑦𝑥2 + 𝑎 ,
̇𝑦 = 𝑦(𝛼 − 𝛽𝑦𝑥 ) . (3)

Forward Euler scheme is applied to system (3) to get the
following discrete system:

(𝑥𝑦) 󳨃󳨀→ (𝑥 + 𝛿𝑥 [(1 − 𝑥) − 𝑦𝑥2 + 𝑎]𝑦 + 𝛿𝑦 [𝛼 − 𝛽𝑦𝑥 ] ) , (4)

where𝛿 is the step size.Theobjective is to study systematically
the existence condition of a bifurcation (flip or NS bifurca-
tion) in the interior ofR2+ using bifurcation theory and center
manifold theory [13–16].

This paper is organized as follows. Section 2 deals with the
existence condition for fixed points of system (4) and their
stability criterion. In Section 3, we prove that under certain
parametric condition system (4) admits a bifurcation. In Sec-
tion 4, we implement numerical simulations of the system for
one or more control parameters which include diagrams of
bifurcation, phase portraits, maximum Lyapunov exponents,
and fractal dimensions. In Section 5, we use the method of
feedback control to stabilize chaos at unstable trajectories.
Finally we carry out a short discussion in Section 6.

2. Fixed Points: Existence and Their Stability

The fixed points of system (4) are solution of

𝑥 + 𝛿𝑥 [(1 − 𝑥) − 𝑦𝑥2 + 𝑎] = 𝑥,
𝑦 + 𝛿𝑦 [𝛼 − 𝛽𝑦𝑥 ] = 𝑦. (5)

A simple algebraic computation shows that system (4) has
a predator free fixed point 𝐸1(1, 0) for all parameter values.

Next, it is of great interest to find the positive fixed point of
system (4). Suppose that 𝐸2(𝑥∗, 𝑦∗) is a positive fixed point
of system (4). Then, 𝑥∗ and 𝑦∗ are solutions of

1 − 𝑥∗ = 𝑦∗𝑥∗2 + 𝑎 ,𝛼𝑥∗ = 𝛽𝑦∗. (6)

From (6), we can see that 𝑥∗ ∈ (0, 1) is the root of the
following cubic equation:𝑝0𝑤3 + 3𝑝1𝑤2 + 3𝑝2𝑤 + 𝑝3 = 0, (𝑝0 ̸= 0) , (7)

with coefficients

𝑝0 = 1𝑎 ,
3𝑝1 = −1𝑎 ,
3𝑝2 = 1 + 𝛼𝑎𝛽,𝑝3 = −1.

(8)

Now, the transformation 𝑧 = 𝑝0𝑤 + 𝑝1 converts (7) to 𝑧3 +3𝐻𝑧 + 𝐺 = 0, where 𝐺 = 𝑝02𝑝3 − 3𝑝0𝑝1𝑝2 + 2𝑝13, 𝐻 =𝑝0𝑝2 − 𝑝12. Using Cardano’s method, we get following result.

Lemma 1. If 𝐺2 + 4𝐻3 > 0, then a unique positive fixed point𝐸2(𝑥∗, 𝑦∗) of system (4) exists, where

𝑥∗ = 1𝑝0 (𝑞 − 𝐻𝑞 − 𝑝1) ,
𝑦∗ = 𝛼𝑥∗𝛽 , (9)

and 𝑞 denotes one of the three values of [(−𝐺 +√𝐺2 + 4𝐻3)/2]1/3.
Next, we investigate stability of system (4) at fixed points.

Note that the magnitude of eigenvalues of Jacobian matrix
evaluated at fixed point 𝐸(𝑥, 𝑦) determines the local stability
of that fixed point. The Jacobian matrix of system (4)
evaluated at fixed point 𝐸(𝑥, 𝑦) is given by

𝐽 (𝑥, 𝑦) = (𝑎11 𝑎12𝑎21 𝑎22) , (10)

where

𝑎11 = 1 + 𝛿 − 2𝛿𝑥 + 𝛿𝑦 (𝑥2 − 𝑎)(𝑥2 + 𝑎)2 ,
𝑎12 = − 𝛿𝑥𝑥2 + 𝑎 ,
𝑎21 = 𝛽𝛿𝑦2𝑥2 ,
𝑎22 = 1 + 𝛼𝛿 − 2𝛽𝛿𝑦𝑥 .

(11)
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The characteristic equation of matrix 𝐽 is
𝜆2 + 𝑝 (𝑥, 𝑦) 𝜆 + 𝑞 (𝑥, 𝑦) = 0, (12)

where 𝑝(𝑥, 𝑦) = −tr 𝐽 = −(𝑎11 + 𝑎22) and det 𝐽 = 𝑎11𝑎22 −𝑎12𝑎21.
Using Jury’s criterion [17], we state the following stability

conditions of fixed points.

Proposition 2. The predator free fixed point 𝐸1(1, 0) is a
saddle if 0 < 𝛿 < 2, source if 𝛿 > 2, and nonhyperbolic if𝛿 = 2.

It is obvious that when 𝛿 = 2, the two eigenvalues of 𝐽(𝐸1)
are𝜆1 = 1−𝛿 and 𝜆2 = 1+𝛼𝛿 > 1.Therefore, a flip bifurcation
can occur if parameters change in small vicinity of FB𝐸1 :

FB𝐸1 = {(𝑎, 𝛼, 𝛽, 𝛿) ∈ (0, +∞) : 𝛿 = 2} . (13)

At 𝐸2(𝑥∗, 𝑦∗), we write (12) as
𝐹 (𝜆) fl 𝜆2 − (2 + Δ𝛿) 𝜆 + (1 + Δ𝛿 + Ω𝛿2) = 0, (14)

where

Δ = 1 − 2𝑥∗ + 𝑦∗ (𝑥∗2 − 𝑎)(𝑥∗2 + 𝑎)2 + 𝛼 − 2𝛽𝑦∗𝑥∗ ,
Ω = (1 − 2𝑥∗ + 𝑦∗ (𝑥∗2 − 𝑎)(𝑥∗2 + 𝑎)2 )𝛼 + 2𝛽𝑦∗ (2𝑥∗ − 1)𝑥∗

− 𝛽𝑦∗2 (𝑥∗2 − 3𝑎)𝑥∗ (𝑥∗2 + 𝑎)2 .
(15)

Then 𝐹(1) = Ω𝛿2 > 0 and 𝐹(−1) = 4 + 2Δ𝛿 + Ω𝛿2.
We state the following Proposition about stability crite-

rion of 𝐸2.
Proposition 3. Suppose that fixed point 𝐸2(𝑥∗, 𝑦∗) of system
(4) exists. Then it is

(i) sink if one of the following conditions holds:

(i.1) Δ2 − 4Ω ≥ 0 and 𝛿 < (−Δ − √Δ2 − 4Ω)/Ω;
(i.2) Δ2 − 4Ω < 0 and 𝛿 < −Δ/Ω;

(ii) source if one of the following conditions holds:

(ii.1) Δ2 − 4Ω ≥ 0 and 𝛿 > (−Δ + √Δ2 − 4Ω)/Ω;
(ii.2) Δ2 − 4Ω < 0 and 𝛿 > −Δ/Ω;

(iii) nonhyperbolic if one of the following conditions holds:

(iii.1) Δ2 − 4Ω ≥ 0 and 𝛿 = (−Δ ± √Δ2 − 4Ω)/Ω;
(iii.2) Δ2 − 4Ω < 0 and 𝛿 = −Δ/Ω;

(iv) saddle if otherwise.

From Proposition 3, we see that two eigenvalues of 𝐽(𝐸2) are𝜆1 = −1 and 𝜆2 ̸= −1, 1 if condition (iii.1) holds. We rewrite
term (iii.1) as follows:

FB1𝐸2 = {(𝑎, 𝛼, 𝛽, 𝛿) ∈ (0, +∞) : 𝛿
= −Δ − √Δ2 − 4ΩΩ , Δ2 − 4Ω ≥ 0} , (16)

or

FB2𝐸2 = {(𝑎, 𝛼, 𝛽, 𝛿) ∈ (0, +∞) : 𝛿
= −Δ + √Δ2 − 4ΩΩ , Δ2 − 4Ω ≥ 0} . (17)

Therefore, a flip bifurcation can appear at 𝐸2 if parameters
vary around the set FB1𝐸2 or FB

2
𝐸2
.

Also we rewrite term (iii.2) as follows:

NSB𝐸2

= {(𝑎, 𝛼, 𝛽, 𝛿) ∈ (0, +∞) : 𝛿 = − ΔΩ, Δ2 − 4Ω < 0} , (18)

and if the parameters change in small vicinity of NSB𝐸2 , two
eigenvalues 𝜆1,2 of 𝐽(𝐸2) are complex having magnitude one
and then NS bifurcation can emerge from fixed point 𝐸2.
3. Bifurcation Analysis

In this section, we will give attention to recapitulate bifur-
cations (flip and Neimark-Sacker) of system (4) around 𝐸2
by using the theory of bifurcation [13–16]. We set 𝛿 as a
bifurcation parameter.

3.1. Flip Bifurcation. Consider system (4) at the fixed point𝐸2(𝑥∗, 𝑦∗) with arbitrary parameter (𝑎, 𝛼, 𝛽, 𝛿) ∈ FB1𝐸2 . One
can consider the case of FB2𝐸2 in a similar fashion. Since the
parameters lie in FB1𝐸2 , let 𝛿 = 𝛿𝐹 = (−Δ−√Δ2 − 4Ω)/Ω, and
then the eigenvalues of positive fixed point (𝑥∗, 𝑦∗) are

𝜆1 (𝛿𝐹) = −1,
𝜆2 (𝛿𝐹) = 3 + Δ𝛿𝐹. (19)

The condition |𝜆2(𝛿𝐹)| ̸= 1 leads to
Δ𝛿𝐹 ̸= −2, −4. (20)

Using the transformation 𝑥 = 𝑥 − 𝑥∗, 𝑦 = 𝑦 − 𝑦∗ and
writing 𝐴(𝛿) = 𝐽(𝑥∗, 𝑦∗), we shift the fixed point (𝑥∗, 𝑦∗) of
system (4) to the origin. After Taylor expansion, system (4)
reduces to

(𝑥𝑦) 󳨀→ 𝐴(𝛿) (𝑥𝑦) + (𝐹1 (𝑥, 𝑦, 𝛿)𝐹2 (𝑥, 𝑦, 𝛿)) , (21)
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where𝑋 = (𝑥, 𝑦)𝑇 and
𝐹1 (𝑥, 𝑦, 𝛿) = 16 [[

6𝛿𝑦∗ (𝑎2 − 6𝑎𝑥∗2 + 𝑥∗4)(𝑥∗2 + 𝑎)4 𝑥3

+ 3𝛿 (6𝑎𝑥∗ − 2𝑥∗3)(𝑥∗2 + 𝑎)3 𝑥2𝑦]]
+ 12 [[(−2𝛿 + 𝛿𝑦∗ (6𝑎𝑥∗ − 2𝑥∗3)(𝑥∗2 + 𝑎)3 )𝑥2

+ 2𝛿 (𝑥∗2 − 𝑎)(𝑥∗2 + 𝑎)2 𝑥𝑦]] + 𝑂 (‖𝑋‖4) ,
𝐹2 (𝑥, 𝑦, 𝛿) = 𝛽𝛿𝑥∗4 𝑥 (𝑥∗𝑦 − 𝑦∗𝑥)2 − 𝛽𝛿𝑥∗3 𝑥 (𝑥∗𝑦

− 𝑦∗𝑥)2 + 𝑂 (‖𝑋‖4) .

(22)

It follows that

𝐵1 (𝑥, 𝑦) = 2∑
𝑗,𝑘=1

𝛿2𝐹1 (𝜉, 𝛿)𝛿𝜉𝑗𝛿𝜉𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=0 𝑥𝑗𝑦𝑘

= 𝛿 (𝑥∗2 − 𝑎)(𝑥∗2 + 𝑎)2 (𝑥1𝑦2 + 𝑥2𝑦1)
+ (−2𝛿 + 𝛿𝑦∗ (6𝑎𝑥∗ − 2𝑥∗3)(𝑥∗2 + 𝑎)3 )𝑥1𝑦1,

𝐵2 (𝑥, 𝑦) = 2∑
𝑗,𝑘=1

𝛿2𝐹2 (𝜉, 𝛿)𝛿𝜉𝑗𝛿𝜉𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=0 𝑥𝑗𝑦𝑘

= −2𝛽𝛿𝑥∗ 𝑥2𝑦2 + 2𝛽𝛿𝑦∗𝑥∗2 (𝑥1𝑦2 + 𝑥2𝑦1)
− 2𝛽𝛿𝑦∗2𝑥∗3 𝑥1𝑦1,

𝐶1 (𝑥, 𝑦, 𝑢) = 2∑
𝑗,𝑘,𝑙=1

𝛿2𝐹1 (𝜉, 𝛿)𝛿𝜉𝑗𝛿𝜉𝑘𝛿𝜉𝑙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=0 𝑥𝑗𝑦𝑘𝑢𝑙

= 𝛿 (6𝑎𝑥∗ − 2𝑥∗3)(𝑥∗2 + 𝑎)3 (𝑥1𝑦2𝑢1 + 𝑥2𝑦1𝑢1 + 𝑥1𝑦1𝑢2)
+ 6𝛿𝑦∗ (𝑎2 − 6𝑎𝑥∗2 + 𝑥∗4)(𝑥∗2 + 𝑎)4 𝑥1𝑦1𝑢1,

𝐶2 (𝑥, 𝑦, 𝑢) = 2∑
𝑗,𝑘,𝑙=1

𝛿2𝐹2 (𝜉, 𝛿)𝛿𝜉𝑗𝛿𝜉𝑘𝛿𝜉𝑙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=0 𝑥𝑗𝑦𝑘𝑢𝑙

= 2𝛽𝛿𝑥∗2 (𝑥1𝑦2𝑢2 + 𝑥2𝑦1𝑢2 + 𝑥2𝑦2𝑢1)
− 4𝛽𝛿𝑦∗𝑥∗3 (𝑥1𝑦1𝑢2 + 𝑥1𝑦2𝑢1 + 𝑥2𝑦1𝑢1)
+ 6𝛽𝛿𝑦∗2𝑥∗4 𝑥1𝑦1𝑢1,

(23)

and 𝛿 = 𝛿𝐹.
Therefore, we obtain the following symmetric multilinear

vector functions of 𝑥, 𝑦, 𝑢 ∈ R2:

𝐵 (𝑥, 𝑦) = (𝐵1 (𝑥, 𝑦)𝐵2 (𝑥, 𝑦)) ,
𝐶 (𝑥, 𝑦, 𝑢) = (𝐶1 (𝑥, 𝑦, 𝑢)𝐶2 (𝑥, 𝑦, 𝑢)) . (24)

Let 𝑝, 𝑞 ∈ R2 be two eigenvectors of 𝐴 for eigenvalue𝜆1(𝛿𝐹) = −1 such that 𝐴(𝛿𝐹)𝑞 = −𝑞 and 𝐴𝑇(𝛿𝐹)𝑝 = −𝑝.
Then by direct calculation we get

𝑞 ∼ (2 + 𝛼𝛿𝐹 − 2𝛽𝛿𝐹𝑦∗𝑥∗ , −𝛽𝛿𝐹𝑦∗2𝑥∗2 )𝑇 ,
𝑝 ∼ (2 + 𝛼𝛿𝐹 − 2𝛽𝛿𝐹𝑦∗𝑥∗ , 𝛿𝐹𝑥∗𝑥∗2 + 𝑎)𝑇 .

(25)

We set 𝑝 = 𝛾1(2 +𝛼𝛿𝐹−2𝛽𝛿𝐹𝑦∗/𝑥∗, 𝛿𝐹𝑥∗/(𝑥∗2 +𝑎))𝑇, where𝛾1
= 1(2 + 𝛼𝛿𝐹 − 2𝛽𝛿𝐹𝑦∗/𝑥∗)2 − 𝛽𝛿2𝐹𝑦∗2/𝑥∗ (𝑥∗2 + 𝑎) . (26)

Then by the standard scalar product in R2 defined by⟨𝑝, 𝑞⟩ = 𝑝1𝑞1 + 𝑝2𝑞2, we show that ⟨𝑝, 𝑞⟩ = 1. The direction
of the flip bifurcation is obtained by sign 𝑐(𝛿𝐹), the coefficient
of critical normal form [13], and is given by

𝑐 (𝛿𝐹) = 16 ⟨𝑝, 𝐶 (𝑞, 𝑞, 𝑞)⟩
− 12 ⟨𝑝, 𝐵 (𝑞, (𝐴 − 𝐼)−1 𝐵 (𝑞, 𝑞))⟩ . (27)

We state the following result on flip bifurcation according to
the above analysis.

Theorem 4. If (20) holds, 𝑐(𝛿𝐹) ̸= 0, and the parameter 𝛿
changes its value around 𝛿𝐹, then system (4) undergoes a flip
bifurcation at positive fixed point 𝐸2(𝑥∗, 𝑦∗). Moreover, the
period 2 orbits that bifurcate from 𝐸2(𝑥∗, 𝑦∗) are stable (resp.,
unstable) if 𝑐(𝛿𝐹) > 0 (resp., 𝑐(𝛿𝐹) < 0).
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3.2. Neimark-Sacker Bifurcation. We consider system (4) at
fixed point 𝐸2(𝑥∗, 𝑦∗) with arbitrary (𝑎, 𝛼, 𝛽, 𝛿) ∈ NSB𝐸2 .
From (12), the eigenvalues are given by

𝜆, 𝜆 = −𝑝 (𝛿) ± √𝑝 (𝛿)2 − 4𝑞 (𝛿)2 . (28)

Since the parameters belong to NSB𝐸2 , the eigenvalues
will be complex and

𝜆, 𝜆 = 1 + Δ𝛿2 ± 𝑖𝛿2 √4Ω − Δ2. (29)

Let

𝛿 = 𝛿NS = −ΔΩ. (30)

Therefore, we have

|𝜆| = √𝑞 (𝛿),
𝑞 (𝛿NS) = 1,𝑑 |𝜆 (𝛿)|𝑑𝛿 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛿=𝛿NS = −Δ2 ̸= 0.

(31)

Moreover, if 𝑝(𝛿NS) ̸= 0, 1, then
Δ2Ω ̸= 2, 3, (32)

which obviously satisfies

𝜆𝑘 (𝛿NS) ̸= 1 for 𝑘 = 1, 2, 3, 4. (33)

Suppose that 𝑞, 𝑝 ∈ C2 are two eigenvectors of𝐴(𝛿NS ) and𝐴𝑇(𝛿NS) for eigenvalues 𝜆(𝛿NS) and 𝜆(𝛿NS) such that

𝐴 (𝛿NS) 𝑞 = 𝜆 (𝛿NS) 𝑞,𝐴 (𝛿NS) 𝑞 = 𝜆 (𝛿NS) 𝑞,𝐴𝑇 (𝛿NS) 𝑝 = 𝜆 (𝛿NS) 𝑝,𝐴𝑇 (𝛿NS) 𝑝 = 𝜆 (𝛿NS) 𝑝.
(34)

Then by direct computation we obtain

𝑞 ∼ (1 + 𝛼𝛿NS − 2𝛽𝛿𝑦∗𝑥∗ − 𝜆, −𝛽𝛿𝑦∗2𝑥∗2 )𝑇 ,
𝑝 ∼ (1 + 𝛼𝛿NS − 2𝛽𝛿𝑦∗𝑥∗ − 𝜆, 𝛿𝑥∗𝑥∗2 + 𝑎)𝑇 .

(35)

We set 𝑝 = 𝛾2(1 + 𝛼𝛿NS − 2𝛽𝛿𝑦∗/𝑥∗ − 𝜆, 𝛿𝑥∗/(𝑥∗2 + 𝑎))𝑇,
where𝛾2

= 1(1 + 𝛼𝛿NS − 2𝛽𝛿𝑦∗/𝑥∗ − 𝜆)2 − 𝛽𝛿2NS𝑦∗2/𝑥∗ (𝑥∗2 + 𝑎) . (36)

Then it is clear that ⟨𝑝, 𝑞⟩ = 1 where ⟨𝑝, 𝑞⟩ = 𝑝1𝑞2 +𝑝2𝑞1
for 𝑝, 𝑞 ∈ C2. Now, we decompose vector𝑋 ∈ R2 as𝑋 = 𝑧𝑞+𝑧 𝑞, for 𝛿 close to 𝛿NS and 𝑧 ∈ C. Obviously, 𝑧 = ⟨𝑝,𝑋⟩.Thus,
we obtain the following transformed form of system (21) for|𝛿| near 𝛿NS: 𝑧 󳨃󳨀→ 𝜆 (𝛿) 𝑧 + 𝑔 (𝑧, 𝑧, 𝛿) , (37)

where 𝜆(𝛿) = (1 +𝜑(𝛿))𝑒𝑖𝜃(𝛿) with 𝜑(𝛿NS) = 0 and 𝑔(𝑧, 𝑧, 𝛿) is
a smooth complex-valued function. After Taylor expression
of 𝑔 with respect to (𝑧, 𝑧), we obtain
𝑔 (𝑧, 𝑧, 𝛿) = ∑

𝑘+𝑙≥2

1𝑘!𝑙!𝑔𝑘𝑙 (𝛿) 𝑧𝑘𝑧𝑙,
with 𝑔𝑘𝑙 ∈ C, 𝑘, 𝑙 = 0, 1, . . . . (38)

According to multilinear symmetric vector functions, the
coefficients 𝑔𝑘𝑙 are

𝑔20 (𝛿NS) = ⟨𝑝, 𝐵 (𝑞, 𝑞)⟩ ,
𝑔11 (𝛿NS) = ⟨𝑝, 𝐵 (𝑞, 𝑞)⟩ ,
𝑔02 (𝛿NS) = ⟨𝑝, 𝐵 (𝑞, 𝑞)⟩ ,
𝑔21 (𝛿NS) = ⟨𝑝, 𝐶 (𝑞, 𝑞, 𝑞)⟩ .

(39)

The invariant closed curve appear in the direction which is
determined by the coefficient 𝑎(𝛿NS) and calculated via

𝑎 (𝛿NS) = Re(𝑒−𝑖𝜃(𝛿NS)𝑔212 )
− Re((1 − 2𝑒𝑖𝜃(𝛿NS)) 𝑒−2𝑖𝜃(𝛿NS)2 (1 − 𝑒𝑖𝜃(𝛿NS)) 𝑔20𝑔11)
− 12 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 14 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨2 ,

(40)

where 𝑒𝑖𝜃(𝛿NS) = 𝜆(𝛿NS).
It is clear that conditions (31) and (33) known as transver-

sal and nondegenerate for system (4) hold well.We obtain the
following result.

Theorem 5. If (32) holds, 𝑎(𝛿𝑁𝑆) ̸= 0, and the parameter 𝛿
changes its value in small vicinity of 𝑁𝑆𝐵𝐸2 , then system (4)
passes through a Neimark-Sacker bifurcation at positive fixed
point𝐸2. Moreover, if𝑎(𝛿𝑁𝑆) < 0 (resp.,> 0), then there exists a
unique attracting (resp., repelling) invariant closed curve which
bifurcates from 𝐸2.
4. Numerical Simulations

Here, diagrams for bifurcation, phase portraits, maximum
Lyapunov exponents, and fractal dimension of system (4)will
be drawn to validate our theoretical results using numerical
simulation. We consider parameter values in the following
cases for bifurcation analysis.
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Figure 1: Flip bifurcation and Lyapunov exponent of system (4). (a) Bifurcation for prey, (b) bifurcation for predator, (c) maximum Lyapunov
exponents related to (a-b), and (d) fractal dimension corresponding to (a). Initial value (𝑥0, 𝑦0) = (0.9, 0.56).
Case 1. Vary 𝛿 in range 0.75 ≤ 𝛿 ≤ 1.17, and fix 𝑎 = 5.5, 𝛼 =2.5, 𝛽 = 4.0.
Case 2. Vary 𝛿 in range 1.9 ≤ 𝛿 ≤ 2.15, and fix 𝑎 = 2.5, 𝛼 =0.75, 𝛽 = 0.5.
Case 3. Vary 𝛿 in range 1.9 ≤ 𝛿 ≤ 2.15, 𝛽 in range 0.5 ≤ 𝛽 ≤0.8, and fix 𝑎 = 2.5, 𝛼 = 0.75.

For Case 1, taking parameters 𝑎 = 5.5, 𝛼 = 2.5, and𝛽 = 4.0 and 𝛿 covering [0.75, 1.17], we find that, at fixed point𝐸2(0.910115, 0.568822), a flip bifurcation occurs at 𝛿 = 𝛿𝐹 ∼0.852505 with multipliers 𝜆1 = −1, 𝜆2 = 0.112921, 𝑎(𝛿𝐹) =22.3878, and (𝑎, 𝛼, 𝛽, 𝛿) ∈ FB1𝐸2 . This verifies Theorem 4.
According to bifurcation diagrams shown in Figures 1(a)

and 1(b), we see that stability of fixed point 𝐸2 happens for𝛿 < 0.852505 and loses its stability at 𝛿 = 0.852505 and
period doubling phenomena lead to chaos for 𝛿 > 0.852505.
The maximum Lyapunov exponents and fractal dimension

related to Figures 1(a) and 1(b) are computed and shown in
Figures 1(c) and 1(d). We observe that the period 2, 4, and
8 orbits occur for 𝛿 ∈ [0.75, 1.104], chaotic set occurs for𝛿 ∈ [1.104, 1.15], and the period 6 orbit occurs at 𝛿 = 1.112
within the window of chaotic region 𝛿 ∈ [1.104, 1.15]. The
status of stable, periodic, or chaotic dynamics is compatible
with sign in Figures 1(c) and 1(d).

For Case 2, taking parameters 𝑎 = 2.5, 𝛼 = 0.75,
and 𝛽 = 0.5 and 𝛿 covering [1.9, 2.15], we observe that
a Neimark-Sacker (NS) bifurcation appears at fixed point(0.662032, 0.993048) for 𝛿 = 𝛿NS ∼ 1.94431. Also, we have𝜆, 𝜆 = −0.274696 ± 0.961531𝑖, 𝑔20 = 3.36329 − 2.22294𝑖,𝑔11 = 3.85086 − 1.04183𝑖, 𝑔02 = −1.24765 + 5.18251𝑖, 𝑔21 =−4.31749 + 7.22596𝑖, 𝑎(𝛿NS) = −11.9921, and (𝑎, 𝛼, 𝛽, 𝛿) ∈
NSB𝐸2 . This verifies Theorem 5.

The bifurcation diagrams shown in Figures 2(a) and 2(b)
demonstrate that stability of 𝐸2 happens for 𝛿 < 1.94431 and
loses its stability at 𝛿 = 1.94431 and an attracting invariant
curve appears if 𝛿 > 1.94431. We dispose the maximum
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Figure 2: NS bifurcation and Lyapunov exponent of system (4). (a) NS bifurcation for prey, (b) NS bifurcation for predator, (c) maximum
Lyapunov exponents related to (a-b), (d) local amplification diagram in (a) for 𝛿 ∈ [2.05, 2.11], and (e) fractal dimension associated with (a).
Initial value (𝑥0, 𝑦0) = (0.65, 0.95).
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Figure 3: Phase portraits of bifurcation diagrams Figures 2(a) and 2(b) for different values of 𝛿.

Lyapunov exponents in Figure 2(c) relating bifurcation in
Figures 2(a) and 2(b), which confirm the existences of chaos
and period window as parameter 𝛿 varying. When 𝛿 ∼ 2.126,
the sign of maximum Lyapunov exponent is confirming
presence of chaos. Figure 2(d) is local amplification of
Figure 2(a) for 𝛿 ∈ [2.05, 2.11].

The phase portraits of bifurcation diagrams in Figures
2(a) and 2(b) for different values of 𝛿 are displayed in Figure 3,
which clearly illustrates the act of smooth invariant curve
how it bifurcates from the stable fixed point and increases
its radius. As 𝛿 grows, disappearance of closed curve occurs
suddenly and a period 10 and 20 orbits appear at 𝛿 ∼ 2.06
and 𝛿 ∼ 2.093, respectively. We also see that a fully developed
chaos in system (4) occurs at 𝛿 ∼ 2.15.

For Case 3, the dynamic complexity of system (4) can
be observed when more parameters vary. The diagrams
of bifurcation of system (4) for control parameters 𝛿 ∈[1.9, 2.15] and 𝛽 ∈ [0.5, 0.8] and fixing remaining parameters
as in Case 2 are shown in Figures 4(a) and 4(b). The 3D
maximum Lyapunov exponent for two control parameters
is plotted in Figure 4(c) and its 2D projection onto (𝛿, 𝛽)
plane is shown in Figure 4(d). It is easy to find values of
control parameters for which the dynamics of system (4) are
in status of nonchaotic, periodic, or chaotic. For instance,
there are chaotic dynamics for 𝛿 = 2.15 and 𝛽 = 0.5 and
the nonchaotic dynamics for 𝛿 = 1.93 and 𝛽 = 0.5 (see
Figure 3), which are compatible with the signs of maximum
Lyapunov exponents in Figure 4(c). This exhibits that the
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Figure 4: Diagnostic of system (4) for control parameters 𝛿 and 𝛽. (a-b) Bifurcation for prey and predator covering 𝛿 ∈ [1.9, 2.15], 𝛽 =0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8 ∈ [0.5, 0.8] in (𝛿 − 𝛽 − 𝑥) space and (𝛿 − 𝛽 − 𝑦) space. (c) The 3D view of maximum Lyapunov exponents
related to (a-b). (d) The 2D projection onto (𝛿, 𝛽) plane. Initial value (𝑥0, 𝑦0) = (0.65, 0.95).
parameter 𝛽 may play a role for chaotic dynamics in the
system.

4.1. Fractal Dimension of the Map. The measure of fractal
dimensions characterizes the strange attractors of a system.
By using Lyapunov exponents, the fractal dimension [18, 19]
is defined by

𝑑𝐿 = 𝑗 + ∑𝑗𝑖=1 ℎ𝑖󵄨󵄨󵄨󵄨󵄨ℎ𝑗󵄨󵄨󵄨󵄨󵄨 , (41)

where ℎ1, ℎ2, . . . , ℎ𝑛 are Lyapunov exponents and 𝑗 is the
largest integer such that ∑𝑗𝑖=1 ℎ𝑖 ≥ 0 and ∑𝑗+1𝑖=1 ℎ𝑖 < 0. For our
two-dimensional system (4), the fractal dimension takes the
form

𝑑𝐿 = 1 + ℎ1󵄨󵄨󵄨󵄨ℎ2󵄨󵄨󵄨󵄨 , ℎ1 > 0 > ℎ2. (42)

With parameter values as in Case 2, the fractal dimension
of system (4) is plotted in Figure 2(e). The strange attractors

given in Figure 3 and its corresponding fractal dimension
illustrate that the Leslie type predator-prey system (4) has a
chaotic dynamics as the parameter 𝛿 increases.
5. Chaos Control

To stabilize chaos at the state of unstable trajectories of system
(4), a state feedback control method [17, 20] is applied. By
adding a feedback control law as the control force𝑢𝑛 to system
(4), the controlled form of system (4) becomes

𝑥𝑛+1 = 𝑥𝑛 + 𝛿𝑥𝑛 [(1 − 𝑥𝑛) − 𝑦𝑛𝑥𝑛2 + 𝑎] + 𝑢𝑛,
𝑦𝑛+1 = 𝑦𝑛 + 𝛿𝑦𝑛 [𝛼 − 𝛽𝑦𝑛𝑥𝑛 ] ,𝑢𝑛 = −𝑘1 (𝑥𝑛 − 𝑥∗) − 𝑘2 (𝑦𝑛 − 𝑦∗) ,

(43)

where the feedback gains are denoted by 𝑘1 and 𝑘2 and(𝑥∗, 𝑦∗) represent positive fixed point of system (4).
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Figure 5: Control of chaotic trajectories of system (43). (a) Stability region in (𝑘1, 𝑘2) plane. (b-c) Time series for states 𝑥 and 𝑦, respectively.
The Jacobian matrix 𝐽𝑐 of the controlled system (43) is

given by

𝐽𝑐 (𝑥∗, 𝑦∗) = (𝑎11 − 𝑘1 𝑎12 − 𝑘2𝑎21 𝑎22 ) , (44)

where 𝑎11 = 1+𝛿−2𝛿𝑥+𝛿𝑦(𝑥2−𝑎)/(𝑥2+𝑎)2, 𝑎12 = −𝛿𝑥/(𝑥2+𝑎), 𝑎21 = 𝛽𝛿𝑦2/𝑥2, and 𝑎22 = 1 + 𝛼𝛿 − 2𝛽𝛿𝑦/𝑥 are evaluated
at (𝑥∗, 𝑦∗). The characteristic equation of (44) is𝜆2 − (tr 𝐽𝑐) 𝜆 + det 𝐽𝑐 = 0, (45)
where tr 𝐽𝑐 = 𝑎11+𝑎22−𝑘1 and det 𝐽𝑐 = 𝑎22(𝑎11−𝑘1)−𝑎21(𝑎12−𝑘2). Let 𝜆1 and 𝜆2 be the roots of (45). Then𝜆1 + 𝜆2 = 𝑎11 + 𝑎22 − 𝑘1, (46)𝜆1𝜆2 = 𝑎22 (𝑎11 − 𝑘1) − 𝑎21 (𝑎12 − 𝑘2) . (47)

The solution of the equations 𝜆1 = ±1 and 𝜆1𝜆2 = 1
determines the lines of marginal stability. These conditions
confirm that |𝜆1,2| < 1. Suppose that 𝜆1𝜆2 = 1, then from
(47) we have𝑙1 : 𝑎22𝑘1 − 𝑎21𝑘2 = 𝑎11𝑎22 − 𝑎12𝑎21 − 1. (48)

Assume that 𝜆1 = 1, then from (46) and (47) we get𝑙2 : (1 − 𝑎22) 𝑘1 + 𝑎21𝑘2= 𝑎11 + 𝑎22 − 1 − 𝑎11𝑎22 + 𝑎12𝑎21. (49)

Next, assume that 𝜆1 = −1, then from (46) and (47) we
obtain 𝑙3 : (1 + 𝑎22) 𝑘1 − 𝑎21𝑘2= 𝑎11 + 𝑎22 + 1 + 𝑎11𝑎22 − 𝑎12𝑎21. (50)
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Then the lines 𝑙1, 𝑙2, and 𝑙3 (see Figure 5(a)) in the (𝑘1, 𝑘2)
plane determine a triangular region which keeps eigenvalues
with magnitude less than 1.

In order to check how the implementation of feedback
control method works and controls chaos at unstable state,
we have performed numerical simulations. Parameter values
are fixed as 𝛿 = 2.126 and rest as in Case 2. The initial
value is (𝑥0, 𝑦0) = (0.65, 0.95), and the feedback gains are𝑘1 = −1.3 and 𝑘2 = 0.16. Figures 5(b) and 5(c) show that,
at the fixed point (0.662032, 0.993048), the chaotic trajectory
is stabilized.

6. Discussions

We investigate complex behaviors of discretized Leslie type
predator-prey system (4) with simplified Holling type IV
functional response in the closed first quadrant R2+. By
using center manifold theorem and bifurcation theory we
establish that system (4) can undergo a bifurcation (flip
or NS) at unique positive fixed point if 𝛿 varies around
the sets FB1𝐸2 or FB2𝐸2 and NSB𝐸2 . Numerical simulations
present unpredictable behaviors of the system through a flip
bifurcationwhich includes orbits of period 2, period 4, period
6, and period 8 and through a NS bifurcation which includes
an invariant cycle, orbits of period 10 and period 20, and
chaotic sets, respectively. These indicate that, at the state of
chaos, the system is unstable and particularly, the predator
goes to extinct or goes to a stable fixed point when the
dynamic of prey is chaotic. We confirm about the existence
of chaos through the computation of maximum Lyapunov
exponents and fractal dimension. Moreover, system (4)
exhibits rich and chaotic dynamics by the variation of two
control parameters and one can directly observe the chaotic
phenomenon from this two-dimensional parameter-space.
Finally, the chaotic trajectories at unstable state are controlled
by implementing the strategy of feedback control. However,
it is still a challenging problem to explore multiple parameter
bifurcation in the system. We expect to obtain some more
analytical results on this issue in the future.
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