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This paper develops a type of data-driven networked optimal iterative learning control strategy for a class of discrete linear time-
varying systems with one-operation Bernoulli-type communication delays. In terms of the stochastic Bernoulli-type one-operation
communication delayed inputs and outputs, the previous-iteration synchronous compensations are adopted. By means of deriving
gradients of two types of objective functions that express the optimal approximation of the systemmatrix and theminimal tracking
error, the strategy approximates the system matrix and upgrades the control inputs in an interact mode as the iteration evolves. By
taking advantage of matrix theory and statistical technique, it is derived that the approximation discrepancy of the systemmatrix is
bounded and the mathematical expectation of the tracking error vanishes as the iteration goes on. Numerical simulations manifest
the validity and effectiveness.

1. Introduction

Iterative learning control (ILC) has been acknowledged as
one of effectively intelligent strategies, which performs a
high-precision trajectory tracking repetitively over a fixed
time interval, as surveyed in [1–3]. Since its invention,
numerous ILC strategies have been developed for theoretical
analyses andpractical applications over the past three decades
[4–11]. Convergence analyses as one of key ILC theoretical
issues have been discussed from all aspects of the norm
of tracking errors for guaranteeing the ILC implement,
such as infinite-norm [4], lambda-norm [5], sup-norm [6],
Lebesgue-p norm [7], 2D technique [8], and Lyapunov
method [9]. Form practical executions, kinds of system per-
turbations and uncertainties are avoidable, such as iteration-
varying disturbances, time-varying uncertainties, and system
uncertainty. For that, robust ILCs have been involved in [10–
13]. It is reminded that, basically, the strategic feature of the
ILC is that its formulation is irrelevant to the systemdynamics
but the multioperation inputs and outputs. However, in

industry applications, model-based ILC can perform better
than without any system information ILC, where at least
an approximate model is needed. This implies that the ILC
may be regarded as a data-driven scheme which utilizes
the historical inputs, outputs, and model-approximation to
formulate a sequence of updating control inputs. Thus, the
terminology of the data-driven ILC has been emerged, such
as [14–16].

A data-driven terminal ILC approach has been proposed
for a kind of linear discrete-time-varying system in [14],
where the convergence is derived under the assumption that
the product of systemmatrix and approximatedmatrix is pos-
itively definite. In addition, [15] has presented a data-driven
constrained norm-optimal ILC and then approximated the
impulse response of the system by measurements of inputs
and outputs for linear time-invariant systems. Further, [16]
has presented a data-driven predictive ILC scheme based
on a dynamic linearization technique for a class of discrete-
time nonlinear systems, whose convergence is ensured under
the requirement that the approximated matrix is diagonally
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dominant.The data-driven ILCsmentioned-aboveworkwell.
However, the requirements that approximation matrix is
positively definite or diagonally dominant, however, are quite
rigorous. This may confine the feasibility of the schemes.

On the other hand, with the advancement of internet
technology, networked control systems (NCSs) have been
mushroomed ranging from industrial manufacturing to
modern medical technology and so on owing to its lower
cost, simple installation, easy maintenance, high reliability,
and convenient source sharing [17]. However, in NCSs, the
communication delay or data dropout is inevitable due to
communication constraints, network congestions, or other
factors. These may influence the stability and performance of
the controlled system. In the field of NCSs, the major focus
is to compensate the communication delayed or dropped
data by some appropriate techniques so as to maintain the
performance of systems [18]. In particular, for the case when
the ILC scheme is implemented through the network to
compensate the data, the mode is regarded as a networked
ILC scheme, such as [19–22]. For the facet, [19] has first
introduced a networked ILC scheme to deal with the ran-
dom data delays and dropouts, where the convergence and
stability were analyzed in the mean-square sense for discrete
linear time-invariant systems. Thereafter, [20] has proposed
a networked ILC approach to a class of nonlinear systems
for the network-communicated input and output signals with
constant time delays and stochastic packet loss. Recently,
in [21], a compensated ILC has been provided for a class
of nonlinear systems with random one-step communication
delays. Further, two types of compensation schemes are
employed for linear discrete-time stochastic systems with
one-step communication delays in [22].

However, the existing networked ILC schemes for hand-
ing communication delays are almost all required accurate
system model within one-step time internal. The require-
ments of the system dynamics and one-step time delay
are rigorous. It is worth minding that the data-driven ILC
utilizes the multi-iteration inputs and outputs to construct
the updating law in a recursive mode. This implies that
the so-called open-loop ILC makes it possible to relax the
communication delay within one-operation period. These
motivate the paper to develop a data-driven optimal ILC
scheme for a class of discrete linear time-varying systems
with one-operation communication delays. Differing from
the data-driven ILCs in [14–16], this paper compensates for
the delayedBernoulli-type inputs and outputs by its previous-
iteration synchronous data and analyzes the convergence of
the approximation benefiting from matrix theory with no
requirement of positively definite or diagonal dominance.

The paper is organized as follows. Section 2 firstly gives
the description of networked control systems and provides
compensations for one-operation communication delayed
data in the form of super vectors and then develops the
data-driven networked optimal ILC with the compensation
strategy. In Section 3, the convergences of approximation
discrepancy and tracking error are derived, respectively.
Numerical simulations are illustrated in Section 4 to exhibit
the validity and the effectiveness and the last Section 5
concludes the paper.

2. Data-Driven Networked Optimal
ILC Scheme

2.1. Networked Control Systems and Data Compensations.
Throughout the paper, the 2-norm for a vector 𝑥 ∈ 𝑅𝑁 is
defined as ‖𝑥‖2 = √𝑥𝑇𝑥 and the induced 2-norm for amatrix
M ∈ 𝑅𝑁×𝑁 is expressed as ‖M‖2 = √ max

𝑖=1,2,...,𝑁
(𝜆𝑖(M𝑇M)),

where the superscript “𝑇” refers to the transpose operation
and 𝜆𝑖(M𝑇M), 𝑖 = 1, 2, . . . , 𝑁, are eigenvalues of the matrix
M𝑇M.

Consider a class of repetitive discrete linear time-varying
SISO systems described as follows:

𝑥𝑘 (𝑡 + 1) = A (𝑡) 𝑥𝑘 (𝑡) + B (𝑡) 𝑢𝑘 (𝑡) ,
𝑦𝑘 (𝑡) = C (𝑡) 𝑥𝑘 (𝑡) , (1)

where 𝑡 ∈ {0, 1, . . . , 𝑁} represents the sampling instant, 𝑁
is the total of instant numbers, and 𝑘 = 1, 2, . . . is the
operation index. 𝑥𝑘(𝑡) ∈ 𝑅𝑛, 𝑢𝑘(𝑡) ∈ 𝑅, and 𝑦𝑘(𝑡) ∈ 𝑅
are 𝑛-dimensional state vector, scalar input, and scalar output
at the 𝑘th operation, respectively. A(𝑡), B(𝑡), and C(𝑡) are
unknown time-varying but boundedmatrices with appropri-
ate dimensions.

Given that 𝑦𝑑(𝑡), 𝑡 ∈ {0, 1, . . . , 𝑁}, is a predetermined
desired trajectory, the data-driven networked optimal ILC
scheme is constructed under the assumptions listed as fol-
lows.

(A1) The desired trajectory 𝑦𝑑(𝑡), 𝑡 ∈ {0, 1, . . . , 𝑁}, is
realizable; that is, there exist such desired state 𝑥𝑑(𝑡)
and desired input 𝑢𝑑(𝑡) that

𝑥𝑑 (𝑡 + 1) = A (𝑡) 𝑥𝑑 (𝑡) + B (𝑡) 𝑢𝑑 (𝑡) ,
𝑦𝑑 (𝑡) = C (𝑡) 𝑥𝑑 (𝑡) . (2)

(A2) For repetitive system (1), the initial state is resettable.
Namely, the resetting condition 𝑥𝑘(0) = 𝑥𝑑(0) holds
for all operation indices 𝑘 = 1, 2, . . ., where 𝑥𝑑(0) is
the initial desired state. Without loss of generality, we
set 𝑥𝑑(0) = 0.

(A3) The stochastic communication data delays are subject
to Bernoulli-type distributions but confined within
one-operation period.

It is known that in a closed-loop networked control
system, the output signal is transmitted from the sensor
to the controller through output communication channel,
and simultaneously, the input signal is delivered from the
controller to the actuator through input communication
channel, respectively. Likewise, the data-driven networked
optimal iterative learning control (DDNOILC) scheme for
system (1) works in the same mode. Its schematic paradigm
is exhibited in Figure 1.

In Figure 1, denote 𝑢̃𝑘(𝑡) as the current-iteration 𝑡th-
instant control input generated from the ILC controller
which is transmitted to the actuator via input communication
channel, whilst let 𝑢𝑘(𝑡) be the current-iteration tth-instant
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Figure 1: The schematic diagram of DDNOILC.

control input of the actuator for plant stimulation, which
is either equal to 𝑢̃𝑘(𝑡) in the case when the data 𝑢̃𝑘(𝑡) is
timely transmitted in success with the probability 𝑎 or equal
to the previous-iteration synchronous 𝑢̃𝑘−1(𝑡) in the case
when the transmission of data 𝑢̃𝑘(𝑡) is delayed within one-
operation period with the probability 1 − 𝑎. Mathematically,
a compensation for 𝑢𝑘(𝑡) is expressed as

𝑢𝑘 (𝑡) = 𝛼𝑘 (𝑡) 𝑢̃𝑘 (𝑡) + (1 − 𝛼𝑘 (𝑡)) 𝑢̃𝑘−1 (𝑡) , (3)

where 𝛼𝑘(𝑡) is independent stochastic variable subject to 0-1
Bernoulli-type distribution with

𝑃 {𝛼𝑘 (𝑡) = 1} = 𝐸 {𝛼𝑘 (𝑡)} = 𝑎,
𝑃 {𝛼𝑘 (𝑡) = 0} = 1 − 𝐸 {𝛼𝑘 (𝑡)} = 1 − 𝑎, (4)

where 𝑃{⋅} and 𝐸{⋅} are probability and expectation of {⋅},
respectively. Parameter 𝑎 is a priori probability satisfying 0 <𝑎 ≤ 1. The equation 𝛼𝑘(𝑡) = 1 means that the signal 𝑢̃𝑘(𝑡) is
transmitted timely to the plant, whilst the equation 𝛼𝑘(𝑡) =0 implies that the signal 𝑢̃𝑘(𝑡) is delayed and the previous-
iteration signal 𝑢̃𝑘−1(𝑡) is used to compensate for the delayed
data.

Simultaneously, the employed data 𝑦𝑘(𝑡) for the ILC
updating is equal to either 𝑦𝑘(𝑡) or 𝑦𝑘−1(𝑡) in the Bernoulli-
type switch. Mathematically, a compensation for 𝑦𝑘(𝑡) is
expressed as

𝑦𝑘 (𝑡) = 𝛽𝑘 (𝑡) 𝑦𝑘 (𝑡) + (1 − 𝛽𝑘 (𝑡)) 𝑦𝑘−1 (𝑡) , (5)

where 𝛽𝑘(𝑡) is independent stochastic variable subject to 0-1
Bernoulli-type distribution with

𝑃 {𝛽𝑘 (𝑡) = 1} = 𝐸 {𝛽𝑘 (𝑡)} = 𝑏,
𝑃 {𝛽𝑘 (𝑡) = 0} = 1 − 𝑃 {𝛽𝑘 (𝑡) = 1} = 1 − 𝑏, (6)

where parameter 𝑏 is a priori probability satisfying 0 < 𝑏 ≤ 1.
The implication of 𝛽𝑘(𝑡) is similar with 𝛼𝑘(𝑡). Moreover,

the variables 𝛼𝑘(𝑡) and 𝛽𝑘(𝑡) are independent of each other;
that is,

𝑃 {𝛼𝑘 (𝑡) 𝛽𝑘 (𝑡)} = 𝑃 {𝛼𝑘 (𝑡)} 𝑃 {𝛽𝑘 (𝑡)} ,
𝐸 {𝛼𝑘 (𝑡) 𝛽𝑘 (𝑡)} = 𝐸 {𝛼𝑘 (𝑡)} 𝐸 {𝛽𝑘 (𝑡)} . (7)

Denote

𝑢𝑘 = [𝑢𝑘 (0) , 𝑢𝑘 (1) , . . . , 𝑢𝑘 (𝑁 − 1)]𝑇 ,
𝑦𝑘 = [𝑦𝑘 (1) , 𝑦𝑘 (2) , . . . , 𝑦𝑘 (𝑁)]𝑇 ,
𝑢𝑑 = [𝑢𝑑 (0) , 𝑢𝑑 (1) , . . . , 𝑢𝑑 (𝑁 − 1)]𝑇 ,
𝑦𝑑 = [𝑦𝑑 (1) , 𝑦𝑑 (2) , . . . , 𝑦𝑑 (𝑁)]𝑇 ,
𝑢̃𝑘 = [𝑢̃𝑘 (0) , 𝑢̃𝑘 (1) , . . . , 𝑢̃𝑘 (𝑁 − 1)]𝑇 ,
𝑦𝑘 = [𝑦𝑘 (1) , 𝑦𝑘 (2) , . . . , 𝑦𝑘 (𝑁)]𝑇 .

(8)

Then, system (1) is reformulated in a super vector form as

𝑦𝑘 = H𝑢𝑘, (9)

where H = (ℎ𝑖𝑗)𝑁×𝑁 is a lower triangular matrix specified as
follows:

ℎ𝑖𝑗 = {{{{{{{

0, 𝑖 < 𝑗,
C (𝑖) 𝑖−1∏
𝑚=𝑗

A (𝑚)B (𝑗 − 1) , 𝑖 ≥ 𝑗,
𝑖−1∏
𝑚=𝑗

A (𝑚) = {{{
I, 𝑖 = 𝑗,
A (𝑖 − 1)A (𝑖 − 2) ⋅ ⋅ ⋅A (𝑗) , 𝑖 > 𝑗.

(10)

From (A1) and (A2), it is easy to obtain

𝑦𝑑 = H𝑢𝑑. (11)

Further, expressions (3) and (5) can be rewritten as

𝑢𝑘 = Ψ𝑘𝑢̃𝑘 +Ψ𝑘𝑢̃𝑘−1,
𝑦𝑘 = Φ𝑘𝑦𝑘 +Φ𝑘𝑦𝑘−1, (12)

where

Ψ𝑘 = diag (𝛼𝑘 (1) 𝛼𝑘 (2) ⋅ ⋅ ⋅ 𝛼𝑘 (𝑁)) ,
Φ𝑘 = diag (𝛽𝑘 (1) 𝛽𝑘 (2) ⋅ ⋅ ⋅ 𝛽𝑘 (𝑁)) ,
Ψ𝑘 = I −Ψ𝑘,
Φ𝑘 = I −Φ𝑘,

(13)

and I is𝑁 ×𝑁 identity matrix.
Note that the lower triangular matrix H is unknown but

bounded due to the fact that matricesA(𝑡), B(𝑡), and C(𝑡) are
unknown but bounded.

2.2. Data-Driven Networked Optimal ILC. In terms of con-
structing an optimal ILC updating law of the control com-
mand 𝑢𝑘+1 in a recursive form for system (9), the ordinary
way is to raise an objective function and to solve it by an
approximate manner. This implies that the system matrix
H must be available. But, in usual, the system matrix H is
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hardly to be available due to the complexity of the system
modeling. Nevertheless, since the fundamental ILC scheme
is to make use of the tracking error to upgrade its control
input as the operation repeats, it is thus possible that, in
composing the optimal ILC updating rule, the system matrix
H may be substituted by an appropriated one. Meanwhile,
the approximation of the system matrix may be updated
benefiting from the upgraded control input as well. This
composes an interacted updating fashion of the system
matrix and the control inputs detailed in the following.

LetH𝑘 be the 𝑘th approximation ofH.
Denote

H = [(𝐻1)𝑇 | (𝐻2)𝑇 | ⋅ ⋅ ⋅ | (𝐻𝑁)𝑇]𝑇 ,
H𝑘 = [(𝐻1𝑘)𝑇 | (𝐻2𝑘)𝑇 | ⋅ ⋅ ⋅ | (𝐻𝑁𝑘 )𝑇]𝑇 ,

(14)

where (𝐻𝑖)𝑇 and (𝐻𝑖𝑘)𝑇are the 𝑖th row of matricesH andH𝑘,
respectively.

It is evident that (𝐻𝑖𝑘)𝑇 is the 𝑘th approximation of (𝐻𝑖)𝑇
for all 𝑖 = 1, . . . , 𝑁. There is no doubt that the postulation
lim𝑘→∞(𝐻𝑖𝑘)𝑇 = (𝐻𝑖)𝑇, for all 𝑖 = 1, . . . , 𝑁, is equivalent to
that of lim𝑘→∞H𝑘 = H. Besides, description (9) is no other
but 𝑦𝑘(𝑖) = (𝐻𝑖)𝑇𝑢𝑘.

For the purpose of generating an updating law to update
the approximated vector (𝐻𝑖𝑘)𝑇 in an optimal sense, consider
an optimization problem as

min
(𝐻𝑖
𝑘−1
)𝑇

𝐽 ((𝐻𝑖𝑘−1)𝑇) = 12
󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑘 (𝑖) − (𝐻𝑖𝑘−1)𝑇 𝑢𝑘󵄨󵄨󵄨󵄨󵄨󵄨

2

= 12 (𝐻𝑖𝑘−1)𝑇 𝑢𝑘𝑢𝑇𝑘𝐻𝑖𝑘−1 − 𝑦𝑘 (𝑖) 𝑢𝑇𝑘𝐻𝑖𝑘−1
+ 12 (𝑦𝑘 (𝑖))2 .

(15)

Thegradient of objective function (15)with respect to (𝐻𝑖𝑘−1)𝑇
is expressed as

∇𝐽 ((𝐻𝑖𝑘−1)𝑇) = − (𝑦𝑘 (𝑖) − (𝐻𝑖𝑘−1)𝑇 𝑢𝑘) 𝑢𝑇𝑘 . (16)

Thus, the gradient-type updating formula for (𝐻𝑖𝑘)𝑇 is given
by

(𝐻𝑖𝑘)𝑇 = (𝐻𝑖𝑘−1)𝑇 + 𝛾𝑘 (𝑦𝑘 (𝑖) − (𝐻𝑖𝑘−1)𝑇 𝑢𝑘) 𝑢𝑇𝑘 , (17)

where 𝛾𝑘 is the updating step. Substituting (17) into (15), it has
min
𝛾𝑘

𝐽 (𝛾𝑘)
= 12 [(𝑦𝑘 (𝑖) − (𝐻𝑖𝑘−1)𝑇 𝑢𝑘) (1 − 𝛾𝑘𝑢𝑇𝑘𝑢𝑘)]2 .

(18)

Obviously, the optimal step is 𝛾𝑘 = 1/𝑢𝑇𝑘𝑢𝑘 = 1/‖𝑢𝑘‖22. For
ensuring the convergence and strengthening the practicabil-
ity of the gradient-type algorithm (17), select 𝛾𝑘 as

𝛾𝑘 = 1
𝜇 + 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩22 , (19)

where 𝜇 is a relaxing factor satisfying 𝜇 > 0, which is adopted
for guaranteeing the denominator of 𝛾𝑘 being nonzero as 𝑢𝑘 =0.

Equivalently, by (17),H𝑘 is updated by the following:

H𝑘 = H𝑘−1 + 𝛾𝑘 (𝑦𝑘 −H𝑘−1𝑢𝑘) 𝑢𝑇𝑘 . (20)

It is hopeful that updating law (20) may improve the approxi-
mation as the iteration number increases.The approximation
discrepancy ΔH𝑘 is defined as ΔH𝑘 = H −H𝑘.

Mind that the purpose of the data-driven optimal ILC
scheme is to construct an updating law of the control
command 𝑢𝑘+1 in a recursive form in order to optimize an
objective function. By taking the above-mentioned approx-
imation into account, consider an optimization problem as
follows:

min
𝑢𝑘

𝐽 (𝑢𝑘) = 12 󵄩󵄩󵄩󵄩𝑒𝑘󵄩󵄩󵄩󵄩22 = 12 󵄩󵄩󵄩󵄩𝑦𝑑 −H𝑘𝑢𝑘󵄩󵄩󵄩󵄩22
= 12𝑢𝑇𝑘H𝑇𝑘H𝑘𝑢𝑘 − 𝑦𝑇𝑑H𝑘𝑢𝑘 + 12𝑦𝑇𝑑𝑦𝑑,

(21)

where 𝑒𝑘 is the tracking error defined as 𝑒𝑘 = 𝑦𝑑 − 𝑦𝑘, mean-
whileH in 𝑦𝑘 = H𝑢𝑘 is substituted byH𝑘.

The gradient of (21) with respect to 𝑢𝑘 is derived as

∇𝐽 (𝑢𝑘) = −H𝑇𝑘 𝑒𝑘. (22)

Thus, the gradient-type algorithm for the control input is
derived as

𝑢𝑘+1 = 𝑢𝑘 + 𝜋𝑘H𝑇𝑘 𝑒𝑘, (23)

where𝜋𝑘 is learning gain. Substituting (23) into (21), it obtains
min
𝜋𝑘

𝐽 (𝜋𝑘) = 12 󵄩󵄩󵄩󵄩󵄩(I − 𝜋𝑘H𝑘H𝑇𝑘 ) 𝑒𝑘󵄩󵄩󵄩󵄩󵄩22 . (24)

As the matrix H𝑘H𝑇𝑘 is symmetric and nonnegative definite,
all its eigenvalues are nonnegative. Thus, it is easy to induce

󵄩󵄩󵄩󵄩󵄩I − 𝜋𝑘H𝑘H𝑇𝑘 󵄩󵄩󵄩󵄩󵄩22 = max
1≤𝑖≤𝑁

{󵄨󵄨󵄨󵄨󵄨𝜆𝑖 (I − 𝜋𝑘H𝑘H𝑇𝑘 )󵄨󵄨󵄨󵄨󵄨}
= max
1≤𝑖≤𝑁

{󵄨󵄨󵄨󵄨󵄨1 − 𝜋𝑘𝜆𝑖 (H𝑘H𝑇𝑘 )󵄨󵄨󵄨󵄨󵄨}
= max {󵄨󵄨󵄨󵄨󵄨1 − 𝜋𝑘𝜆min (H𝑘H𝑇𝑘 )󵄨󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨󵄨1 − 𝜋𝑘𝜆max (H𝑘H𝑇𝑘 )󵄨󵄨󵄨󵄨󵄨} ,

(25)

where 𝜆𝑖(⋅) is the 𝑖th eigenvalues of (⋅) and 𝜆max(⋅) and 𝜆min(⋅)
are the maximal and minimal eigenvalues of (⋅), respectively.

Obviously, for ensuring the convergence of the gradient-
type algorithm (23), 𝜋𝑘 is selected as

𝜋𝑘 = 1𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) , (26)

where 𝜀 > 0 is a weighing factor.
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Combining the above-mentioned updating laws (20)
and (23) together, a data-driven optimal ILC (DDOILC) is
constructed for system (9) as follows:

H𝑘 = H𝑘−1 + 𝛾𝑘 (𝑦𝑘 −H𝑘−1𝑢𝑘) 𝑢𝑇𝑘 , (27)

𝑢𝑘+1 = 𝑢𝑘 + 𝜋𝑘H𝑇𝑘 𝑒𝑘. (28)

Remark 1. The control input updating law (28) is derived for
the special case in Figure 1 when the communication delays
do not occur as formulated as 𝑎 = 𝑏 = 1. This implies
that the plant inputs are equal to the ILC updated inputs
and, meanwhile, the plant outputs are equal to the employed
outputs; that is, 𝑢𝑘 = 𝑢̃𝑘 and 𝑦𝑘 = 𝑦𝑘, respectively.
Remark 2. It should be pointed that, for system (1), the system
matricesA(𝑡), B(𝑡), andC(𝑡) are assumed to be time-varying.
For the circumstance, the parameter H is lower triangular
matrix. As such, for an ideal approximation, it is desirable to
guarantee the matrix H𝑘, 𝑘 ≥ 2, to be lower triangular. But
this is not easily realizable. However, updating law (27) can
insure that the discrepancy of the approximationH𝑘 from the
system matrix H is monotonously convergent to a bounded
constant.

By considering (A3) for the cases 0 < 𝑎 < 1 and 0 <𝑏 < 1 when the stochastic communication data delays are
subject to Bernoulli-type distributions but confined within
one-operation period, the ILC controller for system (9) with
one-operation communication delays is designed as

𝑢̃𝑘+1 = 𝑢̃𝑘 + 𝜋𝑘H𝑇𝑘 𝑒𝑘, (29)

where 𝑒𝑘 is the tracking error defined as 𝑒𝑘 = 𝑦𝑑 − 𝑦𝑘.
Consequently, a data-driven networked optimal ILC

(DDNOILC) algorithm is developed for system (9) with one-
operation communication delays as follows:

𝑢̃1 = 𝑢1 and 𝑦1 = 𝑦1: given test signals;
H1: arbitrarily given and nonsingular;
𝜇 > 0 and 𝜀 > 0: set appropriately.

𝑢𝑘 = Ψ𝑘𝑢̃𝑘 +Ψ𝑘𝑢̃𝑘−1, (30)

𝛾𝑘 = 1
𝜇 + 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩22 , (31)

H𝑘 = H𝑘−1 + 𝛾𝑘 (𝑦𝑘 −H𝑘−1𝑢𝑘) 𝑢𝑇𝑘 , (32)

𝑦𝑘 = Φ𝑘𝑦𝑘 +Φ𝑘𝑦𝑘−1, (33)

𝑒𝑘 = 𝑦𝑑 − 𝑦𝑘, (34)

𝜋𝑘 = 1𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) , (35)

𝑢̃𝑘+1 = 𝑢̃𝑘 + 𝜋𝑘H𝑇𝑘 𝑒𝑘. (36)

Notice that the DDNOILC scheme (30)–(36) is only related
to the data 𝑢𝑘, 𝑦𝑘, 𝑦𝑘, and 𝑢̃𝑘.

Remark 3. It is noticed that the derivations of updating
laws (27) and (28) are from the gradient-type mechanism,
which are prominently distinct from the existing data-
driven ILCs in [14–16] which searches Kuhn-Tucker point.
The method avoids the complex computation of matrix
inversion. Significantly, the derivations of the paper do not
rigorously require that the approximation matrices must be
diagonally dominant or the product of system matrix and
approximated matrix is positively definite. Moreover, the
developed DDNOILC scheme (30)–(36) may deal with the
system model with unknown parameters and one-operation
communication delays, but the accurate system information
is required in [19–22].

3. Convergence Analysis

In this section, the convergence of approximation discrep-
ancy is discussed in Theorem 4 and the convergences of
tracking errors of algorithm DDOILC (27) plus (28) and
DDNOILC (30)–(36) are analyzed in Theorems 6 and 7,
respectively.

Theorem 4. Assume that the approximation matrix H𝑘 is
updated by (27) or (32). Then the system matrix approxima-
tion discrepancy matrix ‖ΔH𝑘‖2 is convergent to a bounded
constant as the iteration increases.

Proof. Since the approximation discrepancy ΔH𝑘 is defined
as ΔH𝑘 = H −H𝑘, then by (27) or (32), it follows that

ΔH𝑘 = ΔH𝑘−1 − (H𝑘 −H𝑘−1)
= ΔH𝑘−1 − 𝛾𝑘 (𝑦𝑘 −H𝑘−1𝑢𝑘) 𝑢𝑇𝑘
= ΔH𝑘−1 − 𝛾𝑘 (H𝑢𝑘 −H𝑘−1𝑢𝑘) 𝑢𝑇𝑘
= ΔH𝑘−1 (I − 𝛾𝑘𝑢𝑘𝑢𝑇𝑘 ) .

(37)

Taking 2-norm on both sides of (37) yields

󵄩󵄩󵄩󵄩ΔH𝑘󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩󵄩ΔH𝑘−1 (I − 𝛾𝑘𝑢𝑘𝑢𝑇𝑘 )󵄩󵄩󵄩󵄩󵄩2 . (38)

In addition, since I − 𝛾𝑘𝑢𝑘𝑢𝑇𝑘 is a real symmetric matrix, it
yields

󵄩󵄩󵄩󵄩󵄩I − 𝛾𝑘𝑢𝑘𝑢𝑇𝑘 󵄩󵄩󵄩󵄩󵄩22 = max
1≤𝑖≤𝑁

{󵄨󵄨󵄨󵄨󵄨𝜆𝑖 (I − 𝛾𝑘𝑢𝑘𝑢𝑇𝑘 )󵄨󵄨󵄨󵄨󵄨}
= max
1≤𝑖≤𝑁

{󵄨󵄨󵄨󵄨󵄨1 − 𝛾𝑘𝜆𝑖 (𝑢𝑘𝑢𝑇𝑘 )󵄨󵄨󵄨󵄨󵄨}
= max
1≤𝑖≤𝑁

{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 −

𝜆𝑖 (𝑢𝑘𝑢𝑇𝑘 )
𝜇 + 󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩22

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨}

= max
1≤𝑖≤𝑁

{1 − 𝜆𝑖 (𝑢𝑘𝑢𝑇𝑘 )𝜇 + 𝜆max (𝑢𝑘𝑢𝑇𝑘 )}

= 1 − 𝜆min (𝑢𝑘𝑢𝑇𝑘 )𝜇 + 𝜆max (𝑢𝑘𝑢𝑇𝑘 ) .

(39)
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Since 𝜇 > 0 and 𝜆min(𝑢𝑘𝑢𝑇𝑘 ) ≥ 0, then
0 < 1 − 𝜆min (𝑢𝑘𝑢𝑇𝑘 )𝜇 + 𝜆max (𝑢𝑘𝑢𝑇𝑘 ) ≤ 1. (40)

According to (38), (39), and (40), it is easy to have

󵄩󵄩󵄩󵄩ΔH𝑘󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩ΔH𝑘−1󵄩󵄩󵄩󵄩2 . (41)

Hence, the approximation discrepancy consequence{‖ΔH𝑘‖2} is convergent to a bounded constant; that is,

lim
𝑘→∞

󵄩󵄩󵄩󵄩ΔH𝑘󵄩󵄩󵄩󵄩2 = 𝑑1, (42)

where 𝑑1 is a bounded constant.
This completes the proof.

Remark 5. It can be seen from (41) that the approximation
H𝑘 does not go farther from the system matrix H than H𝑘−1
along the operation. Inequality (40) implies that if𝜆min(𝑢𝑘𝑢𝑇𝑘 )
is not equal to zero, then the approximation discrepancy‖ΔH𝑘‖2 is convergent to zero and the boundary 𝜉1 is equal
to zero. Further, if 𝜆min(𝑢𝑘𝑢𝑇𝑘 ) is equal to zero, then the
approximation discrepancy ‖ΔH𝑘‖2 is no longer declining.
Thus the boundary 𝜉1 is greater than zero. It is worth noting
that if 𝜆min(𝑢𝑘𝑢𝑇𝑘 ) is very small but not equal to zero, then‖ΔH𝑘‖2 declines very slowly.
Theorem 6. Assume that the system matrix H is nonsingular
and communication delays do not occur in NCSs. Then the
tracking errors of DDOILC scheme (27) plus (28) are mono-
tonically convergent to zero if the parameter 𝜀 is appropriately
chosen.

Proof. From (26) and (28), the tracking error is derived as

𝑒𝑘+1 = 𝑦𝑑 − 𝑦𝑘+1 = 𝑦𝑑 −H𝑢𝑘+1
= 𝑦𝑑 −H(𝑢𝑘 + H𝑇𝑘 𝑒𝑘𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))

= (I − HH𝑇𝑘𝜀 + 𝜆max (H𝑘H𝑇𝑘 )) 𝑒𝑘.
(43)

It is noticed that ΔH𝑘 = H −H𝑘 yieldsH𝑘 = H − ΔH𝑘. Then,

I − HH𝑇𝑘𝜀 + 𝜆max (H𝑘H𝑇𝑘 )
= (I − HH𝑇𝜀 + 𝜆max (H𝑘H𝑇𝑘 )) + H (ΔH𝑇𝑘 )𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) .

(44)

According to the concept of limit, expression (42) implies

󵄩󵄩󵄩󵄩(ΔH𝑘)󵄩󵄩󵄩󵄩2 ≤ 𝜉1, ∀𝑘 = 1, 2, . . . , (45)

where 𝜉1 is a bounded constant satisfying 𝜉1 ≥ 𝑑1.

Further, from (45), we have

‖H‖2 = 󵄩󵄩󵄩󵄩H𝑘 + ΔH𝑘󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩H𝑘󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩ΔH𝑘󵄩󵄩󵄩󵄩2
≤ 󵄩󵄩󵄩󵄩H𝑘󵄩󵄩󵄩󵄩2 + 𝜉1 = √𝜆max (H𝑘H𝑇𝑘 ) + 𝜉1. (46)

By (46), choose appropriate parameter 𝜀 such that
󵄩󵄩󵄩󵄩󵄩H (ΔH𝑇𝑘 )󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) ≤ ‖H‖2𝜀 + 𝜆max (H𝑘H𝑇𝑘 )

󵄩󵄩󵄩󵄩󵄩ΔH𝑇𝑘 󵄩󵄩󵄩󵄩󵄩2

≤ √𝜆max (H𝑘H𝑇𝑘 ) + 𝜉1
𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) 𝜉1 < 𝜉2,

(47)

where 𝜉2 is a positive constant and 0 < 𝜉2 < 1.
Since H is nonsingular, then the matrix HH𝑇 is sym-

metrical and positively definite. Therefore, there exist an
orthogonal matrixQ such that

HH𝑇 = Q−1ΛQ, (48)

where Λ = diag[𝜆1, 𝜆2, . . . , 𝜆𝑁] with {𝜆1, 𝜆2, . . . , 𝜆𝑁} being
positive eigenvalues of matrix HH𝑇. Thus, there exists an
appropriate parameter 𝜀 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩I −
HH𝑇𝜀 + 𝜆max (H𝑘H𝑇𝑘 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Q
−1 (I − Λ𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))Q

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 < 𝜏 − 𝜉2
< 1,

(49)

where 𝜏 is a positive constant which is less than unity.
Therefore, it follows from (47) and (49) that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩I −

HH𝑇𝑘𝜀 + 𝜆max (H𝑘H𝑇𝑘 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩I −
HH𝑇𝜀 + 𝜆max (H𝑘H𝑇𝑘 )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 +
󵄩󵄩󵄩󵄩󵄩H (ΔH𝑇𝑘 )󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 )

< 𝜏 < 1.

(50)

Consequently, inequality (50) results in

󵄩󵄩󵄩󵄩𝑒𝑘+1󵄩󵄩󵄩󵄩2 ≤ 𝜏 󵄩󵄩󵄩󵄩𝑒𝑘󵄩󵄩󵄩󵄩2 ≤ 𝜏2 󵄩󵄩󵄩󵄩𝑒𝑘−1󵄩󵄩󵄩󵄩2 ≤ ⋅ ⋅ ⋅ ≤ 𝜏𝑘 󵄩󵄩󵄩󵄩𝑒1󵄩󵄩󵄩󵄩2 . (51)

Thus,

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑒𝑘+1󵄩󵄩󵄩󵄩2 = 0. (52)

This completes the proof.

Theorem 7. Assume that the system matrix H is nonsingular
and the DDNOILC algorithm (30)–(36) is applied to system
(9).Then the expectation of tracking error𝐸{𝑒𝑘+1} is convergent
to zero if the parameter 𝜀 is properly selected and the prior
probabilities 𝑎 and 𝑏 are appropriately given.
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Proof. Denote Δ𝑢̃𝑘 = 𝑢𝑑 − 𝑢̃𝑘, 𝑒𝑘 = 𝑦𝑑 − 𝑦𝑘, and 𝑒𝑘 = 𝑦𝑑 − 𝑦𝑘.
From (9), (11), and (30), it yields

𝑒𝑘 = 𝑦𝑑 − 𝑦𝑘 = 𝑦𝑑 −H𝑢𝑘 = 𝑦𝑑 −H (Ψ𝑘𝑢̃𝑘 +Ψ𝑘𝑢̃𝑘−1)
= HΨ𝑘Δ𝑢̃𝑘 +HΨ𝑘Δ𝑢̃𝑘−1. (53)

Meanwhile, by (33), it is easy to get

𝑒𝑘 = 𝑦𝑑 − 𝑦𝑘 = 𝑦𝑑 − (Φ𝑘𝑦𝑘 +Φ𝑘𝑦𝑘−1)
= Φ𝑘𝑒𝑘 +Φ𝑘𝑒𝑘−1. (54)

From (35), (36), (53), and (54), we have

Δ𝑢̃𝑘+1 = 𝑢𝑑 − 𝑢̃𝑘+1 = 𝑢𝑑 − (𝑢̃𝑘 + 𝜋𝑘H𝑇𝑘 𝑒𝑘) = 𝑢𝑑 − 𝑢̃𝑘
− 𝜋𝑘H𝑇𝑘 (Φ𝑘𝑒𝑘 +Φ𝑘𝑒𝑘−1) = Δ𝑢̃𝑘
− H𝑇𝑘𝜀 + 𝜆max (H𝑘H𝑇𝑘 )Φ𝑘 (HΨ𝑘Δ𝑢̃𝑘 +HΨ𝑘Δ𝑢̃𝑘−1)

− H𝑇𝑘𝜀 + 𝜆max (H𝑘H𝑇𝑘 )
⋅Φ𝑘 (HΨ𝑘−1Δ𝑢̃𝑘−1 +HΨ𝑘−1Δ𝑢̃𝑘−2)
= (I − H𝑇𝑘Φ𝑘HΨ𝑘𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))Δ𝑢̃𝑘
− ( H𝑇𝑘Φ𝑘HΨ𝑘𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) +

H𝑇𝑘Φ𝑘HΨ𝑘−1𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))Δ𝑢̃𝑘−1
− ( H𝑇𝑘Φ𝑘HΨ𝑘−1𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))Δ𝑢̃𝑘−2.

(55)

Since 𝐸{𝛼𝑘(𝑡)𝛽𝑘(𝑡)} = 𝐸{𝛼𝑘(𝑡)}𝐸{𝛽𝑘(𝑡)} = 𝑎𝑏, then
𝐸 {Φ𝑘Ψ𝑘} = 𝐸 {Φ𝑘} 𝐸 {Ψ𝑘} = 𝑎𝑏I,
𝐸 {Φ𝑘Ψ𝑘} = 𝐸 {Φ𝑘} 𝐸 {Ψ𝑘} = 𝑎𝑏I,

𝐸 {Φ𝑘Ψ𝑘−1} = 𝐸 {Φ𝑘} 𝐸 {Ψ𝑘−1} = 𝑎𝑏I,
𝐸 {Φ𝑘Ψ𝑘−1} = 𝐸 {Φ𝑘} 𝐸 {Ψ𝑘−1} = 𝑎𝑏I,

(56)

where 𝑎 = 1 − 𝑎 and 𝑏 = 1 − 𝑏.
Calculating mathematical expectation on both sides of

(55) obtains

𝐸 {Δ𝑢̃𝑘+1} = (I − 𝑎𝑏H𝑇𝑘H𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))𝐸 {Δ𝑢̃𝑘}

− ( (𝑎𝑏 + 𝑎𝑏)H𝑇𝑘H𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))𝐸 {Δ𝑢̃𝑘−1}

− ( 𝑎𝑏H𝑇𝑘H𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))𝐸 {Δ𝑢̃𝑘−2} .

(57)

Taking 2-norm in both sides of (57) reduces

󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃𝑘+1}󵄩󵄩󵄩󵄩2 ≤ 𝛿1𝑘 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃𝑘}󵄩󵄩󵄩󵄩2 + 𝛿2𝑘 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃𝑘−1}󵄩󵄩󵄩󵄩2
+ 𝛿3𝑘 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃𝑘−2}󵄩󵄩󵄩󵄩2 ,

(58)

where

𝛿1𝑘 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩I −

𝑎𝑏H𝑇𝑘H𝜀 + 𝜆max (H𝑘H𝑇𝑘 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 ,

𝛿2𝑘 =
󵄩󵄩󵄩󵄩󵄩(𝑎𝑏 + 𝑎𝑏)H𝑇𝑘H󵄩󵄩󵄩󵄩󵄩𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) ,

𝛿3𝑘 =
󵄩󵄩󵄩󵄩󵄩𝑎𝑏H𝑇𝑘H󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) .

(59)

Then

𝛿1𝑘 ≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩I −

𝑎𝑏H𝑇H𝜀 + 𝜆max (H𝑘H𝑇𝑘 )
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 +

𝑎𝑏 󵄩󵄩󵄩󵄩󵄩(ΔH𝑇𝑘 )H󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 )
= 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Q
−1 (I − 𝑎𝑏Λ𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))Q

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
+ 𝑎𝑏 󵄩󵄩󵄩󵄩󵄩(ΔH𝑇𝑘 )H󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) ,

𝛿2𝑘 ≤
󵄩󵄩󵄩󵄩󵄩(𝑎𝑏 + 𝑎𝑏)H𝑇H󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) + (𝑎𝑏 + 𝑎𝑏) 󵄩󵄩󵄩󵄩󵄩󵄩(ΔH𝑘)𝑇H󵄩󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 )

≤ (𝑎𝑏 + 𝑎𝑏) 󵄩󵄩󵄩󵄩󵄩Q−1ΛQ󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 )
+ (𝑎𝑏 + 𝑎𝑏) 󵄩󵄩󵄩󵄩󵄩󵄩(ΔH𝑘)𝑇H󵄩󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) ,

𝛿3𝑘 ≤ 𝑎𝑏 󵄩󵄩󵄩󵄩󵄩Q−1ΛQ󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) +
𝑎𝑏 󵄩󵄩󵄩󵄩󵄩󵄩(ΔH𝑘)𝑇H󵄩󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) .

(60)

Thus, it can be derived as

𝛿1𝑘 + 𝛿2𝑘 + 𝛿3𝑘 ≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Q
−1 (I − 𝑎𝑏Λ𝜀 + 𝜆max (H𝑘H𝑇𝑘 ))Q

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
+ (1 − 𝑎𝑏) 󵄩󵄩󵄩󵄩󵄩Q−1ΛQ󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 )
+ ‖H‖2𝜀 + 𝜆max (H𝑘H𝑇𝑘 )

󵄩󵄩󵄩󵄩󵄩ΔH𝑇𝑘 󵄩󵄩󵄩󵄩󵄩2 .

(61)

According to (45) and (46), choosing appropriate parameter𝜀 satisfies
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‖H‖2𝜀 + 𝜆max (H𝑘H𝑇𝑘 )
󵄩󵄩󵄩󵄩󵄩ΔH𝑇𝑘 󵄩󵄩󵄩󵄩󵄩2 < 𝜉3, (62)

where 𝜉3 is a positive constant satisfying 0 < 𝜉3 < 1.
Since all the eigenvalues {𝜆1, 𝜆2, . . . , 𝜆𝑁} of matrix HH𝑇

are positive, there exists an appropriate parameter 𝜀 such that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩Q
−1 (I − 𝑎𝑏𝜀 + 𝜆max (H𝑘H𝑇𝑘 )Λ)Q

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
+ (1 − 𝑎𝑏) 󵄩󵄩󵄩󵄩󵄩Q−1ΛQ󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝜆max (H𝑘H𝑇𝑘 ) < 𝛿 − 𝜉3 < 1,

(63)

where 0 < 𝛿 < 1.
Thus, from (61), (62), and (63), we have

𝛿1𝑘 + 𝛿2𝑘 + 𝛿3𝑘 < 𝛿 < 1. (64)

By (58) and (64), it has
󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃3𝑘+𝑙}󵄩󵄩󵄩󵄩2 ≤ 𝛿max {󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃3𝑘}󵄩󵄩󵄩󵄩2 , 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃3𝑘−1}󵄩󵄩󵄩󵄩2 ,
󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃3𝑘−2}󵄩󵄩󵄩󵄩2} ≤ 𝛿2max {󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃3𝑘−3}󵄩󵄩󵄩󵄩2 ,󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃3𝑘−4}󵄩󵄩󵄩󵄩2 , 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃3𝑘−5}󵄩󵄩󵄩󵄩2}

...
≤ 𝛿𝑘max {󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃3}󵄩󵄩󵄩󵄩2 , 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃2}󵄩󵄩󵄩󵄩2 , 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃1}󵄩󵄩󵄩󵄩2} ,

(65)

where 𝑙 = 1, 2, 3.
Then,

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃3𝑘+𝑙}󵄩󵄩󵄩󵄩2 = 0, 𝑙 = 1, 2, 3. (66)

According to the concept of limit, we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃𝑘+1}󵄩󵄩󵄩󵄩2 = 0. (67)

From (53), (54), and (55), it is easy to deduce that

𝐸 {𝑒𝑘+1} = (𝑎𝑏H) 𝐸 {Δ𝑢̃𝑘+1} + (𝑎𝑏 + 𝑎𝑏)H𝐸 {Δ𝑢̃𝑘}
+ 𝑎𝑏H𝐸 {Δ𝑢̃𝑘−1} .

(68)

Taking 2-norm on both sides of (68), we have
󵄩󵄩󵄩󵄩𝐸 {𝑒𝑘+1}󵄩󵄩󵄩󵄩2 ≤ 𝑎𝑏 ‖H‖2 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃𝑘+1}󵄩󵄩󵄩󵄩2

+ (𝑎𝑏 + 𝑎𝑏) ‖H‖2 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃𝑘}󵄩󵄩󵄩󵄩2
+ 𝑎𝑏 ‖H‖2 󵄩󵄩󵄩󵄩𝐸 {Δ𝑢̃𝑘−1}󵄩󵄩󵄩󵄩2 .

(69)

Since the matrix H is bounded. By (68) and (69), we obtain
the conclusion

lim
𝑘→0

󵄩󵄩󵄩󵄩𝐸 {𝑒𝑘+1}󵄩󵄩󵄩󵄩2 = 0. (70)

This completes the proof.

Remark 8. Notice that Theorem 7 displays that the tracking
errors of DDNOILC algorithm converge to zero when the
one-operation compensation approaches (3) and (5) are
applied into system (9). In [21, 22], one-step compensation
approach has been involved and the tracking errors have been
proved to be bounded. Thus, the presented DDNOILC in
this paper is effective.The detailed comparisons between one
operation and one step are demonstrated in the next section.

4. Numerical Simulations

In microelectronics manufacturing, the rapid thermal pro-
cessing is regarded as a repetitive batch process [23]. The
ILC scheme is adequately to be utilized so that the transient
temperature of the reactor to follow a desired trajectory.
Suppose that the transfer function of the reactor is identified
as 𝐺𝑝(𝑠) = 𝐾/((𝜏𝑊𝑠 + 1)(𝜏𝐿𝑠 + 1)), where 𝐾 is the process
gain, 𝜏𝑊 denotes the heating time constant of the crystal,
and 𝜏𝐿 denotes the heating time constant of the crystal light.
Conventionally, the power ratio of the crystal light is tuned
by a proportional-derivative-integral (PID) controller. Given
that the transfer function of the PID controller is 𝐺𝐶(𝑠) =𝐾𝐶/(1 + 1/𝜏𝐼𝑠 + 𝜏𝐷𝑠), where 𝐾𝐶, 𝜏𝐼, and 𝜏𝐷 are proportional,
integral, and derivative gains, respectively. By converting the
dynamics of frequency domain into that of time domain
and then discretizing the PID-controller-tuned closed-loop
control system with the sampling step Δ𝑡 = 0.005, the
discrete-time system is described as follows:

𝑥𝑘 (𝑡 + 1) = [[
[

1 Δ𝑡 0
0 1 Δ𝑡

−Δ𝑡𝑎0 −Δ𝑡𝑎1 1 − Δ𝑡𝑎2
]]
]
𝑥𝑘 (𝑡)

+ [[
[
0
0
Δ𝑡
]]
]
𝑢𝑘 (𝑡) ,

𝑦𝑘 (𝑡) = [𝑏0 𝑏1 𝑏2] 𝑥𝑘 (𝑡) ,

(71)

where

𝑎0 = 𝐾𝐾𝐶𝜏𝐼𝜏𝑊𝜏𝐿 ,
𝑎1 = 1 + 𝐾𝐾𝐶𝜏𝑊𝜏𝐿 ,

𝑎2 = (𝜏𝑊 + 𝜏𝐿) + 𝐾𝐾𝐶𝜏𝐷𝜏𝑊𝜏𝐿 ,
𝑏0 = 𝐾𝐾𝐶𝜏𝐼𝜏𝑊𝜏𝐿 ,
𝑏1 = 𝐾𝐾𝐶𝜏𝑊𝜏𝐿 ,
𝑏2 = 𝐾𝐾𝐶𝜏𝐷𝜏𝑊𝜏𝐿 .

(72)
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Set the parameters as 𝐾 = 22, 𝜏𝑊 = 5, 𝜏𝐿 = 1.6, 𝐾𝐶 = 24,𝜏𝐼 = 5, and 𝜏𝐷 = 2.83 − exp(−2𝑡) which is time-varying.
The desired trajectory is defined as 𝑦𝑑(𝑡) = 1−exp(−0.2𝑡),𝑡 ∈ {0, . . . , 200}. Set the initial states as𝑥𝑘(0) = [0 0 0]𝑇, 𝑘 =1, 2, . . . , 30. The beginning control input is chosen as 𝑢1(𝑡) =0.
Select a group parameters as 𝜀 = 1.5 and 𝜇 = 150 such

that convergent conditions (50) and (64) are satisfied under
the givenH1.

In terms ofmathematical expectation, the simulations are
made for 100 runs, where the notion “one run” means that
the proposed ILC scheme is in processing until the perfect
tracking is achieved. Thus, 𝐸{𝑦𝑘(𝑡)} and 𝐸{𝑒𝑘} are computed
as

𝐸 {𝑦𝑘 (𝑡)} = 1100
100∑
𝑚=1

𝑦(𝑚)𝑘 (𝑡) ,

𝐸 {𝑒𝑘} = 1100
100∑
𝑚=1

𝑒(𝑚)𝑘 ,
(73)

where the superscript 𝑚 stands for the index of the experi-
ment runs.

In [16], for ensuring the convergence of the presented
ILC algorithm, the approximation matrix is required to be
diagonally dominant such that

󵄨󵄨󵄨󵄨󵄨ℎ𝑖𝑗𝑘 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐1, 𝑖 ̸= 𝑗, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑁,
𝑐2 ≤ 󵄨󵄨󵄨󵄨󵄨ℎ𝑖𝑖𝑘 󵄨󵄨󵄨󵄨󵄨 ≤ 𝑞𝑐2, 𝑞 ≥ 1, 𝑐2 > 𝑐1 (2𝑞 + 1) (𝑁 − 1) , (74)

where 𝑐1 and 𝑐2 are positive constants. For comparison with
DDOILC and DDNOILC, the algorithms in [16] are denoted
as DD-DDOILC and DD-DDNOILC, respectively.

In [21, 22], one-step communication delays are discussed
as follows:

𝑢𝑘 (𝑡) = 𝛼𝑘 (𝑡) 𝑢̃𝑘 (𝑡) + (1 − 𝛼𝑘 (𝑡)) 𝑢̃𝑘 (𝑡 − 1) ,
𝑦𝑘 (𝑡) = 𝛽𝑘 (𝑡) 𝑦𝑘 (𝑡) + (1 − 𝛽𝑘 (𝑡)) 𝑦𝑘 (𝑡 − 1) . (75)

For comparison with DDNOILC, the algorithm in [21, 22] is
abbreviated as OS-DDNOILC.

In this section, the approximation behavior and tracking
performance of the DDOILC and DDNOILC are simulated
by the following cases.

Case 1 (set 𝑎 = 1 and 𝑏 = 1). Let
H1 = (ℎ1𝑖𝑗)𝑁×𝑁 = {{{

1, 𝑖 = 𝑗,
0.004, else. (76)

This case means that no communication delays occur
in Figure 1; namely, the OS-DDNOILC is no other than the
DDOILC. Thus, it is testified that convergent condition (50)
of the proposed DDOILC is guaranteed by setting 𝜏 = 0.98.
It is observed that, for the given matrixH1, the parameters in
(74) may be chosen as 𝑐1 ≥ 0.004, 𝑐2 ≤ 1, and 𝑞 = 1. But they
break the inequality 𝑐2 > 𝑐1(2𝑞 + 1)(𝑁 − 1). This implies that
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Figure 2: Approximation discrepancy of DDOILC and OS-
DDNOILC.
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Figure 3: Tracking errors convergences of DDOILC and OS-
DDNOILC.

the given matrixH1does not satisfy the convergent condition
of the DD-DDOILC in [16].

Figure 2 displays that the convergence of the approx-
imation discrepancy of DDOILC and OS-DDNOILC is
descending but bounded, whilst Figure 3 exhibits that the
tracking errors of both the DDOILC and the OS-DDNOILC
are monotonously convergent to a bounded constant. This
conveys that the convergent condition (74) for the existing
DD-DDOILC algorithm is sufficient but not necessary.

Figure 4 demonstrates the outputs of DDOILC at the 5th
and 10th iterations, respectively, where the dash curve refers
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Figure 4: Outputs of DDOILC.
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Figure 5: Approximation discrepancy of DD-DDNOILC, OS-
DDNOILC, and DDNOILC schemes.

to the desired trajectory, the solid curve plots the output at
the 5th iteration, and the dotted one shows the output at the
10th iteration, respectively.

Case 2 (set 𝑎 = 0.9 and 𝑏 = 0.8). Let

H1 = (ℎ1𝑖𝑗) = {{{
1, 𝑖 = 𝑗,
0.001, else. (77)
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Figure 6: Tracking errors of DD-DDNOILC, OS-DDNILC, and
DDNOILC.

This case implies that the one-operation communication
delays occur in Figure 1. It is computed that convergent con-
dition (64) of the proposed DDNOILC is satisfied by setting𝛿 = 0.981. Meanwhile, all the inequalities in formulation (74)
are ensured by selecting 𝑐1 = 0.001, 𝑐2 = 1, and 𝑞 = 1. This
implies that the convergent conditions for both the proposed
DDNOILC and the DD-DDNOILC are guaranteed.

Figure 5 manifests the convergences of the approxima-
tion discrepancy of DDNOILC, DD-DDNOILC, and OS-
DDNOILC, respectively, which conveys that the approxi-
mation discrepancies ‖ΔH𝑘‖2 are bounded. However, it is
seen that the approximation discrepancies of DDNOILC and
OS-DDOILC are monotonously convergent to a bounded
constant but that of the DD-DDNOILC is oscillatory with
higher magnitude.

Figure 6 gives the convergences of the tracking errors of
DD-DDNOILC, OS-DDNOILC, and DDNOILC measured
in the forms of ‖𝐸{𝑒𝑘}‖2 and log10(‖𝐸{𝑒𝑘}‖2), respectively,
where log 10(⋅) is the base-10 logarithm of (⋅). It is observed
that the tracking error of the proposed DDNOILC is slightly
less than that of the DD-DDNOILC, but the tracking error of
the OS-DDNOILC is bounded.

Figure 7 exhibits the outputs of DDNOILC at the 5th and
10th iterations, respectively.

5. Conclusion

In this paper, a kind of data-driven optimal ILC (DDOILC)
scheme is constructed for a class of discrete linear tine-
varying systems. The scheme generates two sequences of
system matrix approximations and upgraded control inputs
in an interactedmode by solving sequential iteration-varying
minimization problems. The paper achieves not only the
faster convergence of the tracking error, but also the perfect
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Figure 7: Outputs of DDNOILC.

approximation of the system matrix. The approximation
processingmay be to some extent regarded as a kind of system
identification.This owes to the efficacious harness of themul-
tioperation inputs and outputs. Further, the paper presents
a data-driven networked optimal ILC (DDNOILC) strategy
for the system with one-operation communication delays.
Benefited from the multioperation feature of ILC-driven
systems, the strategy relaxes the communication delays from
one-step sampling time interval to one-iteration period. As
the mending scheme for the delayed data is synchronous
for two adjacent iterations, the zero-error convergence is
guaranteed. This turns to be the significance of the ILC
mechanism. However, how to investigate the tracking behav-
ior of DDOILC and/or DDNOILC for discrete stochastic
nonlinear systemswith one-operation communication delays
is challenging.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this article.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grants F010114-60974140 and
61273135 and the National Research Foundation Korea Grant
NRF-2013R1A2A2A01067449.

References

[1] S. Arimoto, S. Kawamura, and F.Miyazaki, “Bettering operation
of Robots by learning,” Journal of Robotic Systems, vol. 1, no. 2,
pp. 123–140, 1984.

[2] S. S. Saab, “A discrete-time stochastic learning control algo-
rithm,” IEEE Transactions on Automatic Control, vol. 46, no. 6,
pp. 877–887, 2001.

[3] H.-S. Ahn, Y. Q. Chen, and K. L. Moore, “Iterative learning
control: brief survey and categorization,” IEEE Transactions on
Systems, Man and Cybernetics Part C: Applications and Reviews,
vol. 37, no. 6, pp. 1099–1121, 2007.

[4] X. Yang, “A PD-type iterative learning control for a class of
switched discrete-time systems with model uncertainties and
external noises,” Discrete Dynamics in Nature and Society, vol.
2015, Article ID 410292, 11 pages, 2015.

[5] J.-X. Xu and Y. Tan, “Robust optimal design and convergence
properties analysis of iterative learning control approaches,”
Automatica, vol. 38, no. 11, pp. 1867–1880, 2002.

[6] K.-H. Park and Z. Bien, “Intervalized iterative learning control
for monotonic convergence in the sense of sup-norm,” Interna-
tional Journal of Control, vol. 78, no. 15, pp. 1218–1227, 2005.

[7] X. Ruan, Z. Z. Bien, and Q.Wang, “Convergence characteristics
of proportional-type iterative learning control in the sense of
Lebesgue-p norm,” IET Control Theory and Applications, vol. 6,
no. 5, pp. 707–714, 2012.

[8] Y. Fang and T. W. S. Chow, “2-D analysis for iterative learning
controller for discrete-time systems with variable initial condi-
tions,” IEEE Transactions on Circuits and Systems I: Fundamen-
tal Theory and Applications, vol. 50, no. 5, pp. 722–727, 2003.

[9] Z. Qu and J.-X. Xu, “Model-based learning controls and their
comparisons using Lyapunov direct method,” Asian Journal of
Control, vol. 4, no. 1, pp. 99–110, 2002.

[10] B. Xuhui, Z. Hongwei, S. YunZhong, and Y. Fashan, “𝐻∞ ILC
design for discrete linear systems with packet dropouts and
iteration-varying disturbances,” Discrete Dynamics in Nature
and Society, vol. 2014, Article ID 587323, 10 pages, 2014.

[11] C. Yin, J.-X. Xu, and Z. Hou, “A high-order internal model
based iterative learning control scheme for nonlinear systems
with time-iteration-varying parameters,” IEEE Transactions on
Automatic Control, vol. 55, no. 11, pp. 2665–2670, 2010.

[12] T. Liu, X. Z.Wang, and J. Chen, “Robust PIDbased indirect-type
iterative learning control for batch processes with time-varying
uncertainties,” Journal of Process Control, vol. 24, no. 12, pp. 95–
106, 2014.

[13] A. Tayebi andM. B. Zaremba, “Robust iterative learning control
design is straightforward for uncertain LTI systems satisfying
the robust performance condition,” IEEE Transactions on Auto-
matic Control, vol. 48, no. 1, pp. 101–106, 2003.

[14] R. Chi, D. Wang, Z. Hou, and S. Jin, “Data-driven optimal
terminal iterative learning control,” Journal of Process Control,
vol. 22, no. 10, pp. 2026–2037, 2012.

[15] P. Janssens, G. Pipeleers, and J. Swevers, “A data-driven con-
strained norm-optimal iterative learning control framework for
LTI systems,” IEEE Transactions on Control Systems Technology,
vol. 21, no. 2, pp. 546–551, 2013.

[16] Q. Yu and Z. Hou, “Data-driven predictive iterative learning
control for a class of multiple-input and multiple-output non-
linear systems,”Transactions of the Institute ofMeasurement and
Control, vol. 38, no. 3, pp. 266–281, 2016.

[17] R. A. Gupta and M.-Y. Chow, “Networked control system:
overview and research trends,” IEEE Transactions on Industrial
Electronics, vol. 57, no. 7, pp. 2527–2535, 2010.

[18] M.Moayedi, Y. K. Foo, andY. C. Soh, “AdaptiveKalman filtering
in networked systems with random sensor delays, multiple
packet dropouts andmissingmeasurements,” IEEETransactions
on Signal Processing, vol. 58, no. 3, pp. 1577–1588, 2010.



12 Discrete Dynamics in Nature and Society

[19] H.-S. Ahn, K. L. Moore, and Y. Chen, “Stability of discrete-
time iterative learning control with random data dropouts and
delayed controlled signals in networked control systems,” in
Proceedings of the 10th International Conference on Control,
Automation, Robotics and Vision (ICARCV ’08), pp. 757–762,
December 2008.

[20] Y.-J. Pan, H. J. Marquez, T. W. Chen, and L. Sheng, “Effects of
network communications on a class of learning controlled non-
linear systems,” International Journal of Systems Science, vol. 40,
no. 7, pp. 757–767, 2009.

[21] X. Bu, F. Yu, Z. Hou, and F. Wang, “Iterative learning control
for a class of nonlinear systems with random packet losses,”
Nonlinear Analysis: Real World Applications, vol. 14, no. 1, pp.
567–580, 2013.

[22] Y. Geng, H.-S. Ahn, and X. Ruan, “Robustness of discrete-
time iterative learning control for networked control systems
with data dropouts,” in Proceedings of the IEEE International
Symposium on Intelligent Control (ISIC ’15), pp. 906–911, Sydney,
Australia, September 2015.

[23] X. Ruan and Z. Li, “Convergence characteristics of PD-type
iterative learning control in discrete frequency domain,” Journal
of Process Control, vol. 24, no. 12, pp. 86–94, 2014.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


