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In this paper, the global analysis of a Liénard equation with quadratic damping is studied. There are 22 different global phase
portraits in the Poincaré disc. Every global phase portrait is given as well as the complete global bifurcation diagram. Firstly, the
equilibria at finite and infinite of the Liénard system are discussed. The properties of the equilibria are studied. Then, the sufficient
and necessary conditions of the systemwith closed orbits are obtained.The degenerate Bogdanov-Takens bifurcation is studied and
the bifurcation diagrams of the system are given.

1. Introduction and Main Results

Liénard equations have a very wide application in many
areas, such as mechanics, electronic technology, and modern
biology; see [1–4]. People are strongly interested in the
solution existence, vibration, and periodic solutions of
Liénard equations, which promote the research of Liénard
equationsmore andmore deeply, as shown in [5–9]. All kinds
of problems about Liénard equations are always the focus
of the theory of differential equations. In 2016, Llibre [10]
studied the centers of the analytic differential systems and
analyzed the focus-center problem.H. Chen andX. Chen [11–
13] investigated the dynamical behaviour of a cubic Liénard
system with global parameters, analyzing the qualitative
properties of all the equilibria and judging the existence of
limit cycles and homoclinic loops for the whole parameter
plane. They gave positive answers to Wang Kooij’s [14] two
conjectures and further properties of those bifurcation curves
such as monotonicity and smoothness.

In 1977, Lins, de Melo, and Pugh studied the Liénard
equations

𝑑𝑥
𝑑𝑡 = 𝑦 − 𝐹 (𝑥) ,
𝑑𝑦
𝑑𝑡 = −𝑥,

(1)

where F is a polynomial of degree 𝑛 + 1, or equivalently,
𝑥̈ + 𝑓 (𝑥) 𝑥̇ + 𝑥 = 0, (2)

with 𝑓(𝑥) = 𝐹󸀠(𝑥). They proposed the following result.

Conjecture 1. If 𝑓(𝑥) has degree 𝑛, then (1) has at most [𝑛/2]
limit cycles ([𝑛/2] is the integer part of 𝑛/2, 𝑛 ≥ 2).𝑛 = 2 is proved by [15]; 𝑛 = 3 is proved by [16].The problem
for 𝑛 > 3 is still open. In 1988, Lloyd and Lynch [17] considered
the similar problem for generalized Liénard equations

𝑑𝑥
𝑑𝑡 = 𝑦 − 𝐹 (𝑥) ,
𝑑𝑦
𝑑𝑡 = −𝑔 (𝑥) ,

(3)

where F is a polynomial of degree 𝑛+1 and 𝑔(𝑥) is a polynomial
of degree 𝑚. In most cases, they gave an upper bound for the
number of small amplitude limit cycles that can bifurcate out of
a single nondegenerate singularity. If we denote by𝑁(𝑚, 𝑛) the
uniform upper bound for the number of limit cycles (admitting
a priori that𝑁(𝑚, 𝑛) could be infinite), then the results in [17]
give a lower bound for 𝑁(𝑚, 𝑛). In 1988 Coppel [18] proved
that 𝑁(2, 1) = 1. In [19–22], it was proved that 𝑁(3, 1) = 1.
Up to now, as far as we know, only these three cases have been
completely investigated.
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Consider the Liénard equations

𝑑𝑥
𝑑𝑡 = 𝑦 − 𝐹 (𝑥) ,
𝑑𝑦
𝑑𝑡 = −𝑥2𝑚+1,

(4)

where 𝐹(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥, 𝑎 ̸= 0 and 𝑚 ∈ N. We only
discuss 𝑎 > 0, because the case 𝑎 < 0 can be derived from the
case 𝑎 > 0 by using the transformation 𝑥 󳨀→ −𝑥, 𝑦 󳨀→ −𝑦,
and 𝑎 󳨀→ −𝑎. From the above two motivations, we shall give
a complete classification for all the global phase portraits of
the Liénard system (4).

We give the following theorem.

Theorem 2. All phase portraits of system (4) can be given, as
shown in Figures 1 and 2.

The classifications of global phase portraits are explained
in Section 2 and the infinite and finite critical points are
discussed in Sections 3 and 4.

The paper is organized as follows. Section 2 explains the
classification for all kinds of Liénard system (4). The infinite
and finite critical points are discussed in Sections 3 and 4,
respectively. Section 5 provides the sufficient and necessary
condition for Liénard system (4) to have closed orbits.

2. Explanation of Global Dynamics

The bifurcation diagram and global phase portraits of system
(4) for parameters 𝑎, 𝑏, 𝑐, 𝑚 in all cases are shown in Figure 1.

For example, as shown in Figure 1 (𝑘, 𝑙), if 𝑏 > 0, the
elliptic sector lies in the negative 𝑦-axis; if 𝑏 < 0, the elliptic
sector lies in the positive 𝑦-axis.

(A) Global phase portraits of 𝑚 = 0: there exist infinite
critical points 𝐴 and 𝐵.
(1) Suppose 𝑐 < 0 and 𝑎 > 0. A unique stable

limit cycle appears around the equilibrium 𝑂 of
system (4). If 𝑐 ≤ −2,𝑂 is an unstable node, and
the global phase portrait is shown in Figure 1(a);
if −2 < 𝑐 < 0, 𝑂 is an unstable focus, and the
global phase portrait is shown in Figure 1(b).

(2) Suppose 𝑐 > 0 and 𝑎 > 0. There are no closed
orbits in system (4). If 0 ≤ 𝑐 < 2 and 𝑎 > 0,𝑂 is a stable focus, and the global phase portrait
is shown in Figure 1(c); if 𝑐 ≥ 2 and 𝑎 > 0, 𝑂
is a stable node, and the global phase portrait is
shown in Figure 1(d).

(3) Suppose 𝑐 < 0 and 𝑎 < 0. There are no closed
orbits in system (4). If 𝑐 ≤ −2, 𝑂 is an unstable
node, and the global phase portrait is shown in
Figure 2(a); if −2 < 𝑐 < 0, 𝑂 is an unstable
focus, and the global phase portrait is shown in
Figure 2(b).

(4) Suppose 𝑐 > 0 and 𝑎 < 0. A unique unstable
limit cycle appears around the equilibrium 𝑂 of
system (4). If 0 ≤ 𝑐 < 2 and 𝑎 > 0, 𝑂 is a stable

focus, and the global phase portrait is shown in
Figure 2(c); if 𝑐 ≥ 2 and 𝑎 > 0, 𝑂 is a stable
node, and the global phase portrait is shown in
Figure 2(d).

(B) Global phase portraits of 𝑚 = 1: there exist infinite
critical points 𝐴1 and 𝐵.
(1) Suppose 𝑐 > 0 or 𝑐 = 𝑏 = 0, and 𝑎 > 0. There

are no closed orbits in system (4). 𝑂 is a stable
degenerate node, and the global phase portrait
is shown in Figure 1(e).

(2) Suppose 𝑐 > 0 and 𝑎 < 0. A unique unstable
limit cycle appears around the stable degenerate
node 𝑂 of system (4), and the global phase
portrait is shown in Figure 2(e).

(3) Suppose 𝑐 < 0 or 𝑐 = 𝑏 = 0, and 𝑎 < 0. There are
no closed orbits in system (4). 𝑂 is an unstable
degenerate node, and the global phase portrait
is shown in Figure 2(f).

(4) Suppose 𝑐 < 0 and 𝑎 > 0. A unique stable limit
cycle appears around the unstable degenerate
node 𝑂 of system (4), and the global phase
portrait is shown in Figure 1(f).

(5) Suppose 𝑐 = 0 and 𝑏 ̸= 0. There are no closed
orbits in system (4). If 𝑏 > 0, the elliptic sector
lies in the positive 𝑦-axis, and the global phase
portraits are shown in Figures 1(g) and 2(g); if𝑏 < 0, the elliptic sector lies in the negative 𝑦-
axis, and the global phase portraits are shown in
Figures 1(h) and 2(h).

(C) Global phase portraits of𝑚 ≥ 2: there exists a unique
infinite critical point 𝐵.
(1) Suppose 𝑐 > 0 or 𝑐 = 𝑏 = 0, and 𝑎 > 0. There

are no closed orbits in system (4). 𝑂 is a stable
degenerate node, and the global phase portrait
is shown in Figure 1(i).

(2) Suppose 𝑐 > 0 and 𝑎 < 0. A unique unstable
limit cycle appears around the stable degenerate
node 𝑂 of system (4), and the global phase
portrait is shown in Figure 2(i).

(3) Suppose 𝑐 < 0 and 𝑎 > 0. A unique stable limit
cycle appears around the unstable degenerate
node 𝑂 of system (4), and the global phase
portrait is shown in Figure 1(j).

(4) Suppose 𝑐 < 0 or 𝑐 = 𝑏 = 0, and 𝑎 < 0. There are
no closed orbits in system (4). 𝑂 is an unstable
degenerate node, and the global phase portrait
is shown in Figure 2(j).

(5) Suppose 𝑐 = 0 and 𝑏 ̸= 0. There are no
closed orbits in system (4). If 𝑏 > 0, the elliptic
sector lies in the positive 𝑦-axis, and the global
phase portraits are shown in Figure 1(k) and the
picture (k) in Figure 2; if 𝑏 < 0, the elliptic sector
lies in the negative 𝑦-axis, and the global phase
portraits are shown in Figures 1(l) and 2(l).
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Figure 1: The global phase portraits of system (4) as the parameter 𝑎 > 0.
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Figure 2: The global phase portraits of system (4) as the parameter 𝑎 < 0.

3. Analysis of Equilibria

Clearly, system (4) has a unique equilibrium 𝑂 : (0, 0).
Lemma 3. The type of equilibrium𝑂 in system (4) is shown as
Table 1.

Proof. Now we consider the case𝑚 = 0. The Jacobian matrix
at 𝑂 is

𝐽 = (−𝑐 1
−1 0) , (5)

from which we obtain that 𝐷 = det𝐽 = 1, 𝑇 = trace𝐽 = −𝑐.
Further,𝑂 is a focuswhenΔ = 𝑇2−4𝐷 = 𝑐2−4 < 0 and a node
when Δ < 0. Clearly, Δ = 0 if and only if 𝑐2 = 4. Therefore,𝑂 is a stable focus when 0 < 𝑐 < 2, an unstable focus when

−2 < 𝑐 < 0, a stable node when 𝑐 ≥ 2, and an unstable node
when 𝑐 ≤ −2.

For the case that 𝑐 = 0, we consider the case that the linear
part of system (4) around 𝑂 has eigenvalues 𝛼(𝑐) ± 𝑖𝛽(𝑐) for𝑐 near 0, in which 𝛼(𝜂2) = −𝑐/2. Obviously, 𝛼(0) = 0 and𝛽(0) ̸= 0. Clearly 𝑑𝛼(𝑐)/𝑑𝑐 = −1/2.

Now, we need to compute the coefficients of Hopf bifur-
cation of order 1. According to the Hopf bifurcation theory
[23], we obtain the following results for 𝑏 outside the interval(0, 1). By ([23] P.152), we can compute the coefficients of Hopf
bifurcation of (4)

ReC1 (𝑎) = −𝑎8 . (6)

We can get ReC1(𝑎) > 0 for 𝑎 < 0; andwe can get ReC1(𝑎) < 0
for 𝑎 > 0.



4 Discrete Dynamics in Nature and Society

Table 1: Qualitative properties of equilibria 𝑂.
Possibilities 𝑎, 𝑏, 𝑐 Type and stability

𝑚 = 0
𝑐 ≤ −2 unstable node

−2 < 𝑐 < 0 unstable focus
𝑐 = 0 unstable weak focus

0 < 𝑐 < 2 stable focus
𝑐 ≥ 2 stable node

𝑚 ≥ 1
𝑐 < 0 unstable degenerate node
𝑐 > 0 stable degenerate node

𝑏 ̸= 0 cusp
𝑐 = 0 𝑏 = 0 stable degenerate node

We need to compute the sign of 𝑐ReC1𝑑𝛼(𝑐)/𝑑𝑐 = 𝑎𝑐/16.
When 𝑎𝑐 ≥ 0, we can get 𝑐ReC1𝑑𝛼(𝑐)/𝑑𝑐 ≥ 0; and when 𝑎𝑐 >0, we can get 𝑐ReC1𝑑𝛼(𝑐)/𝑑𝑐 > 0.

Therefore, we obtain the following lemma.

Lemma 4. When 𝑎 > 0 and 𝑐 < 0, the equilibrium𝑂 of system
(4) is an unstable weak focus with multiplicity 1, and there is a
unique stable limit cycle bifurcating from 𝑂; when 𝑎 < 0 and𝑐 > 0, the equilibrium 𝑂 of system (4) is a stable weak focus
with multiplicity 1, and there is a unique unstable limit cycle
bifurcating from 𝑂; when 𝑎 > 0 and 𝑐 > 0, the equilibrium𝑂 of system (4) is an unstable weak focus with multiplicity 1,
and there are no closed orbits near 𝑂; when 𝑎 < 0 and 𝑐 ≤0, the equilibrium 𝑂 of system (4) is a stable weak focus with
multiplicity 1, and there are no closed orbits near 𝑂.
3.1. Degenerate Bogdanov-Takens Bifurcation. In another case𝑚 ≥ 1 and 𝑐 ̸= 0, only one eigenvalue of linearization
of system (4) at 𝑂 equals zero. In fact, by a reversible
transformation

𝑥 = 𝑦,
𝑦 = 𝑥 − 𝑦𝑐 ,

(7)

which changes the linearization of system (4) into Jordan
canonical form near 𝑂, when𝑚 = 1, we get

𝑑𝑥
𝑑𝑡 = −(𝑦 +

𝑥
𝑐 )
3 ,

𝑑𝑦
𝑑𝑡 = −𝑐𝑦 − 𝑏(𝑦 +

𝑥
𝑐 )
2 − 𝑎(𝑦 + 𝑥𝑐 )

3 .
(8)

Let the second equation of (8) equal zero, and we solve that𝑦 = 𝑌1(𝑥) fl −𝑏𝑥2/𝑐2 + 𝑜(|𝑥|2) by the Implicit Function
Theorem. Substituting 𝑦 of the first equation of (8) by 𝑌1(𝑥),
we obtain that

𝑑𝑥
𝑑𝑡 = −

𝑥3
𝑐3 + 𝑜 (|𝑥|3) . (9)

When 𝑐 > 0, 𝑂 is a stable degenerate node; when 𝑐 < 0, 𝑂 is
an unstable degenerate node.

In the remaining case that 𝑚 ≥ 1 and 𝑐 = 0, the two
eigenvalues of the linearization of system (4) at 𝑂 are both
zero but the linear part does not equal zero identically. System
(4) is equivalent to this system

𝑥̇ = 𝑦,
̇𝑦 = − (3𝑎𝑥2 + 2𝑏𝑥) 𝑦 − 𝑥2𝑚+1. (10)

By Theorem 7.2 of [24, Chapter 2], when 𝑏 = 0 and 𝑎 > 0, 𝑂
is a stable degenerate node; when 𝑏 = 0 and 𝑎 < 0, 𝑂 is an
unstable degenerate node.

When 𝑏 ̸= 0, we can get that an elliptic sector and a
hyperbolic sector consist of the field of the 𝑂 byTheorem 7.2
of [24, Chapter 2].

Lemma 5. Suppose 𝑚 = 1, 𝑏 = 0, and 𝑐 = 0, then there
is a neighborhood 𝑉 of the point (0, 0) in R such that system
(16) displays a degenerate Bogdanov-Takens bifurcation near𝑂(0, 0) when (𝜖, 𝑐) varies in 𝑉. More concretely, there exist six
curves

(a) 𝑅+ = {(𝜖, 𝑐) | 𝜖 = 0, 𝑐 < 0},
(b) 𝑅− = {(𝜖, 𝑐) | 𝜖 = 0, 𝑐 < 0},
(c) 𝐻1 = {(𝜖, 𝑐) | 𝑐 = 0, 𝜖 < 0},
(d) 𝐻2 = {(𝜖, 𝑐) | 𝑐 = 𝜖 + 𝑂(𝜀2), 𝜖 > 0},
(e) 𝐻𝐿 = {(𝜖, 𝑐) | 𝑐 = −(5/4)𝜖 + 𝑂(𝜀2/3), 𝜖 > 0},
(f) 𝐵 = {(𝜖, 𝑐) | 𝑐 = −𝑐0𝜖 + 𝑂(𝜀2/3), 𝜖 > 0, 𝑐0 ≈ 0.752}.

When 𝑎 < 0, system (16) displays a bifurcation of equilibria, a
Hopf bifurcation, a homoclinic bifurcation, and a double limit
cycle bifurcation near 𝑂 when (𝜖, 𝑐) pass through the curves𝑅+⋃𝑅−, 𝐻1⋃𝐻2, 𝐻𝐿, and 𝐵. 𝑐will be replaced with −𝑐when𝑎 > 0.
Proof. When 𝑎 < 0, being the standard form of degenerate
Bogdanov-Takens system as shown in [1], the equilibrium 𝑂
of system (16) is a stable degenerate node. Thus, equilibrium𝑂 of system (4) is a stable degenerate node and a degenerate
Bogdanov-Takens bifurcation of codimension-2 will occur
near the stable degenerate node when parameter 𝑐 crosses𝑐 = 0, respectively, with 𝑏 = 0 and 𝑚 = 1. By [16],
we know the following two-parameter family provides a
universal unfolding of (16).

𝑥̇ = 𝑦,
̇𝑦 = 𝜖𝑥 − 𝑐𝑦 − 3𝑎𝑥2𝑦 − 𝑥3. (11)

The bifurcation diagrams and phase portraits of (17) are
shown in Figure 3.

When 𝑎 > 0, with the transformation 𝑦 󳨀→ −𝑦 and𝑑𝑡 = −𝑑𝑡, we can know the following two-parameter family
provides a universal unfolding of (16)

𝑥̇ = 𝑦,
̇𝑦 = 𝜖𝑥 + 𝑐𝑦 + 3𝑎𝑥2𝑦 − 𝑥3. (12)

Therefore 𝑐 will be replaced with −𝑐 when 𝑎 > 0.
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Figure 3: The qualitative properties of (0,0) of the system (4).

Lemma 6. Suppose that 𝑚 = 1, 𝑏 ̸= 0, and 𝑐 = 0, then
there is a neighborhood 𝑉2 of the point (0, 0, 0) in R such
that system (16) displays a codimension-3 Bogdanov-Takens
bifurcation near 𝑂(0, 0) when (𝜇1, 𝜇2, 𝑐) varies in 𝑉2.
4. Equilibria at Infinity

In this section, we discuss the qualitative properties of the
equilibria at infinity, which reflect the tendencies of 𝑥, 𝑦 as
going up by a large amount. With a Poincaré transformation𝑥 = 1/𝑧, 𝑦 = 𝑢/𝑧, system (4) can be rewritten as

𝑑𝑢
𝑑𝑡 = −𝑧2 + 𝑢 (𝑎 + 𝑏𝑧 + 𝑐𝑧2) − 𝑢2𝑧2,
𝑑𝑧
𝑑𝑡 = 𝑎𝑧 + 𝑏𝑧2 + 𝑐𝑧3 − 𝑢𝑧3,

(13)

where 𝑑𝜏 = 𝑑𝑡/𝑧2 and𝑚 = 0.
𝑑𝑢
𝑑𝑡 = −1 + 𝑢𝑧2𝑚−2 (𝑎 + 𝑏𝑧 + 𝑐𝑧2) − 𝑢2𝑧2𝑚,
𝑑𝑧
𝑑𝑡 = 𝑧2𝑚−1 (𝑎 + 𝑏𝑧 + 𝑐𝑧2) − 𝑢𝑧2𝑚+1,

(14)

where𝑑𝜏 = 𝑑𝑡/𝑧2𝑚 and𝑚 ≥ 1. System (13) has an equilibrium𝐴 : (0, 0) on the 𝑢–axis, and system (14) has an equilibrium𝐴1 : (1/𝑎, 0) when 𝑚 = 1 and no equilibria when 𝑚 > 1
on the 𝑢–axis, which corresponds to an equilibrium 𝐼𝐴 at
infinity on the 𝑥–axis. With another Poincaré transformation𝑥 = V/𝑧, 𝑦 = 1/𝑧, system (4) is changed into

𝑑V
𝑑𝑡 = 𝑧2 − (𝑎V3 + 𝑏V2𝑧 + 𝑐V𝑧2) + V2𝑧2,
𝑑𝑧
𝑑𝑡 = V𝑧3,

(15)

where 𝑑𝜏 = 𝑑𝑡/𝑧2 and𝑚 = 0.
𝑑V
𝑑𝑡 = 𝑧2𝑚 − 𝑧2𝑚−2 (𝑎V3 + 𝑏V2𝑧 + 𝑐V𝑧2) + V2𝑚+2,
𝑑𝑧
𝑑𝑡 = V2𝑚+1𝑧,

(16)

where 𝑑𝜏 = 𝑑𝑡/𝑧2𝑚 and 𝑚 ≥ 1. We only need to study
the equilibrium 𝐵 : (0, 0) of systems (15) and (16), which

corresponds to an equilibrium 𝐼𝐵 of system (4) at infinity on
the 𝑦–axis.
Lemma7. Equilibria𝐴 and𝐴1 are unstable nodes when 𝑎 > 0
and stable nodes when 𝑎 < 0.

System (16) provides an interesting example for highly
degenerate equilibria when 𝑚 is greater than 1. As 𝑚 is
unspecified, the lowest degree of nonzero terms in (16) is 2𝑚.
One could not use the blowing-up methods as done in [24]2𝑚 times to decompose the equilibrium 𝐵 into simple ones.
So a natural idea is to study the system with normal sectors,
as in [24]. We will see that the method of normal sectors
does not work in some cases, while we show how to apply the
method of generalized normal sectors [24] (GNS for short).

Lemma 8. For system (16), when𝑚 = 0, 1 and 𝑎 > 0, there are
infinite orbits approaching 𝐵 : (0, 0) in two directions 𝜃 = 𝜋,
there is a unique orbit approaching 𝐵 : (0, 0) in two directions𝜃 = 0, and there are infinite orbits leaving 𝐵 : (0, 0) in two
directions 𝜃 = 0; when 𝑚 = 0, 1 and 𝑎 < 0, there are infinite
orbits leaving𝐵 : (0, 0) in two directions 𝜃 = 0, there is a unique
orbit leaving 𝐵 : (0, 0) in two directions 𝜃 = 𝜋, and there are
infinite orbits approaching 𝐵 : (0, 0) in two directions 𝜃 = 𝜋;
when 𝑚 ≥ 2, there are infinite orbits leaving 𝐵 : (0, 0) in two
directions 𝜃 = 0, and there are infinite orbits approaching 𝐵 :(0, 0) in two directions 𝜃 = 𝜋.
Proof. It is equivalent to consider the equilibrium𝐴 of system
(13). By Theorem II.3.1 in [24], we only need to discuss the
orbits in exceptional directions, as seen in Frommer [25].
With the substitution 𝑢 = 𝑟 cos 𝜃, V = 𝑟sin 𝜃, system (13) can
be written as

d𝑟
𝑟d𝜃 =

𝐻1 (𝜃) + 𝑜 (1)𝐺1 (𝜃) + 𝑜 (1) , as 𝑟 󳨀→ 0, (17)

where 𝐺1(𝜃) = −sin3𝜃, 𝐻1(𝜃) = cos 𝜃sin2𝜃 when 𝑚 = 0,𝐺1(𝜃) = −sin2𝑚+1𝜃, 𝐻1(𝜃) = cos 𝜃sin2𝑚𝜃 when 𝑚 ≥ 1. A
necessary condition for 𝜃 = 𝜃0 to be an exceptional direction
is that 𝐺1(𝜃) = 0. Obviously, 𝐺1(𝜃) has two roots 0 and 𝜋.
As in [24], except in these exceptional directions, no orbits
connect 𝐵.

When 𝑚 = 0, using the Briot-Bouquet transformation
[24] V = V, 𝑧 = 𝑧1V, which desingularizes the degenerate
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equilibrium 𝐷 : (0, 0) of system (15) in the directions of 𝑧1-
axis, we reduce (15) to the following form (18):

𝑑V
𝑑𝜎 = 𝑧12V + V3𝑧12 − (𝑎 + 𝑏𝑧1 + 𝑐𝑧12) V2,
𝑑𝑧1𝑑𝜎 = (𝑎 + 𝑏𝑧1 + 𝑐𝑧12) V𝑧1 − 𝑧13,

(18)

where 𝑑𝜎 = V𝑑𝜏. We need to investigate the origin of (18)
which is a degenerate equilibrium of system (18). In polar
coordinates V = 𝑟 cos 𝜃 and 𝑧1 = 𝑟 sin 𝜃, we have

𝐺 (𝜃) = 2𝑎 sin 𝜃cos2𝜃,
𝐻 (𝜃) = 𝑎 cos 𝜃 (sin2𝜃 − cos2𝜃) , (19)

for system (18). The equation 𝐺(𝜃) = 0 has exactly four real
roots 0, 𝜋/2, 𝜋, and 3𝜋/2, and we can check that

𝐺󸀠 (0)𝐻 (0) = 𝐺󸀠 (𝜋)𝐻 (𝜋) = −2𝑎2 < 0. (20)

By Theorem 3.7 of [24, Chapter 2], system (18) has a unique
orbit approaching the origin in the direction 𝜃 = 0, a
unique orbit leaving the origin in 𝜃 = 𝜋 as 𝜏 󳨀→ +∞,
which are exactly the positive V-axis and the negative V-axis,
respectively. And for 𝜃 = 𝜋/2 and 𝜃 = 3𝜋/2, we can check
that𝐻(𝜋/2) = 𝐻(3𝜋/2) = 0.

Applying the Briot-Bouquet transformation V = V2𝑧1,𝑧1 = 𝑧1, we can change system (18) into the following form:

𝑑V2𝑑𝑠 = 2V2𝑧1 + V2
3𝑧13 − 2 (𝑎 + 𝑏𝑧1 + 𝑐𝑧12) V22,

𝑑𝑧1𝑑𝑠 = (𝑎 + 𝑏𝑧1 + 𝑐𝑧12) V2𝑧1 − 𝑧12,
(21)

where 𝑑𝑠 = 𝑧1𝑑𝜎. We need to investigate the origin of system
(21) which is degenerate. In polar coordinates V2 = 𝑟 cos 𝜃 and𝑧1 = 𝑟 sin 𝜃, we have

𝐺 (𝜃) = sin 𝜃 cos 𝜃 (3𝑎 cos 𝜃 − 3 sin 𝜃) ,
𝐻 (𝜃) = 𝑎 cos 𝜃 sin2𝜃 − sin3𝜃 − 2𝑎 cos3𝜃

+ 2 cos2𝜃 sin 𝜃,
(22)

for system (21). The equation 𝐺(𝜃) = 0 has exactly six real
roots 0, arctan 𝑎, 𝜋/2, 𝜋, 𝜋 + arctan 𝑎, and 3𝜋/2 when 𝑎 > 0,0,𝜋 − arctan(−𝑎), 𝜋/2, 𝜋, 2𝜋 − arctan(−𝑎), and 3𝜋/2 when𝑎 < 0, and we can check that

𝐺󸀠 (0)𝐻 (0) = 𝐺󸀠 (𝜋)𝐻 (𝜋) = −6𝑎2 < 0,
𝐺󸀠 (𝜋2 )𝐻(𝜋2 ) = 𝐺󸀠 (

3𝜋
2 )𝐻(3𝜋2 ) = −3 < 0.

(23)

By Theorem 3.7 of [24, Chapter 2] system (21) has a unique
orbit approaching the origin in the direction 𝜃 = 0, a unique
orbit leaving the origin in 𝜃 = 𝜋, a unique orbit approaching

the origin in 𝜃 = 𝜋/2, and a unique orbit leaving the origin in𝜃 = 3𝜋/2 as 𝜏 󳨀→ +∞, which are exactly the positive V2-axis,
the negative V2-axis, the positive 𝑧1-axis, and the negative 𝑧1-
axis, respectively. And for 𝜃 = arctan 𝑎 and 𝜃 = 𝜋 + arctan 𝑎
when 𝑎 > 0 or 𝜃 = 𝜋 − arctan(−𝑎) and 𝜃 = 2𝜋 − arctan(−𝑎)
when 𝑎 > 0, we can check that𝐻(𝜃) = 0.

Applying the Briot-Bouquet transformation V2 = V2, 𝑧1 =𝑧3V2, we can change system (21) into the following form:

𝑑V2𝑑𝑠1 = −2𝑎V2 + 2V2𝑧3 − 2𝑏V2
2𝑧3 − 2𝑐V23𝑧32 + V2

5𝑧33,
𝑑𝑧3𝑑𝑠1 = 3𝑎𝑧3 − 3𝑧3

2 + 3𝑏V2𝑧32 + 3𝑐V22𝑧33 − V2
4𝑧34,

(24)

where 𝑑𝑠1 = V2𝑑𝑠. One can check that system (24) has
exactly two equilibria (0, 0) and (0, 𝑎) on the 𝑧3-axis, and we
only need to investigate the qualitative properties of (0, 𝑎)
which corresponds to the directions 𝜃 = arctan 𝑎 and 𝜃 =𝜋 + arctan 𝑎 when 𝑎 > 0 or 𝜃 = 𝜋 − arctan(−𝑎) and 𝜃 =2𝜋 − arctan(−𝑎) when 𝑎 > 0, of system (21). Applying the
transformation V2 = V2, 𝑧3 = 𝑧3 − 𝑎, which translates the
equilibrium (0, 𝑎) to the origin, for simplicity, we denote V2
and 𝑧3 by V2 and 𝑧3, respectively, and system (24) can be
written into the form

𝑑V2𝑑𝑠1
= 2V2𝑧3 − 2 [𝑏 (𝑧3 + 𝑎) + 𝑐V2 (𝑧3 + 𝑎)2] V22
+ V2
5 (𝑧3 + 𝑎)3 ,

𝑑𝑧3𝑑𝑠1
= 3 [−𝑧3 + 𝑏V2 (𝑧3 + 𝑎) + 𝑐V22 (𝑧3 + 𝑎)2] (𝑧3 + 𝑎)
− V2
5 (𝑧4 + 𝑎)4 ,

(25)

and we only need to analyze the qualitative properties of the
origin of system (25).

Applying the transformation V󸀠2 = V2, 𝑧󸀠3 = 𝑎𝑏V2 − 𝑧3, and𝑑𝑠2 = −𝑑𝑠1, for simplicity, we denote V󸀠2 and 𝑧󸀠3 by V2 and 𝑧3,
respectively, and system (25) can be written as

𝑑V2𝑑𝑠2 = 2𝑧3V2 + 2 (𝑎𝑏
2 + 𝑎2𝑐) V32 − 2𝑏𝑧3V22 + ℎ.𝑜.𝑡,

𝑑𝑧3𝑑𝑠2 = 3𝑎𝑧3 + 3𝑧
2

3 − 3 (𝑎2𝑏2 + 𝑎3𝑐) V22 + 2𝑎𝑏𝑧3V2
+ ℎ.𝑜.𝑡,

(26)

and we only need to analyze the qualitative properties of the
origin of system (26).

When 𝑎𝑏2 + 𝑎2𝑐 ̸= 0, there exists a function
𝑧3 = 𝑋2 (V2) = − (𝑎𝑏2 + 𝑎2𝑐) V22 + ℎ.𝑜.𝑡 (27)
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which can be derived from the second equation of system
(26). Substitute the function (27) into the first equation of
system (26), and we obtain that

𝑑V2𝑑𝑠2 = 𝑎
3 (1 + 2𝑐2) V25 + ℎ.𝑜.𝑡. (28)

By Theorem 7.1 in [24, Chapter 2], we obtain that when𝑎 > 0, the origin of system (26) is an unstable node; we
obtain that when 𝑎 < 0, the origin of system (26) is a
stable node. So, according to themethod of the Briot-Bouquet
transformation, the theorem of𝑚 = 0 is proved. Based on the
proof of 𝑚 = 0, we can also use the same method to get the
same result of𝑚 = 1.

When 𝑚 > 1, some difficulties are caused when we
discuss orbits in the directions 𝜃 = 0, 𝜋, because 𝐺󸀠1(0) =𝐻1(0) = 0, which does not match any conditions of the
theorems in references, e.g., [24]. However, in what follows,
we construct GNSes or some related open quasi–sectors
which allow curves and orbits to be their boundaries, to
determine how many orbits connect 𝐴 in 𝜃 = 0, 𝜋.

From 𝑑𝑧/𝑑𝑡 = 0 in (16), two horizontal isoclines are
determined near 𝜃 = 0, 𝜋: one is 𝑉1 fl {V ∈ R+ : 𝑧 = 0}
and the other is 𝑉2 fl {V ∈ R− : 𝑧 = 0}. Furthermore, let

L1 = {(V, 𝑧) ∈ R+
2 : 𝑧 = 𝜎1V, 0 < 𝑟 < ℓ} ,

L2 = {(V, 𝑧) ∈ R+ × R− : 𝑧 = 𝜎1V, 0 < 𝑟 < ℓ} ,
L3 = {(V, 𝑧) ∈ R− × R+ : 𝑧 = 𝜎1V, 0 < 𝑟 < ℓ} ,
L4 = {(V, 𝑧) ∈ R−

2 : 𝑧 = 𝜎1V, 0 < 𝑟 < ℓ} ,

(29)

where 𝜎1 > 0 and 𝜎1 is closed to zero.

Case 1. 𝑎 < 0. Notice that there are no vertical isoclines near𝜃 = 0 in (16). We claim that the open sector ΔL̂1𝐵L2 is
a GNS in class I. In fact, we have 𝑑𝑧/𝑑𝑡 > 0 between L1
and 𝑉1 and 𝑑𝑧/𝑑𝑡 < 0 between L2 and 𝑉1. So 𝑑𝑟/𝑑𝑡 > 0
in the closure clΔL̂1𝐵L2/{𝐵}. Therefore, what we claim is
proved by the definition of GNS. Lemma 1 in [26] guarantees
that system (16) has infinitely many orbits in connection with
(actually leaving from) 𝐵 in ΔL̂1𝐵L2. If𝑚 = 2 and −2 ≤ 𝑎 <0, we notice that there are no vertical isoclines near 𝜃 = 𝜋 in
(16). Hence inΔL̂3𝐵𝑉2 andΔL̂4𝐵𝑉2, we have 𝑑V/𝑑𝑧 < 0 and𝑑V/𝑑𝑧 > 0, respectively, implying that infinitely many orbits
connect 𝐵 in the two sectors by Lemma 1 in [26]. If𝑚 = 2 and𝑎 < −2, or 𝑚 > 2, from 𝑑V/𝑑𝜏 = 0 in (16), we obtain vertical
isoclinesH1 fl {(V, 𝑧) ∈ R2− : 𝑧2𝑚 − 𝑎V3𝑧2𝑚−2 + V2𝑚+2, 0 < 𝑟 <ℓ} andH2 fl {(V, 𝑧) ∈ R− × R+ : 𝑧2𝑚 − 𝑎V3𝑧2𝑚−2 + V2𝑚+2, 0 <𝑟 < ℓ}, where ℓ > 0 is a sufficiently small constant. Obviously,
H𝑖(𝑖 = 1, 2) is tangent to V–axis at 𝐵; hence in ΔĤ1𝐵𝑉2 andΔĤ2𝐵𝑉2, we have 𝑑V/𝑑𝑧 > 0 and 𝑑V/𝑑𝑧 < 0, respectively,
implying that infinitely many orbits connect 𝐵 in the two
sectors by Lemma 1 in [26].

Case 2. 𝑎 > 0. Based on the proof of 𝑎 < 0, we can also use
the same method to get the same result of 𝑎 > 0. We can give
the three cases as shown in Figure 3.

5. Nonexistence and Uniqueness of
Closed Orbits

Let us consider the Liénard system

𝑑𝑥
𝑑𝑡 = 𝑦 − 𝐹 (𝑥) ,
𝑑𝑦
𝑑𝑡 = −𝑔 (𝑥) ,

(30)

in which 𝐹(𝑥) and 𝑔(𝑥) are continuous functions on R

satisfying locally Lipschitz condition. We assume that

𝐹 (0) = 0,
𝑥𝑔 (𝑥) > 0 if 𝑥 ̸= 0. (31)

Then the origin is the only critical point. Let 𝑀 =
min{∫∞

0
𝑔(𝑥)𝑑𝑥, ∫−∞

0
𝑔(𝑥)𝑑𝑥} (𝑀may be∞) and let

𝑤 = 𝐺 (𝑥) = ∫𝑥
0

󵄨󵄨󵄨󵄨𝑔 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥. (32)

Then by (31),𝐺(𝑥) is strictly increasing.We denote the inverse
function of 𝐺(𝑥) by 𝐺−1(𝑤).

In article [27], Sugie and Hara gave the following con-
dition on 𝐹(𝑥) and 𝑔(𝑥) under which system (30) has no
periodic solutions except the origin.

Lemma 9 (see [27]). Suppose that

𝐹 (𝐺−1 (𝑤)) ̸= 𝐹 (𝐺−1 (−𝑤)) for 0 < 𝑤 < 𝑀. (33)

Then system (30) has no nonconstant periodic solutions.

Let 𝑥𝑖(𝑧) be the inverse function of 𝑧 = 𝐺(𝑥) and
(−1)𝑖+1𝑥 ≥ 0, where 𝑖 = 1, 2; (30) will be equations (𝐸1) and(𝐸2) in domains 𝑥 ≥ 0 and 𝑥 ≤ 0, respectively.

𝑑𝑧
𝑑𝑦 = 𝐹𝑖 (𝑧) − 𝑦,

(𝐸𝑖)𝑖=1,2 ,
(34)

where 𝐹𝑖(𝑧) = 𝐹(𝑥𝑖(𝑧)).
Lemma 10 (see [28]). Assume 𝑓(𝑥) and 𝑔(𝑥) are continuous
functions in (−∞, +∞), 𝑥𝑔(𝑥) > 0 for 𝑥 ̸= 0, 𝐺(±∞) = +∞,
and verify

(1) ∃𝑎 ≥ 0, 𝐹1(𝑧) ≤ 0 ≤ 𝐹2(𝑧) for 0 < 𝑧 < 𝑎, 𝐹1(𝑧) ̸≡𝐹2(𝑧), 𝐹1(𝑧) > 0 for 𝑧 > 𝑎,
(2) 𝐹2󸀠(𝑧) ≤ 0 for 𝐹2(𝑧) < 0,
(3) 𝐹1(𝑧)𝐹1󸀠(𝑧) is non-decrease for 𝑧 > 𝑎,
(4) when 𝐹1(𝑧) = 𝐹2(𝑢) for 𝑢 ≥ 𝑧 > 𝑎, we have 𝐹1󸀠(𝑧) ≥𝐹2󸀠(𝑢). Then system (30) has at most one limit cycle in(−∞, +∞); if it exists, it must be simple and stable.

Lemma 11. When 𝑎𝑐 ≥ 0, system (4) has no closed orbits; when𝑎𝑐 < 0, system (4) has a unique closed orbit.
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Proof. We can easily compute

𝐺−1 (𝑤) = 2𝑚+2√𝑤 (2𝑚 + 2),
𝐺−1 (−𝑤) = − 2𝑚+2√𝑤 (2𝑚 + 2)

for 𝑤 > 0.
(35)

Obviously,

𝐹 (𝐺−1 (𝑤)) − 𝐹 (𝐺−1 (−𝑤))
= 2 2𝑚+2√𝑤 (2𝑚 + 2) [𝑎 𝑚+1√𝑤 (2𝑚 + 2) + 𝑐] . (36)

When 𝑎𝑐 ≥ 0, 𝐹(𝐺−1(𝑤)) ̸= 𝐹(𝐺−1(−𝑤)) for𝑤 > 0.Therefore,
system (4) has no closed orbits byTheorem4.5 of [24, Chapter
2] 5 when 𝑎𝑐 ≥ 0.

When 𝑎𝑐 < 0, we only discuss 𝑎 > 0, since the proof of
the case 𝑎 < 0 is reduced to that of the case 𝑎 > 0 by the
transformations 𝑦 󳨀→ −𝑦 and 𝑡 󳨀→ −𝑡.

(1) 𝑏 > 0. The equation 𝐹(𝑥) = 0 has three roots 0, 𝑥1, 𝑥2,
where 𝑥𝑖 = (−𝑏±√𝑏2 − 4𝑎𝑐)/(2𝑎), 𝑖 = 1, 2. We can get√𝑐/𝑎 > 𝑥1. Therefore, 𝐹(𝑥) < 𝐹(−𝑥) for 0 < 𝑥 < 𝑥1
and 𝐹(𝑥) > 0 for 𝑥 > 𝑥1. Because 𝐹(−𝑥) < 0 for 𝑥 >−𝑥2, we can easily compute𝐹󸀠(−𝑥) = −3𝑎𝑥2+2𝑏𝑥−𝑐 =−2𝑎𝑥2+𝑏𝑥−𝑎𝑥2+𝑏𝑥−𝑐 < 0.When 𝑥 > 𝑥1, we can get𝐹(𝑥) > 0 and 𝐹(𝑥) is an increase function, 𝐹󸀠(𝑥) > 0
and 𝐹󸀠󸀠(𝑥) = 6𝑎𝑥 + 2𝑏 is also an increase function.
Therefore, 𝐹(𝑥)𝐹󸀠(𝑥) is non-decrease for 𝑥 > 𝑥1.
When 𝐹(𝑥3) = 𝐹(−𝑥4) for 𝑥4 ≥ 𝑥3 > 𝑥1, we can
get 𝑎𝑥3(𝑥3 − 𝑥4) + 𝑏(𝑥3 − 𝑥4) + 𝑐 = 0. Therefore,𝐹󸀠(𝑥3) − 𝐹󸀠(𝑥4) = 𝑎(𝑥32 + 2𝑥3𝑥4 + 3𝑥42) > 0. So,
system (30) has at most one limit cycle in (−∞, +∞);
if it exists, it must be simple and stable.

(2) 𝑏 < 0.The proof of the case (2) is reduced to that of the
case (1) by the transformations 𝑦 󳨀→ −𝑦 and 𝑥 󳨀→−𝑥.

The existence of limit cycles can be proved byTheorem 1.3 in
[24, Chapter 2]. Thus, system (30) has a unique stable limit
cycle.

Conflicts of Interest

The author declares that he has no conflicts of interest.

Acknowledgments

The author would like to thank Professor Hebai Chen for the
help and valuable guidance on his paper.

References

[1] F. Jiang, J. Shi, Q.-G. Wang, and J. Sun, “On the existence
and uniqueness of a limit cycle for a Liénard system with
a discontinuity line,” Communications on Pure and Applied
Analysis, vol. 15, no. 6, pp. 2509–2526, 2016.

[2] Y. F. Suprunenko and A. Stefanovska, “Generalized chronotaxic
systems: Time-dependent oscillatory dynamics stable under
continuous perturbation,” Physical Review E: Statistical, Nonlin-
ear, and Soft Matter Physics, vol. 90, Article ID 032921, 2014.

[3] A. F. Taylor,M. R. Tinsley, F.Wang, Z. Huang, and K. Showalter,
“Dynamical quorum sensing and synchronization in large
populations of chemical oscillators,” Science, vol. 323, no. 5914,
pp. 614–617, 2009.

[4] N. Turner, P. V. E. McClintock, and A. Stefanovska, “Maximum
amplitude of limit cycles in Liénard systems,” Physical Review E,
vol. 91, Article ID 012927, 2015.
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