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In this study, the influence of traveler's departure time choice in day-to-day dynamic evolution of traffic flow in a transportation
network is investigated. Combining historical information and real-time information, a dynamic evolution model of traffic flow
with a study period divided into two intervals is proposed for a simple two-link network.Then, the evolution of network traffic flow
is investigated using numerical experiments. Three types of information are considered: (1) only historical information, (2) only
real-time information, and (3) both historical and real-time information. The results show that the dynamic evolution of network
traffic flow under the three types of information is similar. However, the possibility of chaos occurrence under both historical and
real-time information is smaller than that under two individual types of information. When chaos occurs, the chaotic behavior in
traffic-flow evolution under only real-time information is relatively less complex than that under the other two types of information.

1. Introduction

Both traditional static and dynamic traffic assignments only
focus on the equilibrium solution and its solution algorithm.
The research on the evolution of network traffic flow focuses
on finding whether the equilibrium of network flows exists
and has been extensively analyzed. Such research does not
focus on network flows equilibrium but on the dynamic
evolution process of network traffic flow, exploring whether
equilibrium exists in network flows and how the equilibrium
is reached.

The dynamic evolution of network traffic flow is the
macroscopic outcome of a large number of traveler’s route
choices. Therefore, from the view of individual travelers,
different assumptions about traveler’s choice behavior may
lead to different results of network traffic-flow evolution.
Nakayama et al. [1] assumed that drivers’ cognitive ability
is limited. A model system of drivers’ cognition, learning,
and route choice was formulated to determine the dynamic
characteristics of a driver-network system throughmicrosim-
ulation. Kim et al. [2] used a day-to-day evolution approach
and developed agent-based simulation models to investigate

how three assumptions of the user equilibrium (UE) principle
(perfect information, rationality, and homogeneity) influence
network traffic flows. Wei et al. [3] proposed a day-to-
day route choice model based on reinforcement learning to
analyze the effects of traveler’s memory, learning rate, and
experience cognition on the evolution of traffic flow using
multiagent simulation.

Thepreceding researchwas carried out usingmicroscopic
simulation. However, some scholars have simulated day-to-
day route choice behavior at microlevel using experimental
methods. Avineri et al. [4] discussed the influence of travel
time information on the traveler’s route choice using two-
route choice laboratory experiments under uncertainty. Sel-
ten et al. [5] reported laboratory route choice experiments
between amain route and a side route, showing that the mean
numbers on both roads tend to be very near equilibrium, and
the fluctuation of network flows under perfect information
is smaller than that under imperfect information. Rapoport
et al. [6] designed two experiments to study whether the
paradox is behaviorally realized in two simulated traffic
networks that differ fromeach other in their topology, and the
results proved the existence of Braess paradox. Meneguzzer
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et al. [7] reported an experiment to analyze day-to-day route
choice dynamics in a simple three-route network.

On the other hand, other scholars studied the evolution
of network traffic flow directly from aggregate-perspective.
Smith [8] proposed a dynamic system converging to the
Wardrop equilibrium solution by using the Lyapunovmethod
under the assumption that the cost-flow function is mono-
tone. Friesz et al. [9] analyzed the influence of information
quality provided by traveler’s information system on the day-
to-day adjustment processes of network flows. They found
that the dynamic adjustment process can eventually achieve
equilibriumunder the conditions of complete and incomplete
information. Guo et al. [10] proposed a dynamic system
that modeled the day-to-day adjustment process of traffic
flow with link-flow variables, whose stationary state was
equivalent to the UE state. Xiao et al. [11] showed that the
network flow dynamics, which was analogous to a damped
oscillatory system, would approach the equilibrium state with
minimum total potential energy and zero kinetic energy.
The preceding studies were carried out with continuous-
time dynamic models, although discrete-time models may
be more plausible in reality. Horowitz [12] proposed a
discrete dynamic system model based on a two-link network
and investigated the stability of stochastic equilibrium for
discrete-time deterministic process. More recently, Guo et
al. [13] formulated the day-to-day evolution of link flows
in traffic network using a discrete dynamic system model,
and the equilibrium state would be in either a deterministic
or a stochastic user equilibrium state. Rambha et al. [14]
developed a dynamic day-to-day pricing model to minimize
the expected total system travel time, contributing to a
significant reduction in expected total system travel time
compared with the no-toll case.

The evolution of network traffic flow is a discrete dynamic
system that has attracted the interest of many researchers
who used nonlinear dynamics to analyze this phenomenon.
Cantarella et al. [15, 16] proposed a day-to-day dynamic
model and used nonlinear dynamics to deduce the equilib-
rium condition. Dendrinos [17] found that short-term traffic
flow had nonlinear chaos involving fast Fourier transform of
urban traffic-flow time series. Zhang and Jarrett [18] investi-
gated the dynamic behavior of traffic flow in a network using
dynamic gravitymodel, inwhich equilibria, oscillations, peri-
odic doubling, and chaos were found. Lan et al. [19, 20] inves-
tigated the existence of chaotic behavior for short-term traffic
flow and developed a parsimony procedure to determine
whether chaotic phenomena exist in traffic-flow dynamics.
Xu and Gao [21, 22] further used UE assignment model to
estimate origin-destination (OD) cost and found that chaos
still existed even in a two-dimensional system. The authors
also presented a discrete dynamic model for the day-to-day
adjustment process of route choice and found oscillations and
chaos of network traffic flow when travelers were sensitive
to travel cost and demand. Guo and Huang [23] proposed a
discrete dynamic traffic assignmentmodel in the case of some
travelers with imperfect information. Oscillations and chaos
were observed when model parameters exceeded certain
values. Liu et al. [24, 25] presented the day-to-day dynamic
traffic-flow evolution based on nonlinear dynamics and

formulated a similar model with elastic demand. Li et al. [26]
used nonlinear dynamics to analyze day-to-day evolution
characteristics of traffic flow under bounded rational and
analyzed the relationship between traveler’s rationality and
system stability.

The preceding research on the evolution of network
traffic flow only considers the influence of route choice, but
does not consider the influence of departure time choice.
It assumes that traveler’s route choice is based on a single
departure interval. However, traveler’s departure time choice
behavior is also an important factor that influences the
evolution of network traffic flow. It is reasonable to relax
this assumption because travelers will travel at different
departure times to reduce their travel times. Therefore, it is
necessary to analyze the evolution of network traffic flow
under the combined influence of traveler’s departure time
and route choice behavior. The departure time is not fixed,
and travelers adjust the departure time according to the
congestion level of the network. Based on this concept,
Cascetta and Cantarella [27] presented a day-to-day and
within-day dynamic assignment models. They focused on
the analysis of network daily flow fluctuations, but ignored
the day-to-day traffic-flow evolution at different periods.
Ziliaskopoulos and Rao [28] proposed a simulation-based
model for equilibrium on dynamic networks when travelers
simultaneously optimize their departure times and route
choices, but did not consider the instability of traffic-flow
evolution. Srinivasan and Guo [29] investigated the day-
to-day dynamics in an urban traffic network induced by
departure time dynamics in commuter decisions, but did
not consider traveler’s route choice behavior. In addition,
numerous studies, such as Ben-Elia et al. [30], Han et al.
[31], and Mahmassani et al. [32], have shown that travel
information has an impact on traveler’s choice behavior.

Note that the research previously conducted by the
authors to investigate chaotic behavior [24, 25] has focused
on day-to-day network traffic-flow evolution and considered
only route choice behavior (departure time behavior was not
considered).Therefore, the purpose of this paper is to analyze
day-to-day dynamic evolution of network traffic flow con-
sidering both route choice and departure time. In addition,
the influence of historical and real-time travel information
on traveler’s departure time and route choice is evaluated.
A day-to-day dynamic evolution model considering the
departure time and route choice is proposed and the dynamic
evolution characteristics of traffic flow under the influence
of different travel information are evaluated with a focus on
the characteristics of chaos. The paper considers a two-link
network which has been the main focus of researchers [5, 12,
15] and two intervals for the traveler’s departure time choice.
The presented two-interval formulation lays the foundation
for the study of traffic-flow evolution in complex networks
with multiple intervals.

2. Proposed Model

A simple road network is used in this study, as shown in
Figure 1. The network consists of two parallel links (1 and 2)
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Figure 1: Two-link road network considered in the study.

in the same direction that are connected to an origin (O) and
a destination (D).

The evolution of network traffic flow in a two-link
network with two intervals is illustrated in Figure 2. First,
travel demands in the two intervals on day n-1 are determined
based on historical travel information under the assumption
that daily traffic demand is fixed. Then, travel demand in
interval 1 is assigned to two links based on travel information.
Thus, the travel time of the links in interval 1 is obtained.
Next, travel demand in interval 2 is assigned according to
historical information and the travel time information in
interval 1. The travel times of the links in interval 2 are also
obtained. When all travelers arrive at their destination on day
n - 1, the travel time information of the two links in the two
intervals becomes new historical travel information. Finally,
the distribution of network traffic flow on day n is updated
according to the new historical travel information.

The study period is divided into two intervals. The OD
demand is fixed. It is assumed that link travel time is related
to link traffic volume.The travel time function is expressed as

𝐶𝑛,𝑡𝑝 = 𝑔𝑝 (𝑓𝑛,𝑡𝑝 ) , 𝑡 = 1, 2; 𝑝 = 1, 2 (1)

where 𝑓𝑛,𝑡1 and 𝑓𝑛,𝑡2 are the traffic volumes of links 1 and 2,
respectively, in interval t on day n and 𝐶𝑛,𝑡1 and 𝐶𝑛,𝑡2 are the
actual travel costs of links 1 and 2, respectively, in interval t
on day n.

The evolution process of network flows is shown in
Figure 2. The perceived travel cost on day n, which should
be updated before the trip, is determined using the perceived
and actual travel costs on day (n -1), as follows:

𝐶𝑛,𝑡𝑝 = 𝜑𝐶𝑛−1,𝑡𝑝 + (1 − 𝜑) 𝐶𝑛−1,𝑡𝑝 , 𝑡 = 1, 2; 𝑝 = 1, 2 (2)

where 𝜑 is the weight coefficient (0 ≤ 𝜑 ≤ 1) which reflects
the traveler’s dependence on the perceived travel cost of the
previous day, where travel cost is determined based on travel
time.

According to the perceived travel cost on day n, the
probabilities of departure in two intervals can be determined.
The utility of link p in interval t is defined as

𝑈𝑛𝑝,𝑡 = 𝑉𝑛𝑝/𝑡 + 𝑉𝑛𝑡 + 𝜀𝑛𝑝/𝑡 + 𝜀𝑛𝑡 (3)

where 𝑉𝑛𝑝/𝑡 and 𝜀𝑛𝑝/𝑡are systematic and random components
that change with the combination (t, p) in the utility of link
p in interval t, respectively, 𝑉𝑛𝑡 and 𝜀𝑛𝑡 are systematic and

random components, which only change with t in the utility
of link p in interval t, respectively. Note that 𝑉𝑛𝑝/𝑡 = −𝜃𝐶𝑛,𝑡𝑝 ,𝑉𝑛𝑡 = −𝑐𝑛𝑡 = −𝑐𝑡.

Assume that (a) 𝜀𝑛𝑡 and 𝜀𝑛𝑝/𝑡 are independent for all p (p= 1,
2) and t (t = 1, 2) and (b) 𝜀𝑛𝑝/𝑡 are independent and identically
Gumbel distributed [33] with parameters (0, 1) for fixed t.
Then, the probability of choosing departure time in interval t
(=1,2) on day n is given by [34]

𝑃𝑛,1 = 1
1 + 𝑒𝜆((−c2+ln(𝑒−𝜃𝐶𝑛,21 +𝑒−𝜃𝐶𝑛,22 ))−(−𝑐1+ln(𝑒−𝜃𝐶𝑛,11 +𝑒−𝜃𝐶𝑛,12 ))) (4)

𝑃𝑛,2 = 1 − 𝑃𝑛,1
= 1

1 + 𝑒𝜆((−𝑐1+ln(𝑒−𝜃𝐶𝑛,11 +𝑒−𝜃𝐶𝑛,12 ))−(−𝑐2+ln(𝑒−𝜃𝐶𝑛,21 +𝑒−𝜃𝐶𝑛,22 )))
(5)

where 𝜆 and 𝜃 are related to traveler characteristics.
The travel demand in the two intervals can be calculated

according to the probabilities of departure choice as follows.

𝑑𝑛,1 = 𝐷
1 + 𝑒𝜆((−𝑐2+ln(𝑒−𝜃𝐶𝑛,21 +𝑒−𝜃𝐶𝑛,22 ))−(−𝑐1+ln(𝑒−𝜃𝐶𝑛,11 +𝑒−𝜃𝐶𝑛,12 ))) (6)

𝑑𝑛,2 = 𝐷
1 + 𝑒𝜆((−𝑐1+ln(𝑒−𝜃𝐶𝑛,11 +𝑒−𝜃𝐶𝑛,12 ))−(−𝑐2+ln(𝑒−𝜃𝐶𝑛,21 +𝑒−𝜃𝐶𝑛,22 ))) (7)

Let

𝑃 (𝐶𝑛,11 , 𝐶𝑛,12 , 𝐶𝑛,21 , 𝐶𝑛,22 )
= 1

1 + 𝑒𝜆((−𝑐2+ln(𝑒−𝜃𝐶𝑛,21 +𝑒−𝜃𝐶𝑛,22 ))−(−𝑐1+ln(𝑒−𝜃𝐶𝑛,11 +𝑒−𝜃𝐶𝑛,12 ))) .
(8)

Traffic assignment is carried out in two intervals after
determining travel demand. Travelers update their perceived
travel costs based on historical and real-time travel informa-
tion in the chosen departure time. Therefore, the updated
perceived travel cost is determined based on the perceived
travel cost on day n and the actual travel cost at the previous
interval and is expressed as

𝐶𝑛,𝑡𝑝 = 𝛼𝐶𝑛,𝑡𝑝 + (1 − 𝛼) 𝐶𝑛,𝑡−1𝑝 , 𝑡 = 1, 2; 𝑝 = 1, 2 (9)

where 𝛼 is the weight coefficient (0 ≤ 𝛼 ≤ 1) which reflects
the traveler’s dependence on the perceived travel cost on day
n and 𝐶𝑛,0𝑝 is the real-time information of the network in
interval 1 on day n, which is the free-flow link travel time.

It is worth noting that for 𝛼 = 1 the traveler’s perceived
travel cost does not change. That is, the traveler selects the
route based on historical travel information. For 𝛼 = 0, the
traveler’s perceived travel cost depends on actual travel cost
in the previous interval on the same day. That is, the traveler
selects the route based on real-time travel information. The
traveler’s perceived travel cost for 𝛼 = 1 is expressed as

𝐶𝑛,𝑡𝑝 = 𝐶𝑛,𝑡𝑝 , 𝑡 = 1, 2; 𝑝 = 1, 2 (10)

The traveler’s perceived travel costs for 𝛼 = 0 is expressed
as follows.

𝐶𝑛,𝑡𝑝 = 𝐶𝑛,𝑡−1𝑝 , 𝑡 = 1, 2; 𝑝 = 1, 2 (11)
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Figure 2: Evolution of network traffic flow on two-link network with a study period divided into two intervals.

The utility of link p (p = 1, 2) in interval t (t = 1, 2)
contains systematic utility component −𝜃𝐶𝑛,𝑡𝑝 and random
utility component 𝜉𝑡𝑝. It is assumed that the random utility
component 𝜉𝑡𝑝 is Gumbel distributed with parameters (0, 1).
The probability of route choice in interval t (t = 1, 2) on day n
is given by the following.

𝑝𝑛,𝑡1 = 𝑃 (−𝜃𝐶𝑛,𝑡1 + 𝜉𝑡1 ≥ −𝜃𝐶𝑛,𝑡2 + 𝜉𝑡2)
= 1

1 + 𝑒𝜃(𝐶̂𝑛,𝑡1 −𝐶̂𝑛,𝑡2 )
(12)

𝑝𝑛,𝑡2 = 1 − 𝑝𝑛,𝑡1 = 1
1 + 𝑒−𝜃(𝐶̂𝑛,𝑡1 −𝐶̂𝑛,𝑡2 ) (13)

Route flows in interval 1 can be assigned according to the
probability of route choice in interval 1 on day n. That is,

𝑓𝑛,11 = 𝑑𝑛,1
1 + 𝑒𝜃(𝐶̂𝑛,11 −𝐶̂𝑛,12 ) (14)

𝑓𝑛,12 = 𝑑𝑛,1
1 + 𝑒−𝜃(𝐶̂𝑛,11 −𝐶̂𝑛,12 ) . (15)

Let

𝑝1 (𝐶𝑛,11 , 𝐶𝑛,12 ) = 1
1 + 𝑒𝜃(𝐶̂𝑛,11 −𝐶̂𝑛,12 ) . (16)

Then, traffic assignment in interval 2 is given by the
following.

𝑓𝑛,21 = 𝑑𝑛,2
1 + 𝑒𝜃(𝐶̂𝑛,21 −𝐶̂𝑛,22 ) (17)

𝑓𝑛,22 = 𝑑𝑛,2
1 + 𝑒−𝜃(𝐶̂𝑛,21 −𝐶̂𝑛,22 ) (18)

Let

𝑝2 (𝐶𝑛,11 , 𝐶𝑛,12 , 𝐶𝑛,21 , 𝐶𝑛,22 ) = 1
1 + 𝑒𝜃(𝐶̂𝑛,21 −𝐶̂𝑛,22 ) . (19)

Then, the dynamic system model is translated into the
following equations.

𝐶𝑛,11 = 𝜑𝐶𝑛−1,11 + (1 − 𝜑) 𝑔1 (𝐷
⋅ 𝑃 (𝐶𝑛−1,11 , 𝐶𝑛−1,12 , 𝐶𝑛−1,21 , 𝐶𝑛−1,22 )
⋅ 𝑝1 (𝐶𝑛−1,11 , 𝐶𝑛−1,12 ))

(20)

𝐶𝑛,12 = 𝜑𝐶𝑛−1,12 + (1 − 𝜑) 𝑔2 (𝐷
⋅ 𝑃 (𝐶𝑛−1,11 , 𝐶𝑛−1,12 , 𝐶𝑛−1,21 , 𝐶𝑛−1,22 )
⋅ (1 − 𝑝1 (𝐶𝑛−1,11 , 𝐶𝑛−1,12 )))

(21)

𝐶𝑛,21 = 𝜑𝐶𝑛−1,21 + (1 − 𝜑) 𝑔1 (𝐷
⋅ (1 − 𝑃 (𝐶𝑛−1,11 , 𝐶𝑛−1,12 , 𝐶𝑛−1,21 , 𝐶𝑛−1,22 ))
⋅ 𝑝2 (𝐶𝑛−1,11 , 𝐶𝑛−1,12 , 𝐶𝑛−1,21 , 𝐶𝑛−1,22 ))

(22)

𝐶𝑛,22 = 𝜑𝐶𝑛−1,22 + (1 − 𝜑) 𝑔2 (𝐷
⋅ (1 − 𝑃 (𝐶𝑛−1,11 , 𝐶𝑛−1,12 , 𝐶𝑛−1,21 , 𝐶𝑛−1,22 ))
⋅ (1 − 𝑝2 (𝐶𝑛−1,11 , 𝐶𝑛−1,12 , 𝐶𝑛−1,21 , 𝐶𝑛−1,22 )))

(23)

Note that (12) to (23) describe day-to-day dynamic evolu-
tion process of route flow in each of the two intervals, unlike
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those of Cantarella et al. [16] which reflect the day-to-day
dynamic evolution process of route flow in only one interval.
Whether the evolution of network traffic flow is chaotic can
be determined according to the Lyapunov exponent of the
dynamic system. The Lyapunov exponent of n-dimensional
discrete dynamic system is calculated as [35]

𝐿 𝑖 = lim
𝑘󳨀→∞

1
𝑘 log 󵄨󵄨󵄨󵄨𝑢𝑖 [𝐽𝑘 ⋅ ⋅ ⋅ 𝐽1]󵄨󵄨󵄨󵄨 (24)

where Ji is the Jacobian matrix and ui is the eigenvalue of the
matrix. In this paper, the maximum Lyapunov exponent is
used to judge whether the evolution of network traffic flow
is chaotic. If the exponent is greater than 0, the evolution of
network traffic flow is considered chaotic.

3. Numerical Investigation

The traffic network shown in Figure 1 was used in this numer-
ical investigation. The travel time for each link is calculated
using the following Bureau of Public Roads formula:

𝑡 = 𝑡0 [1 + 0.15 ( 𝑓
𝑄)4] (25)

where t is the travel time to traverse a link, t0 is the link
free-flow travel time, f is the link traffic volume, and C is
the link capacity. The following data were assumed for the
experiments: for link 1, free-flow travel time (t10) is 22 min
and capacity (Q1) is 1500 veh/h, and for link 2, free-flow travel
time (t20) is 25 min and capacity (Q2) is 2000 veh/h. It is
assumed that the inherent disutility in interval 1 (c1) is 5 and
that in interval 2 (c2) is 3.TheODdemand in the study period
is 3000 veh and the study period is 2 hours, which is divided
into two intervals. The travelersmake route choice in the two-
link network and can depart from the origin in any one of the
two intervals.

3.1. Effect of 𝜃 on Network Flow Evolution for 𝛼 = 1. For 𝛼 = 1,
the traveler’s perceived travel cost is unchanged, indicating
that the traveler selects the route based on only historical
travel information. The influence of traveler’s dependence on
the perceived travel cost in previous day on the evolution of
the network flows in different situations is discussed next.

The bifurcation diagram formed by traffic-flow evolution
of link 1 in interval 1, where 𝜑 changes as 𝜃 increases, is
shown in Figure 3. When 𝜃 is small, no matter what 𝜑 is,
the evolution of network traffic flow will not become chaotic
but will always maintain stability, as shown in Figure 3(a)
and in the right parts of Figures 3(b) and 3(c). Then, as 𝜃
increases, the periodic phenomena appear in the evolution of
traffic flow, as shown in the left parts of Figures 3(b) and 3(c).
The results show that the chaotic phenomena appear when𝜃 exceeds a certain value (𝜃 ≥ 1.09). Figure 3(d) shows an
example of the start of chaos for 𝛼 = 1. When chaos occurs in
traffic-flow evolution, the chaotic region is shifted from small
to larger 𝜑 as 𝜃 increases, as shown in Figures 3(e) and 3(f).

The results show that the evolutionary processes of traffic
demand and traffic flow are similar. The evolution charac-
teristics of traffic demand are shown in Figure 4, which are

similar to those of Figure 3. In the evolution of traffic demand
and traffic flow, chaotic behaviors appear simultaneously.

3.2. Effect of 𝜆 or 𝜃 on Network Flow Evolution for Different𝛼. The different states of traffic-flow evolution with different𝛼(1,0.5 and 0) are shown in Figure 5. For 𝛼 = 1, to analyze
the chaotic behavior of traffic-flow evolution with 𝜃 and 𝜑,
the different states of the evolution with 𝜃 and 𝜑 are plotted
using numerical experiments for 𝜆 = 0.4, as shown in the left
figure of Figure 5(a). The evolution characteristics of traffic
flow in Figure 3 can be further verified from the left figure
of Figure 5(a). The system will not be in chaotic state when𝜃 is small. On the contrary, the evolution will be chaotic
when 𝜃 exceeds 1.09. In the case of chaos in the evolution of
network traffic flow, the chaotic region gradually shifts to the
side of larger 𝜑 as 𝜃 increases. In addition, the states of the
evolution with parameters 𝜆 and 𝜑 when 𝜃 = 3 are shown in
right figure of Figure 5(a), which is similar to that in the left
figure of Figure 5(a). For 0 < 𝛼 < 1, the traveler’s perceived
travel cost is determined using both historical and real-time
travel information. Taking 𝛼 = 0.5 as an example, the system
states for different 𝜃 and 𝜑, 𝜆 = 0.4, and 𝛼 = 0.5 are shown in
the left figure of Figure 5(b). As noted, the nonchaotic region
is larger than the chaotic region. When 𝜃 exceeds 1.35, the
evolution appears chaotic. In addition, the states of evolution
for different 𝜆 and 𝜑, 𝜃 = 3, and 𝛼 = 0.5 are shown in the right
figure of Figure 5(b), which is also similar to that in the left
figure of Figure 5(b).

For 𝛼 = 0, traveler’s perceived travel cost is determined
by the actual travel cost in the previous interval on the same
day; in other words, travelers select route according to real-
time travel information. The system’s state with 𝜃 and 𝜑 for 𝜆
= 0.4 is shown in the left figure of Figure 5(c). As shown in
the left figure of Figure 5(c), the evolution shows chaos when𝜃 exceeds 1.35, and the chaotic region is mainly on the right.
In addition, the states of the evolution with 𝜆 and 𝜑 for 𝜃 = 3
are shown in the right figure of Figure 5(c), which is similar
to that in the left figure of Figure 5(c). Based on the above
analysis, it is concluded that the effects of 𝜆 and 𝜃 on network
traffic-flow evolution are similar.

3.3. Comparison of Chaotic Region under Different Types
of Information. The different states of traffic-flow evolution
under three types of travel information are shown in Figure 6
for 𝜆 =0.3 and 0.8. As noted, the chaotic region under
the combined influence of historical and real-time travel
information is smaller than that under the individual influ-
ence of historical or real-time travel information. Therefore,
the possibility of chaos occurrence in traffic-flow evolution
is relatively small when the travelers choose the routes
according to both types of travel information.

To investigate the effect of different types of information
on traffic-flow evolution, Figure 7 shows the system states for
different 𝛼 and 𝜑 for specific values of (𝜃 = 5, 𝜆 = 0.4) and (𝜃
= 3, 𝜆 = 0.8). As noted, the chaotic region decreases first and
then increases as 𝛼 increases. Therefore, this result further
verifies that traveler’s route choice based on both historical
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(f) 𝜃 = 6.0

Figure 3: Flow bifurcation diagram with 𝜑 for 𝛼 = 1, 𝜆 = 0.4 for different 𝜃.

and real-time information can reduce the probability of chaos
occurrence.

3.4. Comparison of Chaotic Complexity under Different Types
of Information. A phase diagram for each step of the system
(i.e., projection of the system attractor on the plane with
the two coordinates) is shown in Figure 8, where the x-axis
is the flow of link 1 in interval 1 and the y-axis is the flow

on link 1 in interval 2. In this figure, the chaotic behavior
in traffic-flow evolution was analyzed under three different
types of travel information. As noted, the complexity of the
chaotic attractor under real-time information is smaller than
that under only historical or combined historical and real-
time information. Therefore, the traveler’s route choice based
on real-time information can make the chaos in traffic-flow
evolution less complex.
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(f) 𝜃 = 6.0

Figure 4: Demand bifurcation diagram with 𝜑 for 𝛼 = 1, 𝜆 = 0.4 for different 𝜃.

4. Conclusions

In this paper, a day-to-day dynamic evolution model of
network traffic flow is formulated considering departure
time choice in a two-link network with two-interval anal-
ysis period. Traffic-flow evolution under different types of
information is investigated using numerical experiments by
changing traveler characteristic parameters (𝜑, 𝜃, and 𝜆) and
travel information parameter (𝛼). Based on this study, the
following comments are offered:

(1) The evolution of network traffic flow as 𝜃 or 𝜆
increases is similar for different types of travel infor-
mation: chaos does not appear initially when 𝜃 or 𝜆
is small, but chaos is found when 𝜃 or 𝜆 exceeds a
certain value. The explanation of this phenomenon
is straightforward. The parameter 𝜃 reflects trav-
eler’s sensitivity to travel time during route choice.
As 𝜃 increases, travelers become more sensitive to
travel time. Thus, travelers tend to select the shortest
route when 𝜃 is large, which makes network flows
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Figure 5: System state for different value of 𝛼.

unstable and the chaos more likely to happen. For
the parameter 𝜆, which reflects traveler’s sensitivity
to the perceived cost of the interval, as 𝜆 increases,
travelers become more sensitive to the perceived cost
of the interval. Similarly, chaos is more likely to occur
when𝜆 exceeds a certain value.Therefore, the traveler
sensitivity to the perceived cost of the interval and the
perceived route travel cost has similar effects on the

evolution of network trafficflow considering traveler’s
departure time and route choice.

(2) Overall, the possibility of chaos occurrence is rel-
atively small under the combined historical infor-
mation and real-time information. However, in the
case of chaos occurrence, the complexity of chaotic
behavior is relatively small under real-time infor-
mation alone. This is of great significance for the
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Figure 6: System state for different 𝜃 and 𝜑 for 𝜆(=0.3, 0.8) and 𝛼(=1, 0.5, 0).
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Figure 7: The system’s state for different 𝛼 and 𝜑 for (𝜃 = 5, 𝜆 = 0.4) and (𝜃 = 3, 𝜆 = 0.8).

management and control of network traffic flow using
travel information systems. The results show that
both historical and real-time information should be
used to guide network flows in normal circumstances.
When the network traffic flow is unstable, especially
when chaos occurs, real-time information should be
used to regulate traffic flows.

(3) The evolution of network traffic flow considering
traveler’s route and departure time choices ismodeled
in this paper by introducing a learning mechanism
based on travel time information from previous days
and that from the same day provided by a real-time
informative system. Under the basic framework of

this model, other different behavioral assumptions
may be adopted, such as bounded rationality. In
addition, the proposed model can be used to simulate
the conditions where different users are advised by
different information systems. For example, one-half
of travelers are influenced by historical information
and the other half are advised by real-time informa-
tion.

(4) Thefindings of this paper are only applicable to a two-
link network with two-interval period. The research
method of this paper would provide a useful back-
ground for analyzing traffic flows on more complex
networks. The dynamic evolution characteristics of
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Figure 8: Projection of chaotic attractor for 𝛼 for specific 𝜃, 𝜆 and 𝜑.

network traffic flow are analyzed by establishing a
larger dimensional nonlinear dynamic model. How-
ever, the chaos phenomenon may be more compli-
cated, such as the occurrence of hyperchaos. Some
of the preceding topics are currently explored by the
authors.

(5) The research presented in this paper is still in the theo-
retical stage, and therefore its verification using actual
data is warranted. If the chaos phenomenon of traffic
flow is proved to exist using a large amount of field
data, it will raise new research questions, for example,
how chaos control can be carried out tomake network
traffic flow reach a stable state. This definitely would
help traffic engineers and practitioners to effectively
manage and control road traffic.
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