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This paper investigates a multiperiod Telser’s safety-first portfolio selection model with regime switching where the returns of the
assets are assumed to depend on the market states modulated by a discrete-time Markov chain. The investor aims to maximize
the expected terminal wealth and does not want the probability of the terminal wealth to fall short of a disaster level to exceed a
predetermined number called the risk control level. Referring to Tchebycheff inequality, wemodify Telser’s safety-first model to the
case that aims to maximize the expected terminal wealth subject to a constraint where the upper bound of the disaster probability
is less than the risk control level. By the Lagrange multiplier technique and the embedding method, we study in detail the existence
of the optimal strategy and derive the closed-form optimal strategy. Finally, by mathematical and numerical analysis, we analyze
the effects of the disaster level, the risk control level, the transition matrix of the Markov chain, the expected excess return, and the
variance of the risky return.

1. Introduction

Nowadays, the portfolio selection theory has been one of
the main areas of research in the financial field. The earliest
approach to portfolio optimization is the mean-variance
approach pioneered by Markowitz [1]. In the past decades,
Markowitz’s mean-variance approach, where the variance of
return is used as a riskmeasure, has received a lot of attention.
In addition to the mean-variance criterion, there is another
important school of thought called the safety-first criterion,
which can be traced back to the work by Roy [2] based on the
recognition that avoiding loss of a significant magnitude is a
matter of great concern to most investors. According to Roy’s
safety-first rule, the investor aims to minimize the disaster
probability of the final return falling below a prespecified
critical return. In a follow-up paper, Kataoka [3] prespecifies
the probability that the final return is less than a critical return
and selects the strategy that maximizes the critical return.
The third form of the safety-first criterion proposed by Telser
[4] presents another form of the safety-first (TSF for short)
criterion, which tries to maximize the expected final return

subject to the constraint that the probability of the final return
no greater than a disaster level is less than a predetermined
acceptable number. The safety-first criterion can actually be
regarded as a significant complement to the prevailing mean-
variance criterion for portfolio optimization. First, themean-
variance approach views the risk as return variability, but
in the real world, investors might perceive risk in different
ways. For example, as Hagigi and Kluger [5] note, when
the time horizon is long, the investor might not care much
about the short-term fluctuation of the return. He might
instead aim to maximize the expected return while ensuring
that the probability of disaster is less than a given number.
Second, the results obtained under the safety-first framework
are different from those under a mean-variance criterion.
The findings of Shefrin and Statman [6] indicate that, in
general, optimal safety-first portfolios are not mean-variance
efficient. Moreover, according to the empirical findings in
Lopes [7], De Bondt [8], and Neugebauer [9], there actually
exists a comparative advantage of the safety-first approach
over deviation risk measures, such as the variance, because
it seems to better fit with the way investors perceive risk.
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Nowadays, people are more concerned about risk and
try their best to minimize inevitable losses in the face of
the intensified economic turmoil and political unrest over
the past years. For example, Haque and Varela [10] apply
safety-first portfolio principles to optimize the portfolios of
risk-averse US investors considering the harmful influence of
the 911 terrorist attacks on US financial markets. Therefore,
the safety-first approach now receives as much attention as
Markowitz’s theory. In terms of Roy’s safety-first criterion,
Norkin and Boyko [11] consider a static portfolio selection
model by improving Roy’s safety-first approach to the case
with a better estimation of the negative return probabilities. Li
et al. [12] extend Roy’s safety-first approach to a multiperiod
setting. In view of Tchebycheff inequality, they adopt an
approximation approach, which is to replace Roy’s disaster
probability by its upper bound, to obtain an analytical
solution. Their paper represents the first pioneering work in
dynamic safety-first. In some follow-up papers that adopt the
solution scheme of Li et al. [12], Chiu and Li [13] study asset-
liability management; Yan [14] deals with a continuous-time
portfolio selection under the assumption that the evolution
of the stock price is a jump-diffusion process. However, the
approximation approach actually deviates from the original
conceptual framework set by Roy. Therefore, Chiu et al.
[15] study the dynamic Roy’s original safety-first formulation
and its application in asset and liability management. In
addition, Li and Yao [16] investigate a continuous-time Roy’s
portfolio selection problem in a Black-Scholes setting and
obtain closed-form solutions of the best constant-rebalanced
portfolios. Li et al. [17] compare the optimal constant-
rebalanced portfolio, dynamic-rebalanced portfolio, and buy-
and-hold strategies underRoy’s safety-first principle. In terms
of Kataoka’s safety-first (KSF for short) principle, Ding and
Zhang [18] study a static KSF investment choice model. They
obtain conditions under which the KSF model has a finite
optimal strategy without normality assumption and derive
the optimal portfolios in two cases where the short-sell is
allowed or it is not allowed. Ding and Zhang [19] give a
further study on KSF model with regular distribution by
providing geometrical properties of theKSFmodel and estab-
lishing amodel for risky asset’s pricing. Nico [20] investigates
a static Telser’s safety portfolio model with two kinds of
targets, the fixed target and the stochastic target, and tries to
determine which target choice results in a better investment
performance. Arzac and Bawa [21] analyze the existence
of the optimal solution for the TSF model and derive the
conclusion that when the asset returns are normally or stably
Pareto distributed, the CAPM can be derived from the TSF
model. Engels [22] gives an intuitive and analytical solution
for the TSF model under the assumption that the portfolio
returns are, respectively, normally and elliptically distributed.
For more details about this topic, interested readers are
referred to Pyle and Turnovsky [23], Levy and Sarnat [24],
Bigman [25], Milevsky [26], Stutzer [27], and Haley and
Whiteman [28].

From the above-mentioned papers, the commonpoints of
the existing portfolio optimization under these three safety-
first criterions can be summarized as follows. They only
consider the risk from the asset prices but do not take into

account the risk resulting from the change of the financial
market states. To fill the gap, this present paper investigates
a multiperiod portfolio selection problem under the TSF
criterion with regime switching, in which the asset returns
depend on themarket state modulated by aMarkov chain. To
the best of our knowledge, no work in the existing literature
has considered this topic. In reality, financial markets usually
have a finite number of states, and these states would switch
among each other. The empirical analysis indicates that the
returns of the assets are actually sensitive to the change of
the market states. For example, the findings of Hardy [29]
show that the regime-switching log-normal model is better
than any other asset pricing model. For this reason, many
papers have studied portfolio selection with regime switch-
ing. Among others, Zhou and Yin [30], Yin and Zhou [31],
Çakmak and Özekici [32], Çelikyurt and Özekici [33], Chen
et al. [34], Costa and Araujo [35], Wu and Li [36], Wu et al.
[37], and Wu and Chen [38] consider the investment model
with regime switching under a mean-variance criterion.
Cheung andYang [39], Zeng et al. [40], andWu [41] study this
topic for investors with a power utility. In contrast, this paper
takes the step of investigating portfolio optimization under
the TSF framework. Actually, the three basic safety-first
models mentioned above have the same constraint condition
but different optimization objectives. There are two reasons
that the authors choose Telser’s safety-first criterion. First, an
overwhelming majority of portfolio selection models under
safety-first criterion adopt Roy’s safety-first criterion, while
Telser’s safety-first portfolio selection models deserve greater
attention. In addition, the authors prefer Telser’s criterion
because it can take into account both utility maximization
and downside risk control.

The rest of the paper is organized as follows. In Section 2,
we introduce the model and separate its solving process
into three steps. Prime notations and assumptions are also
described in this section. Sections 3 and 4 are devoted to
the existence and the explicit expressions of the optimal
strategies for the auxiliary problem, the Lagrangian optimal
control problem, and the original problem, respectively.
Mathematical and numerical analysis of some results is given
in Section 5. This paper is concluded in Section 6. Proofs of
the lemmas and theorems are given in the appendixes.

2. Problem Formulation and Notations

This paper assumes that an investor accesses the market at
time 1 with initial wealth 𝑥1 > 0 and plans to invest her
wealth in the financial market for 𝑇 consecutive periods.
Moreover, we assume that the financial market has multiple
states {1, 2, . . . , 𝐿}, and its dynamics are described by a time-
homogeneous Markov chain {𝑆𝑛, 𝑛 = 1, 2, . . .} where 𝑆𝑛
represents the market state at time 𝑛. There are one risk-free
asset and one risky asset available in the financial market
whose returns depend on the states of the financial market.
Denote by 𝑅𝑛(𝑖) and 𝑟𝑓𝑛 (𝑖), respectively, the random return of
the risky asset and the risk-free return over period 𝑛 (time
interval [𝑛, 𝑛 + 1), 𝑛 = 1, 2, . . . , 𝑇) given 𝑆𝑛 = 𝑖. In this paper,𝑅𝑛(𝑖) is assumed to be independent of 𝑅𝑚(𝑗) for any given
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𝑖, 𝑗 ∈ {1, 2, . . . , 𝐿} as long as 𝑛 ̸= 𝑚. TheMarkov chain and the
returns are mutually independent in the following sense:

𝑃𝑛 (𝑆𝑛+1 = 𝑗, 𝑅𝑛 (𝑆𝑛) ∈ 𝐵)
= 𝑃𝑛 (𝑆𝑛+1 = 𝑗) 𝑃𝑛 (𝑅𝑛 (𝑆𝑛) ∈ 𝐵) (1)

for all 𝐵 ∈ B(R𝑚+1), 𝑗 ∈ 𝑆, and 𝑛 = 1, 2, . . . , 𝑇, where 𝑃𝑛
is the probability based on the information up to time 𝑛 and
B(R𝑚+1) is the Borel 𝜎-algebra onR𝑚+1. Furthermore, we use
the following notations in this paper.

(N1) The transition matrix of the Markov chain {𝑆𝑛, 𝑛 =1, 2, . . .} is denoted by 𝑄. The matrix 𝑄𝑘 is the 𝑘th power of𝑄. In particular, we define 𝑄0 as an identity matrix.
(N2) For any matrix 𝐴𝐿×𝐿 and any vector 𝑎𝐿×1, denote

by 𝐴(𝑖) the 𝑖th row of 𝐴 and 𝑎(𝑖) the 𝑖th component of𝑎. Furthermore, let 𝐴𝑎 = {𝐴𝑎(𝑖, 𝑗)}𝐿×𝐿 where 𝐴𝑎(𝑖, 𝑗) =𝐴(𝑖, 𝑗)𝑎(𝑗) and 𝐴 be a column vector whose 𝑖th component
is 𝐴(𝑖) = ∑𝐿𝑗=1 𝐴(𝑖, 𝑗).

(N3) If vectors 𝑎, 𝑏, 𝑐 have the same dimension, then 𝑎⋅𝑐/𝑏
denotes a vectorwhose 𝑖th entry is 𝑎(𝑖)𝑐(𝑖)/𝑏(𝑖) and 𝑎2 a vector
with (𝑎2)(𝑖) = [𝑎(𝑖)]2.

(N4) 𝑅𝑒𝑛(𝑖) = 𝑅𝑛(𝑖) − 𝑟𝑓𝑛 (𝑖). 𝑟𝑒𝑛(𝑖) = E[𝑅𝑒𝑛(𝑖)], which
is assumed to be nonzero for 𝑛 = 1, 2, . . . , 𝑇. ℎ𝑛, 𝑔𝑛, and𝑞𝑛 (𝑛 = 1, 2, . . . , 𝑇) are 𝐿-dimension column vectors whose𝑖th components are, respectively,

ℎ𝑛 (𝑖) = (𝑟𝑒𝑛 (𝑖))2
E [(𝑅𝑒𝑛 (𝑖))2] ,

𝑔𝑛 (𝑖) = 𝑟𝑓𝑛 (𝑖) Var (𝑅𝑒𝑛 (𝑖))
E [(𝑅𝑒𝑛 (𝑖))2] ,

𝑞𝑛 (𝑖) = (𝑟𝑓𝑛 (𝑖))2 Var (𝑅𝑒𝑛 (𝑖))E [(𝑅𝑒𝑛 (𝑖))2] .
(2)

ℎ̃𝑛, ℎ𝑛, and 𝛼𝑛 (𝑛 = 2, 3, . . . , 𝑇 + 1) are column vectors whose𝑖th components are, respectively,

ℎ̃𝑛 (𝑖) = ∏𝑇𝑚=𝑛𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛𝑄𝑞𝑚 (𝑖) ℎ𝑛−1 (𝑖) ,

ℎ𝑛 (𝑖) = (∏𝑇𝑚=𝑛𝑄𝑔𝑚 (𝑖))2
(∏𝑇𝑚=𝑛𝑄𝑞𝑚 (𝑖))2

ℎ𝑛−1 (𝑖) ,

𝛼𝑛 (𝑖) = (∏𝑇𝑚=𝑛𝑄𝑔𝑚 (𝑖))2
∏𝑇𝑚=𝑛𝑄𝑞𝑚 (𝑖) ℎ𝑛−1 (𝑖) .

(3)

For the sake of convenience, we set

𝑛∑
𝑘=𝑚

𝐴𝑘 = 0, if 𝑛 < 𝑚 for any {𝐴𝑘} ;

𝑛∏
𝑘=𝑚

𝑄𝑔𝑘 = 𝐼, if 𝑛 < 𝑚 where I is an identity matrix;
𝑛∏
𝑘=𝑚

𝑄𝑔𝑘 = 𝑄𝑔𝑚 × 𝑄𝑔𝑚+1 × ⋅ ⋅ ⋅ × 𝑄𝑔𝑛 , if 𝑛 ≥ 𝑚.
(4)

If we define 𝑢𝑛 as the amount invested in the risky asset at
time 𝑛 and 𝑊𝑢𝑛 as the wealth under the strategy 𝑢 at time 𝑛,
then the wealth dynamics are

𝑊𝑢𝑛+1 = 𝑟𝑓𝑛 (𝑆𝑛)𝑊𝑢𝑛 + 𝑅𝑒𝑛 (𝑆𝑛) 𝑢𝑛, 𝑛 = 1, 2, . . . , 𝑇. (5)

In this paper, we consider the optimal investment choice
with the TSF criterion where the investor does not want the
probability of her final wealth falling below a disaster value𝛾 to exceed the risk control level 𝛽. Hence the strategy 𝑢
subject to 𝑃{𝑊𝑢𝑇+1 ≤ 𝛾 | 𝑆1 = 𝑖1,𝑊1 = 𝑥1} ≤ 𝛽 is an
admissible action, and then the investor tries to select an
admissible action to maximize the expected terminal wealth.
Given the initial market state 𝑆1 = 𝑖1 and the initial wealth 𝑥1,
we formulate the portfolio selection problem as follows:

max
𝑢1 ,𝑢2,...,𝑢𝑇

E𝑖1 ,𝑥1 (𝑊𝑢𝑇+1)
s.t. 𝑊𝑢𝑛+1 = 𝑟𝑓𝑛 (𝑆𝑛)𝑊𝑢𝑛 + 𝑅𝑒𝑛 (𝑆𝑛) 𝑢𝑛,𝑛 = 1, 2, . . . , 𝑇,

𝑃 {𝑊𝑢𝑇+1 ≤ 𝛾 | 𝑆1 = 𝑖1,𝑊1 = 𝑥1} ≤ 𝛽,
(6)

where 𝛾 stands for the disaster value and 0 < 𝛽 < 1 is a given
real number representing the risk control level. Referring to
Tchebycheff inequality, we have

𝑃 {𝑊𝑢𝑇+1 ≤ 𝛾 | 𝑆1 = 𝑖1,𝑊1 = 𝑥1}
≤ Var𝑖1 ,𝑥1 (𝑊𝑢𝑇+1)[E𝑖1 ,𝑥1 (𝑊𝑢𝑇+1) − 𝛾]2 , E𝑖1,𝑥1 (𝑊𝑢𝑇+1) > 𝛾. (7)

This means that if the upper bound satisfies

Var𝑖1 ,𝑥1 (𝑊𝑢𝑇+1)[E𝑖1,𝑥1 (𝑊𝑢𝑇+1) − 𝛾]2 ≤ 𝛽, (8)

then 𝑃{𝑊𝑢𝑇+1 ≤ 𝛾 | 𝑆1 = 𝑖1,𝑊1 = 𝑥1} ≤ 𝛽. Therefore, we
modify the above-mentioned problem as follows:

max
𝑢1 ,𝑢2,...,𝑢𝑇

E𝑖1 ,𝑥1 (𝑊𝑢𝑇+1)
s.t. 𝑊𝑢𝑛+1 = 𝑅𝑛,0 (𝑆𝑛)𝑊𝑢𝑛 + 𝑅𝑒𝑛 (𝑆𝑛) 𝑢𝑛,𝑛 = 1, 2, . . . , 𝑇,

Var𝑖1 ,𝑥1 (𝑊𝑢𝑇+1)
≤ 𝛽 [E𝑖1 ,𝑥1 (𝑊𝑢𝑇+1) − 𝛾]2 .

(𝑃(𝛾, 𝛽))

When we adopt the Tchebycheff inequality to replace the
probability 𝑃{𝑊𝑢𝑇+1 ≤ 𝛾 | 𝑆1 = 𝑖1,𝑊1 = 𝑥1} by its upper
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bound Var𝑖1 ,𝑥1(𝑊𝑢𝑇+1)/[E𝑖1,𝑥1(𝑊𝑢𝑇+1)−𝛾]2, the resulting modi-
fied formulation degenerates to amean-variance formulation,
thus losing the spirit of safety-first, as indicated in Chiu et
al. [15]. For this reason, we admit that this is a weakness
of the current approach. Nonetheless, due to the absence of
detailed knowledge or empirical estimates of the cumulative
distribution function of the final wealth when the returns of
the available assets are assumed to depend on the regimes, we
have to fall back on the Tchebycheff inequality to calculate the

maximumprobability of the final wealth below 𝛾 and then use
this approximation approach to derive the optimal strategy.
In what follows, we aim to derive the optimal strategy and the
optimal value function for the problem (𝑃(𝛾, 𝛽)) and analyze
the conditions that 𝛾 and 𝛽 satisfy when the optimal strategy
exists. In order to solve (𝑃(𝛾, 𝛽)), we introduce a Lagrangian
multiplier 𝜔 > 0 and formulate the Lagrangian optimal
control problem as follows:

max
𝑢1 ,𝑢2,...,𝑢𝑇

{E𝑖1 ,𝑥1 (𝑊𝑢𝑇+1) − 𝜔Var𝑖1 ,𝑥1 (𝑊𝑢𝑇+1) + 𝜔𝛽 [E𝑖1,𝑥1 (𝑊𝑢𝑇+1) − 𝛾]2}
s.t. 𝑊𝑢𝑛+1 = 𝑟𝑓𝑛 (𝑆𝑛)𝑊𝑢𝑛 + 𝑅𝑒𝑛 (𝑆𝑛) 𝑢𝑛, 𝑛 = 1, 2, . . . , 𝑇. (𝑃𝐿(𝜔, 𝛾, 𝛽))

The relationship of (𝑃(𝛾, 𝛽)) and (𝑃𝐿(𝜔, 𝛾, 𝛽)) is summarized
in Lemma 1.

Lemma 1. Denote by 𝑢𝑃𝐿(𝜔, 𝛾, 𝛽) and 𝐻(𝜔, 𝛾, 𝛽) the optimal
strategy and the value function of the problem (𝑃𝐿(𝜔, 𝛾, 𝛽)),
respectively. If

𝜔∗ = arg min
𝜔>0

𝐻(𝜔, 𝛾, 𝛽) (9)

exists, then the optimal value function of (𝑃(𝛾, 𝛽)) is 𝐻(𝜔∗, 𝛾,𝛽) and the optimal strategy is 𝑢𝑃𝐿(𝜔∗, 𝛾, 𝛽).
Now, we can obtain the optimal solution of (𝑃(𝛾, 𝛽)) by

solving (𝑃𝐿(𝜔, 𝛾, 𝛽)). However, the problem (𝑃𝐿(𝜔, 𝛾, 𝛽)) is
not separable in the sense of dynamic programming due to
the termVar𝑖,𝑥1(𝑊𝑢𝑇+1). In view of Zhu et al. [42], we construct
an auxiliary problem (𝐴(𝜆, 𝜔)) of (𝑃𝐿(𝜔, 𝛾, 𝛽)) as follows:

max
𝑢1 ,𝑢2,...,𝑢𝑇

E𝑖1 ,𝑥1 [𝜆𝑊𝑢𝑇+1 − 𝜔 (𝑊𝑢𝑇+1)2]
s.t. 𝑊𝑢𝑛+1 = 𝑟𝑓𝑛 (𝑆𝑛)𝑊𝑢𝑛 + 𝑅𝑒𝑛 (𝑆𝑛) 𝑢𝑛,𝑛 = 1, 2, . . . , 𝑇.

(𝐴(𝜆, 𝜔))

Define

Π𝐴 (𝜆, 𝜔)
= {𝑢 | 𝑢 is an optimal strategy of 𝐴 (𝜆, 𝜔)} ,

Π𝑃𝐿 (𝜔)
= {𝑢 | 𝑢 is an optimal strategy of 𝑃𝐿 (𝜔, 𝛾, 𝛽)} ,

𝑑 (𝑢) = 1 − 2𝜔𝛽𝛾 + 2𝜔 (1 + 𝛽)E𝑖1 ,𝑥1 (𝑊𝑢𝑇+1) ,
(10)

then the relationship between Π𝐴(𝜆, 𝜔) and Π𝑃𝐿(𝜔) is sum-
marized in the following lemma.

Lemma 2. For any 𝑢𝑃𝐿 ∈ Π𝑃𝐿(𝜔), 𝑢𝑃𝐿 ∈ Π𝐴(𝑑(𝑢𝑃𝐿), 𝜔);
conversely, if 𝑢̃ ∈ Π𝐴(𝜆, 𝜔), then a necessary condition for𝑢̃ ∈ Π𝑃𝐿(𝜔) is

𝜆 = 1 − 2𝜔𝛽𝛾 + 2𝜔 (1 + 𝛽)E𝑖1 ,𝑥1 (𝑊𝑢̃𝑇+1) . (11)

The proof of Lemma 2 is similar to that of Zhu et al.
[42]; thus, it is omitted here. Lemma 2 implies that Π𝑃𝐿(𝜔) ⊆⋃𝜆Π𝐴(𝜆, 𝜔). We can obtain the optimal strategy of the
problem (𝑃𝐿(𝜔, 𝛾, 𝛽)) by first solving the auxiliary problem(𝐴(𝜆, 𝜔)) and then finding a suitable 𝜆∗ that can make𝑢 ∈ Π𝐴(𝜆∗, 𝜔) become the optimal strategy of problem(𝑃𝐿(𝜔, 𝛾, 𝛽)).The second part of Lemma 2 gives the necessary
condition that 𝜆∗ should satisfy. In the next section, we shall
solve the auxiliary problem (𝐴(𝜆, 𝜔)), which is separable in
the sense of dynamic programming.

3. Solution to Problems (𝐴(𝜆, 𝜔))
and (𝑃𝐿(𝜔, 𝛾, 𝛽))

We first introduce Lemma 3 to solve (𝐴(𝜆, 𝜔)), and the proof
can be found in Wu et al. [37].

Lemma 3. Given any 𝑛−𝑘 (𝑘 ≥ 1) vectors 𝑎𝑘+1 = (𝑎𝑘+1(𝑗), 𝑗 ∈𝑆), . . . , 𝑎𝑛 = (𝑎𝑛(𝑗), 𝑗 ∈ 𝑆), one has
E[ 𝑛∏
𝑙=𝑘+1

𝑎𝑙 (𝑆𝑙) | 𝑆𝑘 = 𝑖] = 𝑄𝑎𝑘+1𝑄𝑎𝑘+2 ⋅ ⋅ ⋅ 𝑄𝑎𝑛 (𝑖) ,
𝑛 = 𝑘 + 1, 𝑘 + 2, . . . .

(12)

Now we define the value functions

𝑓𝑛 (𝑖, 𝑥𝑛) = max
𝑢𝑛,...,𝑢𝑇

E [𝜆𝑊𝑢𝑇+1 − 𝜔 (𝑊𝑢𝑇+1)2 | 𝑆𝑛 = 𝑖,𝑊𝑛 = 𝑥𝑛] . (13)

Then, according to Bellman’s principle of optimality, we have

𝑓𝑛 (𝑖, 𝑥𝑛)
= max
𝑢𝑛

E [𝑓𝑛+1 (𝑆𝑛+1,𝑊𝑢𝑛𝑛+1) | 𝑆𝑛 = 𝑖,𝑊𝑛 = 𝑥𝑛]
= max
𝑢𝑛

∑
𝑗∈𝑆

𝑄 (𝑖, 𝑗)E [𝑓𝑛+1 (𝑗, 𝑟𝑓𝑛 (𝑖) 𝑥𝑛 + 𝑅𝑒𝑛 (𝑖) 𝑢𝑛)]
(14)

for 𝑛 = 1, . . . , 𝑇, with the boundary condition

𝑓𝑇+1 (𝑖, 𝑥𝑇+1) = 𝜆𝑥𝑇+1 − 𝜔 (𝑥𝑇+1)2 . (15)

According to the recursive formulas (14)-(15), we haveTheo-
rem 4.
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Theorem 4. The value function of problem (𝐴(𝜆, 𝜔)) is given
by

𝑓𝑛 (𝑖, 𝑥𝑛) = −𝜔𝑞𝑛 (𝑖) 𝑇∏
𝑚=𝑛+1

𝑄𝑞𝑚 (𝑖) (𝑥𝑛)2

+ 𝜆𝑔𝑛 (𝑖) 𝑇∏
𝑚=𝑛+1

𝑄𝑔𝑚 (𝑖) 𝑥𝑛 + 𝜆24𝜔𝛼𝑛+1 (𝑖)
+ 𝜆24𝜔

𝑇+1∑
𝑘=𝑛+2

(𝑄𝑘−(𝑛+2)𝑄𝛼𝑘) (𝑖) ,

(16)

and the corresponding optimal strategy is given by

𝑢̃𝑛 (𝑖, 𝑥𝑛)
= 𝑟𝑒𝑛 (𝑖)
E [(𝑅𝑒𝑛 (𝑖))2] [[

𝜆2𝜔 ∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑖) − 𝑟𝑓𝑛 (𝑖) 𝑥𝑛]]
(17)

for 𝑛 = 1, 2, . . . , 𝑇 and 𝑖 = 1, 2, . . . , 𝐿.
Proof. See Appendix A.

In order to derive the solution of problem (𝑃𝐿(𝜔, 𝛾, 𝛽)),
we give the explicit expressions for E𝑖1 ,𝑥1(𝑊𝑢̃𝑇+1) and
E𝑖1 ,𝑥1[(𝑊𝑢̃𝑇+1)2] in the following theorem.

Theorem 5. Under the optimal strategy (17) of the auxiliary
problem,

E𝑖1 ,𝑥1 (𝑊𝑢̃𝑛 )
= 𝑔1 (𝑖1) 𝑛−1∏

𝑘=2

𝑄𝑔𝑘 (𝑖1) 𝑥1
+ 𝜆2𝜔

𝑛∑
𝑘=2

[[𝑄𝑘−2(ℎ̃𝑘 ⋅ 𝑛−1∏
𝑙=𝑘

𝑄𝑔𝑙)]] (𝑖1) ,
E𝑖1 ,𝑥1 [(𝑊𝑢̃𝑛 )2]

= 𝑞1 (𝑖1) 𝑛−1∏
𝑘=2

𝑄𝑞𝑘 (𝑖1) (𝑥1)2

+ 𝜆24𝜔2
𝑛∑
𝑘=2

[[𝑄𝑘−2(ℎ𝑘 ⋅ 𝑛−1∏
𝑙=𝑘

𝑄𝑞𝑙)]] (𝑖1) ,
𝑛 = 2, 3, . . . , 𝑇 + 1.

(18)

Proof. See Appendix B.

In order to obtain the optimal strategy for the problem(𝑃𝐿(𝜔, 𝛾, 𝛽)), we need to summarize some properties of the

coefficient of E𝑖1 ,𝑥1(𝑊𝑢̃𝑇+1) and E𝑖1 ,𝑥1[(𝑊𝑢̃𝑇+1)2]. In view of the
notations of ℎ𝑛(𝑖) and ℎ̃𝑛(𝑖), we first obtain

𝑇+1∑
𝑘=2

[[𝑄𝑘−2(ℎ𝑘 ⋅ 𝑇∏
𝑙=𝑘

𝑄𝑞𝑙)]] (𝑖1)

= 𝑇+1∑
𝑘=2

𝑄𝑘−2 (𝑖1)(ℎ𝑘 ⋅ 𝑇∏
𝑙=𝑘

𝑄𝑞𝑙)

= 𝑇+1∑
𝑘=2

𝑄𝑘−2 (𝑖1) [[[[
(∏𝑇𝑙=𝑘𝑄𝑔𝑙)2
∏𝑇𝑙=𝑘𝑄𝑞𝑙 ⋅ ℎ𝑘−1]]]]

,
𝑇+1∑
𝑘=2

[[𝑄𝑘−2(ℎ̃𝑘 ⋅ 𝑛−1∏
𝑙=𝑘

𝑄𝑔𝑙)]] (𝑖1)

= 𝑇+1∑
𝑘=2

𝑄𝑘−2 (𝑖1)(ℎ̃𝑘 ⋅ 𝑇∏
𝑙=𝑘

𝑄𝑔𝑙)

= 𝑇+1∑
𝑘=2

𝑄𝑘−2 (𝑖1) [[[[
(∏𝑇𝑙=𝑘𝑄𝑔𝑙)2
∏𝑇𝑙=𝑘𝑄𝑞𝑙 ⋅ ℎ𝑘−1]]]]

.

(19)

Therefore,

𝑇+1∑
𝑘=2

[[𝑄𝑘−2(ℎ𝑘 ⋅ 𝑇∏
𝑙=𝑘

𝑄𝑞𝑙)]] (𝑖1)

= 𝑇+1∑
𝑘=2

[[𝑄𝑘−2(ℎ̃𝑘 ⋅ 𝑛−1∏
𝑙=𝑘

𝑄𝑔𝑙)]] (𝑖1) .
(20)

For convenience, denote

𝜙 (𝑖1) = 𝑔1 (𝑖1) 𝑇∏
𝑘=2

𝑄𝑔𝑘 (𝑖1) ,
𝜑 (𝑖1) = 𝑞1 (𝑖1) 𝑇∏

𝑘=2

𝑄𝑞𝑘 (𝑖1) ,
𝜉 (𝑖1) = 𝑇+1∑

𝑘=2

[[𝑄𝑘−2(ℎ̃𝑘 ⋅ 𝑇∏
𝑙=𝑘

𝑄𝑔𝑙)]] (𝑖1) .
(21)

Then, by Theorem 5, E𝑖1,𝑥1(𝑊𝑢̃𝑇+1) and E𝑖1 ,𝑥1[(𝑊𝑢̃𝑇+1)2] can be
written as

E𝑖1,𝑥1 (𝑊𝑢̃𝑇+1) = 𝜙 (𝑖1) 𝑥1 + 𝜆2𝜔𝜉 (𝑖1) ,
E𝑖1,𝑥1 [(𝑊𝑢̃𝑇+1)2] = 𝜑 (𝑖1) (𝑥1)2 + 𝜆24𝜔2 𝜉 (𝑖1) .

(22)

Lemma 6. 0 < 𝜉(𝑖1) < 1, (1 − 𝜉(𝑖1))𝜑(𝑖1) − (𝜙(𝑖1))2 ≥ 0.
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Proof. See Appendix C.

Now, we begin to seek the optimal strategy of the problem(𝑃𝐿(𝜔, 𝛾, 𝛽)). To this end, we define a function 𝑈(𝜆) as
follows:

𝑈 (𝜆) = E𝑖1,𝑥1 (𝑊𝑢̃𝑇+1) − 𝜔Var𝑖1 ,𝑥1 (𝑊𝑢̃𝑇+1)
+ 𝜔𝛽 [E𝑖1,𝑥1 (𝑊𝑢̃𝑇+1) − 𝛾]2

= (1 − 2𝜔𝛽𝛾)E𝑖1 ,𝑥1 (𝑊𝑢̃𝑇+1)
+ 𝜔 (1 + 𝛽) [E𝑖1 ,𝑥1 (𝑊𝑢̃𝑇+1)]2
− 𝜔E𝑖1,𝑥1 [(𝑊𝑢̃𝑇+1)2] + 𝜔𝛽𝛾2.

(23)

By (22), we have

𝑈 (𝜆) = (1 − 2𝜔𝛽𝛾) (𝜙 (𝑖1) 𝑥1 + 𝜆2𝜔𝜉 (𝑖1))
+ 𝜔 (1 + 𝛽) (𝜙 (𝑖1) 𝑥1 + 𝜆2𝜔𝜉 (𝑖1))2

− 𝜔(𝜑 (𝑖1) (𝑥1)2 + 𝜆24𝜔2 𝜉 (𝑖1)) + 𝜔𝛽𝛾2.
(24)

Differentiating (24) with respect to 𝜆, we obtain
𝑈󸀠 (𝜆) = 1 − 2𝜔𝛽𝛾2𝜔 𝜉 (𝑖1) − 𝜆2𝜔𝜉 (𝑖1)

+ (1 + 𝛽) (𝜙 (𝑖1) 𝑥1 + 𝜆2𝜔𝜉 (𝑖1)) 𝜉 (𝑖1) ,

𝑈󸀠󸀠 (𝜆) = 𝜉 (𝑖1)2𝜔 [(1 + 𝛽) 𝜉 (𝑖1) − 1] .
(25)

The optimal strategy of the problem (𝑃𝐿(𝜔, 𝛾, 𝛽)) exists if and
only if 𝑈󸀠󸀠(𝜆) < 0, that is, (1 + 𝛽)𝜉(𝑖1) < 1. Otherwise, the
optimal solution of the problem (𝑃𝐿(𝜔, 𝛾, 𝛽)) does not exist.
In view of Lemma 6, when the probability 𝛽 satisfies

0 < 𝛽 < 1𝜉 (𝑖1) − 1, (26)

the optimal solution for the problem (𝑃𝐿(𝜔, 𝛾, 𝛽)) exists.
When (26) holds, let 𝑈󸀠(𝜆) = 0, and then we derive the
optimal solution of max𝜆∈𝑅𝑈(𝜆) at

𝜆∗ = 11 − (1 + 𝛽) 𝜉 (𝑖1) + 2𝜔(1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾1 − (1 + 𝛽) 𝜉 (𝑖1)
fl 𝑐1 (𝑖1) + 2𝜔𝑐2 (𝑖1) .

(27)

We have verified that solving equation

𝜆 = 1 − 2𝜔𝛽𝛾 + 2𝜔 (1 + 𝛽)E𝑖1 ,𝑥1 (𝑊𝑢̃𝑇+1) (28)

in Lemma 2 yields the same expression of 𝜆∗ as (27).
Substituting (27) back into (17) gives the optimal policy of
problem (𝑃𝐿(𝜔, 𝛾, 𝛽)), which is summarized in the following
theorem.

Theorem 7. The optimal strategy of the problem (𝑃𝐿(𝜔, 𝛾, 𝛽))
is given by

𝑢𝑃𝐿𝑛 (𝑖, 𝑥𝑛) = 𝑟𝑒𝑛 (𝑖)
E [(𝑅𝑒𝑛 (𝑖))2] (𝜆∗2𝜔 ∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑖) − 𝑟𝑓𝑛 (𝑖) 𝑥𝑛)

= 𝑟𝑒𝑛 (𝑖)
E [(𝑅𝑒𝑛 (𝑖))2] ( 12𝜔 11 − (1 + 𝛽) 𝜉 (𝑖1)

∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑖) + (1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾1 − (1 + 𝛽) 𝜉 (𝑖1)
∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑖) − 𝑟𝑓𝑛 (𝑖) 𝑥𝑛)

(29)

for 𝑛 = 1, 2, . . . , 𝑇 and 𝑖 = 1, 2, . . . , 𝐿.
In the next section, we shall seek the optimal strategy of

the problem (𝑃(𝛾, 𝛽)) referring to the relationship between(𝑃𝐿(𝜔, 𝛾, 𝛽)) and (𝑃(𝛾, 𝛽)).
4. Optimal Solution of Problem (𝑃(𝛾, 𝛽))
We define a function Γ(𝜔) by substituting (27) into (24) as
follows:Γ (𝜔)

= (1 − 2𝜔𝛽𝛾)(𝜙 (𝑖1) 𝑥1 + 𝑐1 (𝑖1) + 2𝜔𝑐2 (𝑖1)2𝜔 𝜉 (𝑖1))

+ 𝜔 (1 + 𝛽)(𝜙 (𝑖1) 𝑥1 + 𝑐1 (𝑖1) + 2𝜔𝑐2 (𝑖1)2𝜔 𝜉 (𝑖1))2

− 𝜔(𝜑 (𝑖1) (𝑥1)2 + (𝑐1 (𝑖1) + 2𝜔𝑐2 (𝑖1))24𝜔2 𝜉 (𝑖1))

+ 𝜔𝛽𝛾2.
(30)

Substituting 𝑐1(𝑖1) and 𝑐2(𝑖1) into (30) results in Lemma 8.
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Lemma 8.

𝐹 (𝜔) = 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1) + 𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1) 14𝜔
+ 𝑦 (𝛾)1 − (1 + 𝛽) 𝜉 (𝑖1)𝜔,

(31)

where

𝑦 (𝛾) = 𝛽 (1 − 𝜉 (𝑖1)) 𝛾2 − 2𝛽𝜙 (𝑖1) 𝑥1𝛾
+ [(1 + 𝛽) (𝜙 (𝑖1))2 − (1 − (1 + 𝛽) 𝜉 (𝑖1)) 𝜑 (𝑖1)]
⋅ (𝑥1)2 .

(32)

Proof. See Appendix D.

According to Lemma 6 and (26), the coefficient of 1/4𝜔
is strictly greater than 0. Then, the formula (31) implies that

the finite minimum value of Γ(𝜔) exists in 𝜔 > 0 if and only
if 𝑦(𝛾) > 0. If 𝑦(𝛾) ≤ 0 for some 𝛾, then Γ(𝜔) is a decreasing
function with respect to 𝜔 > 0, and then the minimum value
of Γ(𝜔)does not exist.Thismeans that the prespecified critical
return 𝛾 has to satisfy specific conditions so that the problem(𝑃(𝛾, 𝛽)) has the optimal solution. Considering that 𝑦(𝛾) is a
quadratic curve with respect to 𝛾, we define

Δ = 4𝛽2 (𝜙 (𝑖1))2 (𝑥1)2 − 4𝛽 (1 − 𝜉 (𝑖1))
⋅ [(1 + 𝛽) (𝜙 (𝑖1))2 − (1 − (1 + 𝛽) 𝜉 (𝑖1)) 𝜑 (𝑖1)]
⋅ (𝑥1)2 = 4𝛽 [1 − (1 + 𝛽) 𝜉 (𝑖1)]
⋅ [𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖1) 𝜑 (𝑖1)] (𝑥1)2 ,

(33)

which is not less than zero by (26) and Lemma 6. Hence, the
roots of 𝑦(𝛾) = 0 exist and are given as

𝑦1 = √𝛽𝜙 (𝑖1) − √(1 − (1 + 𝛽) 𝜉 (𝑖1)) (𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖1) 𝜑 (𝑖1))√𝛽 (1 − 𝜉 (𝑖1)) 𝑥1, (34)

𝑦2 = √𝛽𝜙 (𝑖1) + √(1 − (1 + 𝛽) 𝜉 (𝑖1)) (𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖) 𝜑 (𝑖1))√𝛽 (1 − 𝜉 (𝑖1)) 𝑥1. (35)

When

𝛾 ∈ {𝛾 | 𝛾 < 𝑦1} ∪ {𝛾 | 𝛾 > 𝑦2} , (36)

by solving the equation Γ󸀠(𝜔) = 0, 𝜔∗ = argmin𝜔>0Γ(𝜔)
exists and is given as

𝜔∗ = 12√ 𝜉 (𝑖1)𝑦 (𝛾) . (37)

Then, the corresponding optimal value of (𝑃(𝛾, 𝛽)) at 𝜔∗ is
min
𝜔>0

Γ (𝜔) = √𝜉 (𝑖1) 𝑦 (𝛾) + 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1) . (38)

Referring to (27) and (37), we have

𝜆∗2𝜔∗ = 𝑐1 (𝑖1)2𝜔∗ + 𝑐2 (𝑖1)
= 𝑐1 (𝑖1)√ 𝑦 (𝛾)𝜉 (𝑖1)

+ 𝑐1 (𝑖1) ((1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾) .
(39)

It first follows fromTheorem 5 that

[E𝑖1,𝑥1 (𝑊𝑢̃𝑇+1)󵄨󵄨󵄨󵄨󵄨𝜆∗]󵄨󵄨󵄨󵄨󵄨𝜔∗ = 𝜙 (𝑖1) 𝑥1 + 𝜆∗2𝜔∗ 𝜉 (𝑖1) . (40)

Consequently, according to (39), we obtain

[E𝑖1 ,𝑥1 (𝑊𝑢̃𝑇+1)󵄨󵄨󵄨󵄨󵄨𝜆∗]󵄨󵄨󵄨󵄨󵄨𝜔∗ = 𝜙 (𝑖1) 𝑥1 + (𝑐1 (𝑖1)√ 𝑦 (𝛾)𝜉 (𝑖1) + 𝑐1 (𝑖1) ((1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾)) 𝜉 (𝑖1)
= 𝜙 (𝑖1) 𝑥1 − 𝜙 (𝑖1) (1 + 𝛽) 𝜉 (𝑖1) 𝑥1 + ((1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾) 𝜉 (𝑖1) + √𝑦 (𝛾) 𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1)
= √𝑦 (𝛾) 𝜉 (𝑖1) + 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1) .

(41)
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Now, we have verified that

min
𝜔>0

Γ (𝜔) = [E𝑖1,𝑥1 (𝑊𝑢̃𝑇+1)󵄨󵄨󵄨󵄨󵄨𝜆∗]󵄨󵄨󵄨󵄨󵄨𝜔∗ = √𝑦 (𝛾) 𝜉 (𝑖1) + 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1) . (42)

As mentioned in Section 2, 𝛾 also satisfies the condition
𝛾 < [E𝑖1,𝑥1 (𝑊𝑢̃𝑇+1)󵄨󵄨󵄨󵄨󵄨𝜆∗]󵄨󵄨󵄨󵄨󵄨𝜔∗ . (43)

Together with (36), we have

𝛾 ∈ {𝛾 | 𝛾 < 𝑦1} ∪ {𝛾 | 𝛾 > 𝑦2}
∩ {𝛾 | 𝛾 < [E𝑖1 ,𝑥1 (𝑊𝑢̃𝑇+1)󵄨󵄨󵄨󵄨󵄨𝜆∗]󵄨󵄨󵄨󵄨󵄨𝜔∗} , (44)

which we will make further efforts to simplify later.

Lemma 9. Condition (44) can be reduced to 𝛾 ∈ {𝛾 | 𝛾 < 𝑦1}.
Proof. See Appendix E.

Under this circumstance, the optimal strategy and opti-
mal value of problem (𝑃(𝛾, 𝛽)) are summarized in the
following theorem.

Theorem 10. When 𝛾 ∈ {𝛾 | 𝛾 < 𝑦1} and 0 < 𝛽 < min{1, 1/𝜉(𝑖1) − 1}, the optimal strategy of (𝑃(𝛾, 𝛽)) is

𝑢∗𝑛 (𝑖, 𝑥𝑛) = 𝑟𝑒𝑛 (𝑖)
E [(𝑅𝑒𝑛 (𝑖))2] ( 𝜆∗2𝜔∗ ∏

𝑇
𝑚=𝑛+1𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑖) − 𝑟𝑓𝑛 (𝑖) 𝑥𝑛)

= 𝑟𝑒𝑛 (𝑖)
E [(𝑅𝑒𝑛 (𝑖))2] (√𝑦 (𝛾)𝜉 (𝑖1) 11 − (1 + 𝛽) 𝜉 (𝑖1)

∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑖) + (1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾1 − (1 + 𝛽) 𝜉 (𝑖1)
∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑖) − 𝑟𝑓𝑛 (𝑖) 𝑥𝑛) ,

(45)

where 𝜆∗ and 𝜔∗ satisfy (27) and (37), respectively, and the
corresponding optimal value satisfies (38).

Now,we tend to derive the variance of the terminal wealth
under 𝑢∗ in Theorem 10. According to (39) and (C.2), the
variance of the terminal wealth under 𝑢∗ is given as

Var𝑖1 ,𝑥1 (𝑊𝑢∗𝑇+1) = 𝜉 (𝑖1) (1 − 𝜉 (𝑖1)) ( 𝜆∗2𝜔∗
− 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1))

2

+ 𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖1) 𝜑 (𝑖1)1 − 𝜉 (𝑖1) (𝑥1)2 = 𝜉 (𝑖1) (1
− 𝜉 (𝑖1)) [𝑐1 (𝑖1)√ 𝑦 (𝛾)𝜉 (𝑖1)
+ 𝑐1 (𝑖1) ((1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾) − 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1)]

2

+ 𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖1) 𝜑 (𝑖1)1 − 𝜉 (𝑖1) (𝑥1)2 = 𝜉 (𝑖1) (1
− 𝜉 (𝑖1)) [𝑐1 (𝑖1)√ 𝑦 (𝛾)𝜉 (𝑖1)

+ 𝑐1 (𝑖1) 𝛽( 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1) − 𝛾)]2

+ 𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖1) 𝜑 (𝑖1)1 − 𝜉 (𝑖1) (𝑥1)2 .
(46)

Moreover, according to (40), we have 𝜆∗/2𝜔∗ =(E𝑖1 ,𝑥1(𝑊𝑢∗𝑇+1) − 𝜙(𝑖1)𝑥1)/𝜉(𝑖1). Thus, the relationship
between the expected terminal wealth and the terminal risk
is given as

Var𝑖1 ,𝑥1 (𝑊𝑢∗𝑇+1) = 𝜉 (𝑖1) (1 − 𝜉 (𝑖1))
⋅ (E𝑖1 ,𝑥1 (𝑊𝑢∗𝑇+1) − 𝜙 (𝑖1) 𝑥1𝜉 (𝑖1) − 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1))

2

+ 𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖1) 𝜑 (𝑖1)1 − 𝜉 (𝑖1) (𝑥1)2
= 1 − 𝜉 (𝑖1)𝜉 (𝑖1) (E𝑖1 ,𝑥1 (𝑊𝑢∗𝑇+1) − 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1))

2

+ 𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖1) 𝜑 (𝑖1)1 − 𝜉 (𝑖1) (𝑥1)2 .

(47)



Discrete Dynamics in Nature and Society 9

5. Analysis of the Obtained Results

5.1. Effects of 𝛾 and 𝛽. In view ofTheorem 10, the risk control
level 𝛽 should be less than a given value; otherwise, the
maximum value of the problem (𝑃(𝛾, 𝛽)) can be positive
infinite. In addition, to guarantee the existence of the optimal
strategy of (𝑃(𝛾, 𝛽)), the disaster level 𝛾 also needs to be less
than 𝑦1. An intuitive understanding of these results is that if𝛽 is large enough, then the constraint to the strategy might
disappear. In other words, the condition Var𝑖1,𝑥1(𝑊𝑢𝑇+1) ≤𝛽[E𝑖1 ,𝑥1(𝑊𝑢𝑇+1) − 𝛾]2 might hold naturally when 𝛽 is large
enough. Without this constraint, the investor just aims to
maximize the expected terminal wealth without any risk
control, so the maximum value of (𝑃(𝛾, 𝛽))might be positive
infinite. When 0 < 𝛽 < min{1, 1/𝜉(𝑖1) − 1} holds, the disaster
level 𝛾 should satisfy 𝛾 < 𝑦1. Otherwise, (𝑃(𝛾, 𝛽)) does not
have the optimal solution. This conclusion also makes sense.
On the one hand, in reality, in order to reflect the awareness
of the risk control, the disaster level 𝛾 should not be a very
large number. On the other hand, if the value of 𝛾 is very
large, the probability that the wealth is less than 𝛾 is very high
so that there might be no strategy satisfying the condition𝑃{𝑊𝑢𝑇+1 ≤ 𝛾 | 𝑆1 = 𝑖1,𝑊1 = 𝑥1} ≤ 𝛽. Because

𝑃 {𝑊𝑢𝑇+1 ≤ 𝛾 | 𝑆1 = 𝑖1,𝑊1 = 𝑥1}
≤ Var𝑖1 ,𝑥1 (𝑊𝑢𝑇+1)[E𝑖1,𝑥1 (𝑊𝑢𝑇+1) − 𝛾]2 ,

(48)

there is also no strategy 𝑢 satisfying the condition

Var𝑖1,𝑥1 (𝑊𝑢𝑇+1) ≤ 𝛽 [E𝑖1 ,𝑥1 (𝑊𝑢𝑇+1) − 𝛾]2 . (49)

In what follows, we shall analyze the effects of the disaster
level 𝛾 and the risk control level 𝛽 on the optimal strategy𝑢∗𝑛 in Theorem 10, the expected terminal wealth E𝑖1,𝑥1(𝑊𝑢∗𝑇+1)
and the variance of the terminal wealth Var𝑖1 ,𝑥1(𝑊𝑢∗𝑇+1). The
obtained results are summarized inTheorems 11-12.

Theorem 11. When 𝛾 < 𝑦1, the optimal strategy 𝑢∗𝑛 of the
problem (𝑃(𝛾, 𝛽)), the expected terminal wealth E𝑖1,𝑥1(𝑊𝑢∗𝑇+1),
and the variance of the terminal wealth Var𝑖1 ,𝑥1(𝑊𝑢∗𝑇+1) are
decreasing along with the disaster level 𝛾.
Proof. See Appendix F.

Wewill explain the results inTheorem 11.When 𝛾 is a very
small number and especially when 𝛾 is negative and small
enough, the constraint Var𝑖1 ,𝑥1(𝑊𝑢𝑇+1) ≤ 𝛽[E𝑖1 ,𝑥1(𝑊𝑢𝑇+1) −𝛾]2 might disappear, causing the investor to invest more
wealth in the risky asset in order to obtain more expected
terminal wealth. At the same time, a higher expected return
is often accompanied by higher risk; thus, we have a larger
Var𝑖1 ,𝑥1(𝑊𝑢∗𝑇+1) when 𝛾 is smaller.

Theorem 12. When 𝛾 < 𝑦1 and 0 < 𝛽 < min{1, 1/𝜉(𝑖1) − 1},
the optimal strategy 𝑢∗𝑛 of the problem (𝑃(𝛾, 𝛽)), the expected
terminal wealth E𝑖1 ,𝑥1(𝑊𝑢∗𝑇+1), and the variance of the terminal

wealthVar𝑖1 ,𝑥1(𝑊𝑢∗𝑇+1) are increasing along with the risk control
level 𝛽.
Proof. See Appendix G.

When the risk control level 𝛽 is larger, the investor has
more tolerance for wealth that is less than the disaster level.
In other words, he will tend to invest more wealth in the risky
asset. Consequently, the expected terminal wealth is larger,
along with a higher terminal risk.Theorems 11 and 12 indicate
that 𝛽 and 𝛾 have the opposite influence on the obtained
results. People with different attitudes toward the disaster
level and the risk control level will have different investment
behavior.

5.2. Effects of the Regime Switching. In this subsection,
we numerically analyze the effects of the mechanism of
regime switching on some obtained results. To this end, we
investigate how the transition matrix, 𝑟𝑒(⋅), and Var(𝑅𝑒(⋅))
at each state affect the investment strategy, the disaster level𝛾, and the risk control level 𝛽. Suppose that there are three
market states; the initial wealth 𝑥1 is 10; the investor adjusts
the strategy every threemonths and there are 12 time periods;
that is, 𝑇 = 12. For convenience, we assume that the risk-
free return is assumed to be a constant 1.0135 over time and
the return of the risky asset depends on the market states
only.Therefore, for convenience, denote by 𝑟𝑒(𝑖) the expected
excess return at state 𝑖 and Var(𝑅𝑒(𝑖)) the variance of the
excess return at state 𝑖.
5.2.1. Effects of 𝑟𝑒(⋅) andVar(𝑅𝑒(⋅)). In this part, we first study
the strategy at the initial time as an example to show the
effects of 𝑟𝑒(⋅) and Var(𝑅𝑒(⋅)). Then, their influence on 𝛽 and𝛾 is also investigated. To this end, let 𝑟𝑒(1) = 0.30, 𝑟𝑒(2) = 0.2,𝑟𝑒(3) = 0.1, Var(𝑅𝑒(1)) = 0.4, Var(𝑅𝑒(2)) = 0.4, Var(𝑅𝑒(3)) =0.3, and the transition matrix be 𝑄 = ( 0.3 0.4 0.30.4 0.3 0.3

0.3 0.3 0.4
). Because

state 1 has the highest Sharpe ratio and state 3 has the lowest,
we call state 1 the best state, state 2 a normal state, and state 3
the worst state.

We first demonstrate the impact of 𝑟𝑒(⋅) and Var(𝑅𝑒(⋅)).
To this end, we assume that 𝛽 = 0.2, 𝛾 = 11, and increase𝑟𝑒(1) from 0.3 to 0.33 with the step size 0.01 while other
parameters are kept the same value given above. In a similar
way, when we increase Var(𝑅𝑒(1)) from 0.4 to 0.43, we do not
change the values of other parameters. Thus, the influence
of the market states on the strategy is demonstrated in
Table 1, which indicates that 𝑢∗1 (⋅, 𝑥1) is increasing along with𝑟𝑒(1) and is decreasing with respect to Var(𝑅𝑒(1)). Moreover,
Table 1 also shows that (a) 𝑢∗1 (⋅, 𝑥1) is very sensitive to the
change in 𝑟𝑒(1) and Var(𝑅𝑒(1)); (b) 𝑢∗1 (1, 𝑥1), the optimal
investment strategy at state 1, is the most sensitive to the
change in 𝑟𝑒(1) and Var(𝑅𝑒𝑛(1)). For example, when 𝑟𝑒(1)
is increased from 0.3 to 0.31, that is, the growth rate is(0.31 − 0.3)/0.3 = 3.33%, the growth rates of the investment
strategy at each state are (2.1485 − 1.8123)/1.8123 = 18.55%,(1.1707−1.0666)/1.0666 = 9.76%, (0.6977−0.6456)/0.6456 =8.07%, respectively. When the growth rate of Var(𝑅𝑒(1))
is (0.41 − 0.4)/0.4 = 2.5%, the decrement rates of the
investment strategy at each state are 6.76%, 3.16%, and 2.66%,
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Table 1: Influence of 𝑟𝑒(1) and Var(𝑅𝑒(1)) on the strategy.

𝑢∗1 (1, 𝑥1) 𝑢∗1 (2, 𝑥1) 𝑢∗1 (3, 𝑥1)𝑟𝑒(1) = 0.30 1.8123 1.0666 0.6456𝑟𝑒(1) = 0.31 2.1485 1.1707 0.6977𝑟𝑒(1) = 0.32 2.6113 1.2977 0.7593𝑟𝑒(1) = 0.33 3.2883 1.4555 0.8330
Var(𝑅𝑒(1)) = 0.40 1.8123 1.0666 0.6456
Var(𝑅𝑒(1)) = 0.41 1.6897 1.0329 0.6284
Var(𝑅𝑒(1)) = 0.42 1.5824 1.0024 0.6127
Var(𝑅𝑒(1)) = 0.43 1.4878 0.9747 0.5984

Table 2: Influence of 𝑟𝑒(1) and Var(𝑅𝑒(1)) on 𝛽 and 𝛾.
1/𝜉(⋅) − 1 𝑦1(⋅)𝑟𝑒(1) = 0.30 (0.3327, 0.3801, 0.4254) (11.7459, 11.7459, 11.7459)𝑟𝑒(1) = 0.31 (0.3101, 0.3589, 0.4016) (11.7459, 11.7459, 11.7459)𝑟𝑒(1) = 0.32 (0.2891, 0.3390, 0.3793) (11.7459, 11.7459, 11.7459)𝑟𝑒(1) = 0.33 (0.2696, 0.3202, 0.3583) (11.7459, 11.7459, 11.7459)

Var(𝑅𝑒(1)) = 0.40 (0.3327, 0.3801, 0.4254) (11.7459, 11.7459, 11.7459)
Var(𝑅𝑒(1)) = 0.41 (0.3414, 0.3882, 0.4345) (11.7459, 11.7459, 11.7459)
Var(𝑅𝑒(1)) = 0.42 (0.3501, 0.3962, 0.4435) (11.7459, 11.7459, 11.7459)
Var(𝑅𝑒(1)) = 0.43 (0.3586, 0.4041, 0.4523) (11.7459, 11.7459, 11.7459)

respectively. As for the impact of 𝑟𝑒(𝑖) and Var(𝑅𝑒(𝑖)), 𝑖 =2, 3, here we emphasize that two similar experiments have
been conducted and the results also indicate that 𝑢∗1 (𝑖, 𝑥1)
is the most sensitive to the change in 𝑟𝑒(𝑖) and Var(𝑅𝑒(𝑖)),𝑖 = 2, 3.

Second, we want to know the influence of 𝑟𝑒(⋅) and
Var(𝑅𝑒(⋅)) on 𝛾 and 𝛽. Because 0 < 𝛽 < 1/𝜉(𝑖1) − 1 and𝛾 < 𝑦1(𝑖1), actually we just need to observe how 1/𝜉(𝑖1) − 1
and 𝑦1(𝑖1) change along with 𝑟𝑒(⋅) and Var(𝑅𝑒(⋅)). In Table 2,
both the rows and the columns indicate that a worse market
state with a smaller excess return 𝑟𝑒(1) or a larger variance
Var(𝑅𝑒(1)) results in a longer interval, which 𝛽 belongs to.We
explain this phenomenon as follows. In a worse market state,
the probability that the running wealth is below the disaster
levelmight be increasing, leading to a larger risk control level.
Two similar experiments have also been conducted to study
the influence of 𝑟𝑒(𝑖) and Var(𝑅𝑒(𝑖)), 𝑖 = 2, 3, and we obtain
similar results. That is, a worse market environment leads to
a larger interval [0, 1/𝜉(⋅) − 1]. As for 𝑦1(⋅), Table 2 shows that𝑦1 has almost no change regardless of the excess return and
the variance.When there is only onemarket state, referring to
(34), 𝑦1 can be simplified as 𝑦1 = (𝜙/(1 − 𝜉))𝑥1 = 𝑥1∏𝑇𝑛=1𝑟𝑓𝑛 ,
which shows that the investor will regard the value less than
the risk-free return of the initial wealth 𝑥1 from the initial
time to the terminal time as a disaster level when the risk of
the market-state fluctuation is neglected. In this subsection,
substituting 𝑥1 = 10 and 𝑟𝑓𝑛 = 1.0135 into 𝑥1∏𝑇𝑛=1𝑟𝑓𝑛 yields𝑦1 ≈ 11.7459. These findings suggest that the value of 𝑦1
in Table 2 is roughly equal to 𝑥1∏𝑇𝑛=1𝑟𝑓𝑛 . In other words, the

investor almost does not consider the financial risk when she
sets the value range of the disaster level. She would like to
choose the risk-free return of the initial wealth as the disaster
level.

5.2.2. Influence of the Transition Matrix. In this part, the
influence of the transition matrix𝑄 is studied. To do this, we
change 𝑄(𝑖), the 𝑖th (𝑖 = 1, 2, 3) row of 𝑄, while keeping the
values of other parameters, and then we obtain Tables 3 and
4. We find from Table 3 that when the transition probability
staying at the best state (state 1) is increased from 0.3 to 0.7,
the optimal strategy 𝑢∗1 (⋅, 𝑥1) is increasing accordingly. In
particular, strategy 𝑢∗1 (1, 𝑥1) at state 1 is increased the most
rapidly. However, when the probability of staying at state
2 or state 3 is increased, 𝑢∗(⋅, 𝑥1) is decreased accordingly.
Table 4 suggests that a high probability of staying at the best
market state yields a shorter interval [0, 1/𝜉(⋅) − 1], while the
maximum value of the disaster level will also not be affected
by the transition matrix.

6. Conclusion

This paper investigates a multiperiod Telser’s safety-first
portfolio selection problem with regime switching. There
are one risk-free asset and one risky asset available in
the financial market whose returns depend on the market
states. The investor aims to maximize the expected terminal
wealth subject to a constraint that the probability of the
terminal wealth no greater than a disaster value is less than a
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Table 3: Influence of the transition matrix 𝑄 on the strategy.

𝑢∗1 (1, 𝑥1) 𝑢∗1 (2, 𝑥1) 𝑢∗1 (3, 𝑥1)𝑄(1) = [0.3, 0.4, 0.3] 1.8123 1.0666 0.6456𝑄(1) = [0.5, 0.4, 0.1] 3.2986 1.4842 0.8450𝑄(1) = [0.7, 0.2, 0.1] 12.1759 2.2759 1.1666𝑄(2) = [0.4, 0.3, 0.3] 1.8123 1.0666 0.6456𝑄(2) = [0.3, 0.5, 0.2] 1.7873 1.0521 0.6395𝑄(2) = [0.2, 0.7, 0.1] 1.7496 1.0301 0.6302𝑄(3) = [0.3, 0.3, 0.4] 1.8123 1.0666 0.6456𝑄(3) = [0.3, 0.2, 0.5] 1.6685 0.9969 0.5980𝑄(3) = [0.3, 0.1, 0.6] 1.5168 0.9214 0.5471
Table 4: Influence of the transition matrix 𝑄 on 𝛽 and 𝛾.

1/𝜉(⋅) − 1 𝑦1(⋅)𝑄(1) = [0.3, 0.4, 0.3] (0.3327, 0.3801, 0.4254) (11.7459, 11.7459, 11.7459)𝑄(1) = [0.5, 0.4, 0.1] (0.2650, 0.3173, 0.3554) (11.7459, 11.7459, 11.7459)𝑄(1) = [0.7, 0.2, 0.1] (0.2161, 0.2707, 0.3036) (11.7459, 11.7459, 11.7459)𝑄(2) = [0.4, 0.3, 0.3] (0.3327, 0.3801, 0.4254) (11.7459, 11.7459, 11.7459)𝑄(2) = [0.3, 0.5, 0.2] (0.3351, 0.3835, 0.4285) (11.7459, 11.7459, 11.7459)𝑄(2) = [0.2, 0.7, 0.1] (0.3388, 0.3889, 0.4335) (11.7459, 11.7459, 11.7459)𝑄(3) = [0.3, 0.3, 0.4] (0.3327, 0.3801, 0.4254) (11.7459, 11.7459, 11.7459)𝑄(3) = [0.3, 0.2, 0.5] (0.3475, 0.3977, 0.4525) (11.7459, 11.7459, 11.7459)𝑄(3) = [0.3, 0.1, 0.6] (0.3673, 0.4212, 0.4901) (11.7459, 11.7459, 11.7459)

predetermined acceptable number. Referring to Tchebycheff
inequality, we modify Telser’s safety-first model to the prob-
lem (𝑃(𝛾, 𝛽)) that aims to maximize the expected terminal
wealth subject to a constraint that the upper bound of the
disaster probability is less than the risk control level. We find
that when the risk control level and the disaster value satisfy0 < 𝛽 < 1/𝜉(𝑖1) − 1 and 𝛾 < 𝑦1, the optimal strategy𝑢∗𝑛 (𝑖, 𝑥𝑛) of the problem (𝑃(𝛾, 𝛽)) exists and is obtained by the
Lagrange multiplier technique and the embedding method.
We investigate the effects of the disaster level 𝛾, the risk
control level 𝛽, the expected excess return 𝑟𝑒(𝑖), the variance
Var(𝑅𝑒(𝑖)), and the transitionmatrix𝑄. Mathematics analysis
indicates that the optimal strategy 𝑢∗𝑛 (𝑖, 𝑥𝑛), the expected
terminal wealth E𝑖1,𝑥1(𝑊𝑢∗𝑇+1), and the variance of the terminal
wealth Var𝑖1 ,𝑥1(𝑊𝑢∗𝑇+1) are decreasing along with the disaster
level 𝛾, while they are increasing with respect to the risk
control level 𝛽. By numerical analysis, we find the following:
(a) the excess returns 𝑟𝑒(𝑖), 𝑖 = 1, 2, 3 have a positive effect,
while the variances Var(𝑅𝑒(𝑖), 𝑖 = 1, 2, 3 have a negative
impact on the investment strategy; (b) a smaller expected
excess return or a larger variance of the risky return leads to
a longer interval that the risk control level 𝛽 lies in. However,
the disaster value 𝛾 is almost not affected by the expected
excess return or the variance of the risky return and is roughly
equal to the risk-free return of the initial wealth from the
initial time to the terminal time; (c) when the probability of

staying at the best state is increased, the investment amount
is increased accordingly. Meanwhile, a higher probability
staying at the best market state yields a shorter interval that 𝛽
belongs to, while the disaster value 𝛾 is also insensitive to the
change in the transition matrix.

Appendix

A. Proof of Theorem 4

Proof. Referring to (14) and (15), when 𝑛 = 𝑇, we have
𝑓𝑇 (𝑖, 𝑥𝑇) = max

𝑢𝑇
∑
𝑗∈𝑆

𝑄 (𝑖, 𝑗)
⋅ E [𝑓𝑇+1 (𝑗, 𝑟𝑓𝑇 (𝑖) 𝑥𝑇 + 𝑅𝑒𝑇 (𝑖) 𝑢𝑇)]
= max
𝑢𝑇

[𝜆𝑟𝑒𝑇 (𝑖) 𝑢𝑇 − 2𝜔𝑥𝑇𝑟𝑓𝑇 (𝑖) 𝑟𝑒𝑇 (𝑖) 𝑢𝑇
− 𝜔E [(𝑅𝑒𝑇 (𝑖))2] (𝑢𝑇)2] + 𝜆𝑟𝑓𝑇 (𝑖) 𝑥𝑇 − 𝜔 (𝑟𝑓𝑇 (𝑖))2
⋅ (𝑥𝑇)2 .

(A.1)

Obviously, the optimal solution of (A.1) exists and is

𝑢̃𝑇 (𝑖, 𝑥𝑇) = 𝑟𝑒𝑇 (𝑖)
E [(𝑅𝑒𝑇 (𝑖))2] ( 𝜆2𝜔 − 𝑟𝑓𝑇 (𝑖) 𝑥𝑇) . (A.2)
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Substituting (A.2) into (A.1) yields

𝑓𝑇 (𝑖, 𝑥𝑇) = 𝜆𝑟𝑓𝑇 (𝑖) Var (𝑅𝑒𝑇 (𝑖))
E [(𝑅𝑒𝑇 (𝑖))2]𝑥𝑇

− 𝜔 (𝑟𝑓𝑇 (𝑖))2 Var (𝑅𝑒𝑇 (𝑖))E [(𝑅𝑒𝑇 (𝑖))2] (𝑥𝑇)2

+ 𝜆24𝜔 (𝑟𝑒𝑇 (𝑖))2
E [(𝑅𝑒𝑇 (𝑖))2]

= 𝜆𝑔𝑇 (𝑖) 𝑥𝑇 − 𝜔𝑞𝑇 (𝑖) (𝑥𝑇)2
+ 𝜆24𝜔𝛼𝑇+1 (𝑖) .

(A.3)

Hence, (16) and (17) hold true for 𝑛 = 𝑇. Now, we assume that
(16) and (17) are true for 𝑛 + 1; then, for 𝑛,
𝑓𝑛 (𝑖, 𝑥𝑛)

= max
𝑢𝑛

∑
𝑗∈𝑆

𝑄 (𝑖, 𝑗)E [𝑓𝑛+1 (𝑗, 𝑟𝑓𝑛 (𝑖) 𝑥𝑛 + 𝑅𝑒𝑛 (𝑖) 𝑢𝑛)] , (A.4)

where

∑
𝑗∈𝑆

𝑄 (𝑖, 𝑗)E [𝑓𝑛+1 (𝑗, 𝑟𝑓𝑛 (𝑖) 𝑥𝑛 + 𝑅𝑒𝑛 (𝑖) 𝑢𝑛)]

= −𝜔 𝑇∏
𝑚=𝑛+1

𝑄𝑞𝑚 (𝑖) (𝑟𝑓𝑛 (𝑖))2 (𝑥𝑛)2 + 𝜆 𝑇∏
𝑚=𝑛+1

𝑄𝑔𝑚 (𝑖)

⋅ 𝑟𝑓𝑛 (𝑖) 𝑥𝑛 − 𝜔 𝑇∏
𝑚=𝑛+1

𝑄𝑞𝑚 (𝑖)
⋅ [2𝑥𝑛𝑟𝑓𝑛 (𝑖) 𝑟𝑒𝑛 (𝑖) 𝑢𝑛 + E [(𝑅𝑒𝑛 (𝑖))2] (𝑢𝑛)2]
+ 𝜆 𝑇∏
𝑚=𝑛+1

𝑄𝑔𝑚 (𝑖) 𝑟𝑒𝑛 (𝑖) 𝑢𝑛 + 𝜆24𝜔
⋅ 𝑇+1∑
𝑘=𝑛+2

(𝑄𝑘−(𝑛+2)𝑄𝛼𝑘) (𝑖) .

(A.5)

It is clear that∏𝑇𝑚=𝑛+1𝑄𝑞𝑚(𝑖) > 0 according to the definition of𝑞𝑛(𝑖). Hence, the optimal solution of (A.5) exists and is given
as

𝑢̃𝑛 (𝑖, 𝑥𝑛)
= 𝑟𝑒𝑛 (𝑖)
E [(𝑅𝑒𝑛 (𝑖))2] ( 𝜆2𝜔 ∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑖) − 𝑟𝑓𝑛 (𝑖) 𝑥𝑛) . (A.6)

Substituting (A.6) into (A.5), we obtain

𝑓𝑛 (𝑖, 𝑥𝑛) = max
𝑢𝑛

∑
𝑗∈𝑆

𝑄 (𝑖, 𝑗)
⋅ E [𝑓𝑛+1 (𝑗, 𝑟𝑓𝑛 (𝑖) 𝑥𝑛 + 𝑅𝑒𝑛 (𝑖) 𝑢𝑛)]
= −𝜔 𝑇∏
𝑚=𝑛+1

𝑄𝑞𝑚 (𝑖) (𝑟𝑓𝑛 (𝑖))2 (𝑥𝑛)2 + 𝜆 𝑇∏
𝑚=𝑛+1

𝑄𝑔𝑚 (𝑖)
⋅ 𝑟𝑓𝑛 (𝑖) 𝑥𝑛 + 𝜆24𝜔

𝑇+1∑
𝑘=𝑛+2

(𝑄𝑘−(𝑛+2)𝑄𝛼𝑘) (𝑖)

+ 𝜔 𝑇∏
𝑚=𝑛+1

𝑄𝑞𝑚 (𝑖)

⋅ (𝑟𝑒𝑛 (𝑖))2
E [(𝑅𝑒𝑛 (𝑖))2] ( 𝜆2𝜔 ∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑖)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑖)

− 𝑟𝑓𝑛 (𝑖) 𝑥𝑛)
2

= −𝜔𝑞𝑛 (𝑖) 𝑇∏
𝑚=𝑛+1

𝑄𝑞𝑚 (𝑖) (𝑥𝑛)2

+ 𝜆𝑔𝑛 (𝑖) 𝑇∏
𝑚=𝑛+1

𝑄𝑔𝑚 (𝑖) 𝑥𝑛 + 𝜆24𝜔𝛼𝑛+1 (𝑖) + 𝜆24𝜔
⋅ 𝑇+1∑
𝑘=𝑛+2

(𝑄𝑘−(𝑛+2)𝑄𝛼𝑘) (𝑖) .

(A.7)

Equations (A.6) and (A.7) indicate that (16) and (17) hold for𝑛. By induction, the conclusions of Theorem 4 are true.

B. Proof of Theorem 5

Proof. Referring to (17), for 𝑛 = 1, 2, . . . , 𝑇, the wealth
dynamics become

𝑊𝑢̃𝑛+1 = 𝑟𝑓𝑛 (𝑆𝑛)𝑊𝑢̃𝑛 + 𝑅𝑒𝑛 (𝑆𝑛) 𝑢̃𝑛
= 𝑟𝑓𝑛 (𝑆𝑛) [[1 − 𝑅𝑒𝑛 (𝑆𝑛) 𝑟𝑒𝑛 (𝑆𝑛)

E [(𝑅𝑒𝑛 (𝑖))2]]]𝑊𝑢̃𝑛

+ 𝜆2𝜔 ∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑆𝑛)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑆𝑛)𝑅
𝑒
𝑛 (𝑆𝑛) 𝑟𝑒𝑛 (𝑆𝑛)

E [(𝑅𝑒𝑛 (𝑖))2] ,
(B.1)

which leads to

E (𝑊𝑢̃𝑛+1 | 𝑆1, 𝑆2, . . . , 𝑆𝑛)
= 𝑔𝑛 (𝑆𝑛)E (𝑊𝑢̃𝑛 | 𝑆1, 𝑆2, . . . , 𝑆𝑛) + 𝜆2𝜔ℎ̃𝑛+1 (𝑆𝑛) . (B.2)
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By induction and noting that E(𝑊𝑢̃𝑛 | 𝑆1, 𝑆2, . . . , 𝑆𝑛) = E(𝑊𝑢̃𝑛 |𝑆1, 𝑆2, . . . , 𝑆𝑛−1), we derive
E (𝑊𝑢̃𝑛+1 | 𝑆1, . . . , 𝑆𝑛) = 𝑔1 (𝑆1)( 𝑛∏

𝑘=2

𝑔𝑘 (𝑆𝑘))𝑊1
+ 𝜆2𝜔
𝑛+1∑
𝑘=2

ℎ̃𝑘 (𝑆𝑘−1) 𝑛∏
𝑙=𝑘

𝑔𝑙 (𝑆𝑙) .
(B.3)

In view of the tower property of the expectation, we first have

E𝑖1,𝑥1 (𝑊𝑢̃𝑛 ) = E𝑖1 ,𝑥1 [E (𝑊𝑢̃𝑛 | 𝑆1, 𝑆2, . . . , 𝑆𝑛)]
= 𝑔1 (𝑖1)E𝑖1 (𝑛−1∏

𝑘=2

𝑔𝑘 (𝑆𝑘))𝑥1
+ 𝜆2𝜔

𝑛∑
𝑘=2

E𝑖1 [ℎ̃𝑘 (𝑆𝑘−1) 𝑛−1∏
𝑙=𝑘

𝑔𝑙 (𝑆𝑙)] .
(B.4)

Further, by Lemma 3, we derive

E𝑖1,𝑥1 (𝑊𝑢̃𝑛 ) = 𝑔1 (𝑖1) 𝑛−1∏
𝑘=2

𝑄𝑔𝑘 (𝑖1) 𝑥1 + 𝜆2𝜔
⋅ 𝑛∑
𝑘=2

∑
𝑗∈𝑆

𝑄𝑘−2 (𝑖1, 𝑗) ℎ̃𝑘 (𝑗)
⋅ E(𝑛−1∏
𝑙=𝑘

𝑔𝑙 (𝑆𝑙) | 𝑆𝑘−1 = 𝑗) = 𝑔1 (𝑖1) 𝑛−1∏
𝑘=2

𝑄𝑔𝑘 (𝑖1) 𝑥1
+ 𝜆2𝜔

𝑛∑
𝑘=2

∑
𝑗∈𝑆

𝑄𝑘−2 (𝑖1, 𝑗) ℎ̃𝑘 (𝑗) 𝑛−1∏
𝑙=𝑘

𝑄𝑔𝑙 (𝑗) = 𝑔1 (𝑖1)
⋅ 𝑛−1∏
𝑘=2

𝑄𝑔𝑘 (𝑖1) 𝑥1 + 𝜆2𝜔
⋅ 𝑛∑
𝑘=2

[[𝑄𝑘−2(ℎ̃𝑘 ⋅ 𝑛−1∏
𝑙=𝑘

𝑄𝑔𝑙)]] (𝑖1) .

(B.5)

By (B.1), we obtain

(𝑊𝑢̃𝑛+1)2 = (𝑟𝑓𝑛 (𝑆𝑛))2 [[1 − 𝑅𝑒𝑛 (𝑆𝑛) 𝑟𝑒𝑛 (𝑆𝑛)
E [(𝑅𝑒𝑛 (𝑆𝑛))2]]]

2

⋅ (𝑊𝑢̃𝑛 )2 + 𝜆𝜔 ∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑆𝑛)∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑆𝑛)𝑅
𝑒
𝑛 (𝑆𝑛)

⋅ 𝑟𝑒𝑛 (𝑆𝑛)
E [(𝑅𝑒𝑛 (𝑆𝑛))2] × 𝑟𝑓𝑛 (𝑆𝑛)

⋅ [[1 − 𝑅𝑒𝑛 (𝑆𝑛) 𝑟𝑒𝑛 (𝑆𝑛)
E [(𝑅𝑒𝑛 (𝑆𝑛))2]]]𝑊𝑢̃𝑛

+ 𝜆24𝜔2
(∏𝑇𝑚=𝑛+1𝑄𝑔𝑚 (𝑆𝑛))2
(∏𝑇𝑚=𝑛+1𝑄𝑞𝑚 (𝑆𝑛))2

(𝑟𝑒𝑛 (𝑆𝑛))2

⋅ (𝑅𝑒𝑛 (𝑆𝑛))2[E [(𝑅e
𝑛 (𝑆𝑛))2]]2 .

(B.6)

Taking the expectation of both sides yields

E ((𝑊𝑢̃𝑛+1)2 | 𝑆1, . . . , 𝑆𝑛)
= 𝑞𝑛 (𝑆𝑛)E ((𝑊𝑢̃𝑛 )2 | 𝑆1, . . . , 𝑆𝑛−1)

+ 𝜆24𝜔2 ℎ𝑛+1 (𝑆𝑛) .
(B.7)

Similarly by induction, we obtain

E ((𝑊𝑢̃𝑛 )2 | 𝑆1, . . . , 𝑆𝑛−1)
= 𝑞1 (𝑆1) 𝑛−1∏

𝑘=2

𝑞𝑘 (S𝑘) (𝑊1)2

+ 𝜆24𝜔2
𝑛∑
𝑘=2

ℎ𝑘 (𝑆𝑘−1) 𝑛−1∏
𝑙=𝑘

𝑞𝑙 (𝑆𝑙) .
(B.8)

According to (B.8) and Lemma 3, we obtain

E𝑖1,𝑥1 ((𝑊𝑢̃𝑛 )2) = E𝑖1 ,𝑥1 [E ((𝑊𝑢̃𝑛 )2 | 𝑆1, 𝑆2, . . . , 𝑆𝑛)]
= 𝑞1 (𝑖1)E𝑖1 [𝑛−1∏

𝑘=2

𝑞𝑘 (𝑆𝑘)] (𝑥1)2 + 𝜆24𝜔2
⋅ E𝑖1 [ 𝑛∑

𝑘=2

ℎ𝑘 (𝑆𝑘−1) 𝑛−1∏
𝑙=𝑘

𝑞𝑙 (𝑆𝑘)] = 𝑞1 (𝑖1)
⋅ 𝑛−1∏
𝑘=2

𝑄𝑞𝑘 (𝑖1) (𝑥1)2 + 𝜆24𝜔2
𝑛∑
𝑘=2

∑
𝑗∈𝑆

𝑄𝑘−2 (𝑖1, 𝑗) ℎ𝑘 (𝑗)
⋅ E[𝑛−1∏
𝑙=𝑘

𝑞𝑙 (𝑆𝑘) | 𝑆𝑘−1 = 𝑗] = 𝑞1 (𝑖1) 𝑛−1∏
𝑘=2

𝑄𝑞𝑘 (𝑖1)
⋅ (𝑥1)2 + 𝜆24𝜔2

𝑛∑
𝑘=2

∑
𝑗∈𝑆

𝑄𝑘−2 (𝑖1, 𝑗) ℎ𝑘 (𝑗) 𝑛−1∏
𝑙=𝑘

𝑄𝑞𝑙 (𝑗)
= 𝑞1 (𝑖1) 𝑛−1∏

𝑘=2

𝑄𝑞𝑘 (𝑖1) (𝑥1)2 + 𝜆24𝜔2
⋅ 𝑛∑
𝑘=2

[[𝑄𝑘−2(ℎ𝑘 ⋅ 𝑛−1∏
𝑙=𝑘

𝑄𝑞𝑙)]] (𝑖1) .

(B.9)
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C. Proof of Lemma 6

Proof. First, we have

𝜉 (𝑖1) = 𝑇+1∑
𝑘=2

[[𝑄𝑘−2(ℎ̃𝑘 ⋅ 𝑇∏
𝑙=𝑘

𝑄𝑔𝑙)]] (𝑖1)

= 𝑇+1∑
𝑘=2

𝑄𝑘−2 (𝑖1) [[[[
(∏𝑇𝑙=𝑘𝑄𝑔𝑙)2
∏𝑇𝑙=𝑘𝑄𝑞𝑙 ⋅ ℎ𝑘−1]]]]

.
(C.1)

Because 𝑟𝑒𝑛(𝑖) is assumed to be nonzero, ℎ𝑛(𝑖) = (𝑟𝑒𝑛(𝑖))2/
E[(𝑅𝑒𝑛(𝑖))2] is positive. Together with 𝑞𝑛(𝑖) > 0, we have𝜉(𝑖1) > 0. Next, we will prove 𝜉(𝑖1) < 1. For convenience,
it first follows from (22) that

Var𝑖1 ,𝑥1 (𝑊𝑢̃𝑇+1)
= 𝜑 (𝑖1) (𝑥1)2 + 𝜆24𝜔2 𝜉 (𝑖1)

− (𝜙 (𝑖) 𝑥1 + 𝜆2𝜔𝜉 (𝑖1))2

= 𝜉 (𝑖1) (1 − 𝜉 (𝑖1)) 𝜆24𝜔2 − 𝜙 (𝑖1) 𝜉 (𝑖1) 𝜆𝜔𝑥1
+ (𝜑 (𝑖1) − (𝜙 (𝑖1))2) (𝑥1)2

= 𝜉 (𝑖1) (1 − 𝜉 (𝑖1)) ( 𝜆2𝜔 − 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1))
2

+ 𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖1) 𝜑 (𝑖1)1 − 𝜉 (𝑖1) (𝑥1)2 .
(C.2)

Because 𝜆 can take any value in (−∞, +∞) and the variance
should be greater than zero, the coefficient of 𝜆2/4𝜔2 should
be greater than zero. That is, 𝜉(𝑖1) < 1. In addition, 𝜑(𝑖1) −(𝜙(𝑖1))2−𝜉(𝑖1)𝜑(𝑖1) ≥ 0 is immediately obtained when 𝜆 takes
a special value 𝜆 = 2𝜔𝜙(𝑖1)𝑥1/(1 − 𝜉(𝑖1)).
D. Proof of Lemma 8

Proof. According to (30), we first have

Γ (𝜔) = 𝜙 (𝑖1) 𝑥1 − 𝜉 (𝑖1) 𝛽𝑐1 (𝑖1) 𝛾 + 𝜉 (𝑖1) 𝑐2 (𝑖1) − 2𝛽𝛾 (𝜙 (𝑖1) 𝑥1 + 𝜉 (𝑖1) 𝑐2 (𝑖1)) 𝜔 + 𝑐1 (𝑖1) 𝜉 (𝑖1)2𝜔 + 𝜔 (1 + 𝛽)
⋅ [(𝜙 (𝑖1))2 (𝑥1)2 + 2𝜙 (𝑖1) 𝜉 (𝑖1) 𝑥1 (𝑐1 (𝑖1)2𝜔 + 𝑐2 (𝑖1)) + ((𝑐1 (𝑖1))24𝜔2 + 𝑐1 (𝑖1) 𝑐2 (𝑖1)𝜔 + (𝑐2 (𝑖1))2)(𝜉 (𝑖1))2]

− 𝜔(𝜑 (𝑖1) (𝑥1)2 + ((𝑐1 (𝑖1))24𝜔2 + 𝑐1 (𝑖1) 𝑐2 (𝑖1)𝜔 + (𝑐2 (𝑖1))2)𝜉 (𝑖1)) + 𝜔𝛽𝛾2 = 𝜙 (𝑖1) 𝑥1 − 𝜉 (𝑖1) 𝛽𝑐1 (𝑖1) 𝛾 + 𝜉 (𝑖1)

⋅ 𝑐2 (𝑖1) − 2𝛽𝛾 (𝜙 (𝑖1) 𝑥1 + 𝜉 (𝑖1) 𝑐2 (𝑖1)) 𝜔 + 𝑐1 (𝑖1) 𝜉 (𝑖1)2𝜔 + (1 + 𝛽) (𝜙 (𝑖1))2 (𝑥1)2 𝜔 + (1 + 𝛽) 𝜙 (𝑖1) 𝜉 (𝑖1) 𝑥1𝑐1 (𝑖1)
+ 2 (1 + 𝛽) 𝜙 (𝑖1) 𝜉 (𝑖1) 𝑥1𝑐2 (𝑖1) 𝜔 + (1 + 𝛽) (𝜉 (𝑖1))2 (𝑐1 (𝑖1))24𝜔 + (1 + 𝛽) (𝜉 (𝑖1))2 𝑐1 (𝑖1) 𝑐2 (𝑖1) + (1 + 𝛽) (𝜉 (𝑖1))2

⋅ (𝑐2 (𝑖1))2 𝜔 − 𝜑 (𝑖1) (𝑥1)2 𝜔 − (𝑐1 (𝑖1))2 𝜉 (𝑖1)4𝜔 − 𝑐1 (𝑖1) 𝑐2 (𝑖1) 𝜉 (𝑖1) − (𝑐2 (𝑖1))2 𝜉 (𝑖1) 𝜔 + 𝛽𝛾2𝜔.

(D.1)

Combining like terms yields

Γ (𝜔) = 𝜙 (𝑖1) 𝑥1 − 𝜉 (𝑖1) 𝛽𝑐1 (𝑖1) 𝛾 + 𝜉 (𝑖1) 𝑐2 (𝑖1) + (1 + 𝛽) 𝜉 (𝑖1) 𝑐1 (𝑖1) 𝜙 (𝑖1) 𝑥1 + (1 + 𝛽) (𝜉 (𝑖1))2 𝑐1 (𝑖1) 𝑐2 (𝑖1) − 𝑐1 (𝑖1) 𝑐2 (𝑖1) 𝜉 (𝑖1)
+ [2𝜉 (𝑖1) + ((1 + 𝛽) 𝜉 (𝑖1) − 1) 𝜉 (𝑖1) 𝑐1 (𝑖1)] 𝑐1 (𝑖1)4𝜔
+ [(1 + 𝛽) (𝜙 (𝑖1))2 (𝑥1)2 − 2𝛽𝛾 (𝜙 (𝑖1) 𝑥1 + 𝜉 (𝑖1) 𝑐2 (𝑖1)) + 2 (1 + 𝛽) 𝜙 (𝑖1) 𝜉 (𝑖1) 𝑥1𝑐2 (𝑖1) + (1 + 𝛽) (𝜉 (𝑖1))2 (𝑐2 (𝑖1))2 − 𝜑 (𝑖1) (𝑥1)2 − (𝑐2 (𝑖1))2 𝜉 (𝑖1) + 𝛽𝛾2] 𝜔.

(D.2)
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In (D.2), in view of 𝑐1(𝑖1)(1 − (1 + 𝛽)𝜉(𝑖1)) = 1, we derive
𝜙 (𝑖1) 𝑥1 − 𝜉 (𝑖1) 𝛽𝑐1 (𝑖1) 𝛾 + 𝜉 (𝑖1) 𝑐2 (𝑖1)

+ (1 + 𝛽) 𝜉 (𝑖1) 𝑐1 (𝑖1) 𝜙 (𝑖1) 𝑥1
+ (1 + 𝛽) (𝜉 (𝑖1))2 𝑐1 (𝑖1) 𝑐2 (𝑖1)
− 𝑐1 (𝑖1) 𝑐2 (𝑖1) 𝜉 (𝑖1)
= 𝜙 (𝑖1) 𝑥1 [1 + (1 + 𝛽) 𝜉 (𝑖1) 𝑐1 (𝑖1)]
+ 𝜉 (𝑖1) [𝑐2 (𝑖1) − 𝛽𝛾𝑐1 (𝑖1)]
+ [(1 + 𝛽) 𝜉 (𝑖1) − 1] 𝜉 (𝑖1) 𝑐1 (𝑖1) 𝑐2 (𝑖1)
= 𝜙 (𝑖1) 𝑥1𝑐1 (𝑖1) + 𝜉 (𝑖1) [𝑐2 (𝑖1) − 𝛽𝛾𝑐1 (𝑖1)]
− 𝜉 (𝑖1) 𝑐2 (𝑖1) = (𝜙 (𝑖1) 𝑥1 − 𝛽𝛾𝜉 (𝑖1)) 𝑐1 (𝑖1)
= 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1) ,

[2𝜉 (𝑖1) + ((1 + 𝛽) 𝜉 (𝑖1) − 1) 𝜉 (𝑖1) 𝑐1 (𝑖1)] 𝑐1 (𝑖1)4𝜔
= 𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1) 14𝜔 .

(D.3)

Moreover, according to

𝑐1 (𝑖1) = 11 − (1 + 𝛽) 𝜉 (𝑖1) ,
𝑐2 (𝑖1) = 𝑐1 (𝑖1) [(1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾] , (D.4)

the coefficient of 𝜔 can be simplified as

(1 + 𝛽) (𝜙 (𝑖1))2 (𝑥1)2 − 2𝛽𝛾 (𝜙 (𝑖1) 𝑥1
+ 𝜉 (𝑖1) 𝑐2 (𝑖1)) + 2 (1 + 𝛽) 𝜙 (𝑖1) 𝜉 (𝑖1) 𝑥1𝑐2 (𝑖1)
+ (1 + 𝛽) (𝜉 (𝑖1))2 (𝑐2 (𝑖1))2 − 𝜑 (𝑖1) (𝑥1)2
− (𝑐2 (𝑖1))2 𝜉 (𝑖1) + 𝛽𝛾2 = (1 + 𝛽) (𝜙 (𝑖1))2 (𝑥1)2
− 2𝛽𝛾𝜙 (𝑖1) 𝑥1 + 2 [(1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾] 𝜉 (𝑖1)
⋅ 𝑐2 (𝑖1) − (1 − (1 + 𝛽) 𝜉 (𝑖1)) 𝜉 (𝑖1) (𝑐2 (𝑖1))2
− 𝜑 (𝑖1) (𝑥1)2 + 𝛽𝛾2 = (1 + 𝛽) (𝜙 (𝑖1))2 (𝑥1)2
− 2𝛽𝛾𝜙 (𝑖1) 𝑥1 + 2 ((1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾) 𝜉 (𝑖1)
⋅ 𝑐2 (𝑖1) − ((1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾) 𝜉 (𝑖1) 𝑐2 (𝑖1)
− 𝜑 (𝑖1) (𝑥1)2 + 𝛽𝛾2 = (1 + 𝛽) (𝜙 (𝑖1))2 (𝑥1)2
− 𝜑 (𝑖1) (𝑥1)2 − 2𝛽𝜙 (𝑖1) 𝑥1𝛾 + ((1 + 𝛽) 𝜙 (𝑖1) 𝑥1
− 𝛽𝛾)2 𝜉 (𝑖1) 𝑐1 (𝑖1) + 𝛽𝛾2 = (1 + 𝛽) (𝜙 (𝑖1))2 (𝑥1)2

− 𝜑 (𝑖1) (𝑥1)2 − 2𝛽𝜙 (𝑖1) 𝑥1𝛾
+ [(1 + 𝛽)2 (𝜙 (𝑖1))2 (𝑥1)2 − 2𝛽𝛾 (1 + 𝛽) 𝜙 (𝑖1) 𝑥1
+ 𝛽2𝛾2] 𝜉 (𝑖1) 𝑐1 (𝑖1) + 𝛽𝛾2 = 𝛽 (𝛽𝜉 (𝑖1) 𝑐1 (𝑖1) + 1)
⋅ 𝛾2 − 2𝛽𝜙 (𝑖1) (1 + (1 + 𝛽) 𝜉 (𝑖1) 𝑐1 (𝑖1)) 𝑥1𝛾
+ [(1 + 𝛽) (𝜙 (𝑖1))2 (1 + (1 + 𝛽) 𝜉 (𝑖1) 𝑐1 (𝑖1))
− 𝜑 (𝑖1)] (𝑥1)2 = 𝛽 (1 − 𝜉 (𝑖1)) 𝑐1 (𝑖1) 𝛾2
− 2𝛽𝜙 (𝑖1) 𝑐1 (𝑖1) 𝑥1𝛾 + [(1 + 𝛽) (𝜙 (𝑖1))2
− (1 − (1 + 𝛽) 𝜉 (𝑖1)) 𝜑 (𝑖1)] 𝑐1 (𝑖1) (𝑥1)2
= 𝑦 (𝛾)1 − (1 + 𝛽) 𝜉 (𝑖1) ,

(D.5)

where

𝑦 (𝛾) = 𝛽 (1 − 𝜉 (𝑖1)) 𝛾2 − 2𝛽𝜙 (𝑖1) 𝑥1𝛾
+ [(1 + 𝛽) (𝜙 (𝑖1))2 − (1 − (1 + 𝛽) 𝜉 (𝑖1)) 𝜑 (𝑖1)]
⋅ (𝑥1)2 .

(D.6)

E. Proof of Lemma 9

Proof. Referring to (42), 𝛾 < [E𝑖,𝑥1(𝑊𝑢̃𝑇+1)|𝜆∗]|𝜔∗ is equivalent
to

𝛾 < √𝑦 (𝛾) 𝜉 (𝑖1) + 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1) . (E.1)

Since 1 − (1 + 𝛽)𝜉(𝑖1) > 0, the above formula is equivalent to

(1 − 𝜉 (𝑖1)) 𝛾 < 𝜙 (𝑖1) 𝑥1 + √𝑦 (𝛾) 𝜉 (𝑖1), (E.2)

which will be proved to be equivalent to 𝛾 ≤ 𝜙(𝑖1)𝑥1/(1 −𝜉(𝑖1)). On one hand, when 𝛾 ≤ 𝜙(𝑖1)𝑥1/(1−𝜉(𝑖1)), that is, (1−𝜉(𝑖1))𝛾 ≤ 𝜙(𝑖1)𝑥1, (E.2) holds naturally. On the other hand,
when (E.2) holds, we want to obtain 𝛾 ≤ 𝜙(𝑖1)𝑥1/(1 − 𝜉(𝑖1)).
Otherwise, if 𝛾 > 𝜙(𝑖1)𝑥1/(1 − 𝜉(𝑖1)), that is, (1 − 𝜉(𝑖1))𝛾 −𝜙(𝑖1)𝑥1 > 0, then (E.2) can be equivalently written as

[(1 − 𝜉 (𝑖1)) 𝛾 − 𝜙 (𝑖1) 𝑥1]2 < 𝑦 (𝛾) 𝜉 (𝑖1) , (E.3)

which is simplified to

(1 − 𝜉 (𝑖1)) 𝛾2 − 2𝜙 (𝑖1) 𝑥1𝛾 + (𝜙 (𝑖1))2 (𝑥1)2
+ 𝜉 (𝑖1) 𝜑 (𝑖1) (𝑥1)2 < 0. (E.4)
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Let 𝑓(𝛾) = (1 − 𝜉(𝑖1))𝛾2 − 2𝜙(𝑖1)𝑥1𝛾 + (𝜙(𝑖1))2(𝑥1)2 +𝜉(𝑖1)𝜑(𝑖1)(𝑥1)2 and it is easy to have

Δ = −4𝜉 (𝑖1) [𝜑 (𝑖1) − (𝜙 (𝑖1))2 − 𝜉 (𝑖1) 𝜑 (𝑖1)] (𝑥1)2
≤ 0 (E.5)

according to Lemma 6. This together with 1 − 𝜉(𝑖1) > 0
implies 𝑓(𝛾) ≥ 0, which conflicts with 𝑓(𝛾) < 0. Therefore,𝛾 > 𝜙(𝑖1)𝑥1/(1 − 𝜉(𝑖1)) does not hold. Now we can claim that𝛾 < [E𝑖,𝑥1(𝑊𝑢̃𝑇+1)|𝜆∗]|𝜔∗ is equivalent to 𝛾 ≤ 𝜙(𝑖1)𝑥1/(1−𝜉(𝑖1)).
Noting that

𝑦1 < 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1) < 𝑦2; (E.6)

thus (44) is reduced to 𝛾 ∈ {𝛾 | 𝛾 < 𝑦1}.
F. Proof of Theorem 11

Proof. Because 𝑦(𝛾) is decreasing in the interval 𝛾 ∈(−∞, 𝑦1), referring to (42) and (45), it is clear that E𝑖,𝑥1(𝑊𝑢∗𝑇+1)
and 𝑢∗𝑛 (𝑖, 𝑥𝑛) are decreasing functions with respect to 𝛾 ∈(−∞, 𝑦1). In addition, since

𝛾 < 𝑦1 < 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1) , (F.1)

together with 𝑦(𝛾) > 0, we know that Var𝑖,𝑥1(𝑊𝑢∗𝑇+1) in (46) is
also decreasing along with 𝛾 ∈ (−∞, 𝑦1).

G. Proof of Theorem 12

Proof. Referring to (42), (45), and (46), it is clear that𝑢∗𝑛 (𝑖, 𝑥𝑛), E𝑖,𝑥1(𝑊𝑢∗𝑇+1), and Var𝑖,𝑥1(W𝑢∗𝑇+1) contain the term𝑦(𝛾). Thus, we first derive the partial derivative of 𝑦(𝛾) with
respect to 𝛽. By (32), we have

𝜕𝑦 (𝛾)𝜕𝛽 = (1 − 𝜉 (𝑖1)) 𝛾2 − 2𝜙 (𝑖1) 𝑥1𝛾
+ ((𝜙 (𝑖1))2 + 𝜉 (𝑖1) 𝜑 (𝑖1)) (𝑥1)2
= (1 − 𝜉 (𝑖1)) (𝛾 − 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1))

2

− (𝜙 (𝑖1))21 − 𝜉 (𝑖1) (𝑥1)2
+ ((𝜙 (𝑖1))2 + 𝜉 (𝑖1) 𝜑 (𝑖1)) (𝑥1)2
= (1 − 𝜉 (𝑖1)) (𝛾 − 𝜙 (𝑖1) 𝑥11 − 𝜉 (𝑖1))

2

+ 𝜉 (𝑖1)1 − 𝜉 (𝑖1) [(1 − 𝜉 (𝑖1)) 𝜑 (𝑖1) − (𝜙 (𝑖1))2] (𝑥1)2 .

(G.1)

In view of Lemma 6, 𝜕𝑦(𝛾)/𝜕𝛽 > 0. Therefore, by (45), we
know that√𝑦(𝛾) and 1/(1 − (1 + 𝛽)𝜉(𝑖1)) are increasing with
respect to 𝛽. Together with

𝜕𝜕𝛽 (1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾1 − (1 + 𝛽) 𝜉 (𝑖1) = (𝜙 (𝑖1) 𝑥1 − 𝛾) (1 − (1 + 𝛽) 𝜉 (𝑖1)) + 𝜉 (𝑖1) [(1 + 𝛽) 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾](1 − (1 + 𝛽) 𝜉 (𝑖1))2
= 𝜙 (𝑖1) 𝑥1 − (1 − 𝜉 (𝑖1)) 𝛾(1 − (1 + 𝛽) 𝜉 (𝑖1))2 > 0,

(G.2)

we first obtain that 𝑢∗𝑛 (𝑖, 𝑥𝑛) is an increasing function of𝛽. Next, we shall prove that this conclusion holds true for
E𝑖1 ,𝑥1(𝑊𝑢∗𝑇+1). Referring to (42), we have

𝜕𝜕𝛽E𝑖1,𝑥1 (𝑊𝑢∗𝑇+1) = 𝜕𝜕𝛽
√𝑦 (𝛾) 𝜉 (𝑖1) + 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾𝜉 (𝑖1)1 − (1 + 𝛽) 𝜉 (𝑖1)

= (𝜕√𝑦 (𝛾) 𝜉 (𝑖1)/𝜕𝛽 − 𝛾𝜉 (𝑖1)) (1 − (1 + 𝛽) 𝜉 (𝑖1)) + 𝜉 (𝑖1) (√𝑦 (𝛾) 𝜉 (𝑖1) + 𝜙 (𝑖1) 𝑥1 − 𝛽𝛾𝜉 (𝑖1))
(1 − (1 + 𝛽) 𝜉 (𝑖1))2

= (1 − (1 + 𝛽) 𝜉 (𝑖1)) (𝜕√𝑦 (𝛾) 𝜉 (𝑖1)/𝜕𝛽) + 𝜉 (𝑖1)√𝑦 (𝛾) 𝜉 (𝑖1) + 𝜉 (𝑖1) (𝜙 (𝑖1) 𝑥1 − 𝛾 (1 − 𝜉 (𝑖1)))
(1 − (1 + 𝛽) 𝜉 (𝑖1))2 .

(G.3)
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When 0 < 𝛽 < 1/𝜉(𝑖1) − 1 and 𝛾 < 𝑦1, together with𝑦1 < 𝜙(𝑖1)𝑥1/(1 − 𝜉(𝑖1)) and 𝜕𝑦(𝛾)/𝜕𝛽 > 0, we know
that (𝜕/𝜕𝛽)E𝑖1 ,𝑥1(𝑊𝑢∗𝑇+1) > 0. Finally, we aim to show that𝜕/𝜕𝛽 Var𝑖1,𝑥1(𝑊𝑢∗𝑇+1) is also greater than zero. In view of (46),
because 𝛾 < 𝜙(𝑖1)𝑥1/(1 − 𝜉(𝑖)), it is easy to find that𝑐1(𝑖1)𝛽(𝜙(𝑖1)𝑥1/(1 − 𝜉(𝑖1)) − 𝛾) is increasing along with 𝛽,
leading to

𝜕𝜕𝛽Var𝑖1 ,𝑥1 (𝑊𝑢∗𝑇+1) > 0. (G.4)
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