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The aim of this paper is to study the numerical contour integral methods (NCIMs) for solving free-boundary partial differential
equations (PDEs) from American volatility options pricing. Firstly, the governing free-boundary PDEs are modified as a unified
form of PDEs on the fixed space region; then performing Laplace-Carson transform (LCT) leads to ordinary differential equations
(ODEs) which involve the unknown inverse functions of free boundaries. Secondly, the inverse free-boundary functions are
approximated and optimized by solving of the free-boundary values of the perpetual American volatility options. Finally, the ODEs
are solved by the finite difference methods (FDMs), and the results are restored via the numerical Laplace inversion. Numerical
results confirm that the NCIMs outperform the FDMs for solving free-boundary PDEs in regard to the accuracy and computational
time.

1. Introduction

The pricing problems of European-style options written on
volatility are widely studied in the literature by deriving the
explicit formulas [1–6], by using the simulation approaches
[7, 8], by using the PDE approaches [5, 9–13], and by the
empirical analysis [14]. However, the valuation of American-
style volatility options is more challenging due to the early
exercise (free boundary) property. Detemple and Osakwe
[15] derive the early exercise premium (EEP) representa-
tions of American-style volatility options under the general
stochastic volatility models: geometric Brownian motion
process (GBMP), mean-reverting Gaussian process (MRGP),
mean-reverting square-root process (MRSRP), and the mean
reverting log process (MRLP). The EEP representations
result in complex integral equations; however the integral
equations cannot be analytically solved and the iterative
methods for finding the numerical solutions of the integral
equations somehow lack convincing accuracy and reliabil-
ity.

This paper studies the numerical contour integral meth-
ods (NCIMs) for solving free-boundary partial differential
equations (PDEs) from American volatility options written
on the volatility whose price follows four well-knownmodels:
GBMP, MRGP, MRSRP, and MRLP. The original idea of
NCIMs is developed by Zhou, Ma, and Sun [16] for solving
free-boundary problems of space-fractional diffusion equa-
tions; then Ma and Zhu [8] prove the convergence rates of
such methods under the regime-switching European option
pricing, and it can be described as follows. By approximating
the inverse function of free boundary, the free-boundary PDE
could be written as a unified form of PDE defined on a fixed
space region; then applying Laplace transform to the unified
PDEwith respect to time variable results in a boundary value
problem of ODE; finally the finite difference method (FDM)
is adopted for solving the aimed ODE, and the computational
results are restored via the numerical Laplace inversion. How-
ever, it should be pointed out that the original paper needs
another consumable iterative algorithm for approximating
and optimizing the inverse function of free boundary, and
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Table 1: Volatility models and infinitesimal generators.

Model Volatility process A𝑃(𝑉, 𝜏)
GBMP 𝑑𝑉𝑡 = 𝑉𝑡 [(2𝜇 + 𝜎2)𝑑𝑡 + 2𝜎𝑑𝑍𝑡] 2𝜎2𝑉2 𝜕2𝑃𝜕𝑉2 + (2𝜇 + 𝜎2)𝑉 𝜕𝑃𝜕𝑉 − 𝑟𝑃
MRGP 𝑑𝑉𝑡 = (𝛼 − 𝜆𝑉𝑡)𝑑𝑡 + 𝜎𝑑𝑍𝑡 𝜎22 𝜕2𝑃𝜕𝑉2 + (𝛼 − 𝜆𝑉) 𝜕𝑃𝜕𝑉 − 𝑟𝑃
MRSRP 𝑑𝑉𝑡 = (𝜎2 − 2𝜆𝑉𝑡)𝑑𝑡 + 2𝜎√𝑉𝑡𝑑𝑍𝑡 2𝜎2𝑉 𝜕2𝑃𝜕𝑉2 + (𝜎2 − 2𝜆𝑉) 𝜕𝑃𝜕𝑉 − 𝑟𝑃
MRLP 𝑑 ln(𝑉𝑡) = (𝛼 − 𝜆 ln(𝑉𝑡)) 𝑑𝑡 + 𝜎𝑑𝑍𝑡 𝜎2𝑉22 𝜕2𝑃𝜕𝑉2 + (𝛼 − 𝜆 ln𝑉)𝑉 𝜕𝑃𝜕𝑉 − 𝑟𝑃
this paper has no such procedure by means of solving of
the free-boundary values of the perpetual American volatility
options, which can optimize the approximated inverse free-
boundary functions.

The remaining parts of this paper are arranged as fol-
lows: In Section 2, the free-boundary PDEs governing the
American volatility option price are presented and some
accompanied properties are introduced. In Section 3, the
NCIMs are studied for solving the aimed free-boundary
PDEs and some essential theorems are studied. In Section 4,
numerical examples are carried out to verify the effectiveness
of NCIMs. Conclusions are given in the final section.

2. Model Descriptions

Let 𝑉𝑡 denote the volatility of the underlying asset. Then
we consider the following four stochastic volatility models
[15] listed in the second column of Table 1. Meanwhile the
infinitesimal generators are listed in the third column of
Table 1.

InTable 1,𝑍𝑡 denotes the Brownianmotionprocess under
risk neutral measure P, 𝜇, 𝛼, 𝜆, 𝑟 (risk-free interest rate) and𝜎 (volatility of volatility) are constants.

In the following, we describe the free-boundary partial
differential equations from American volatility options. Due
to the limitation of length, the put options are considered in
this paper and the call options are studied similarly without
essential difficulties. Denote by𝑓 (𝑉, 𝑡) = sup

𝜏∈T0,𝑇

E [𝑒−𝑟(𝜏−𝑡)max (𝐾 − 𝑉𝜏, 0) | 𝑉𝑡 = 𝑉] , (1)

the price of American-style put option with underlying
stochastic volatility 𝑉𝑡, current time 𝑡, maturity 𝑇, and strike
price 𝐾, where T0,𝑇 is the optimal stopping set with the
Brownian motion filtration for 𝑡 ∈ [0, 𝑇].

Using transformation of time variable 𝜏 = 𝑇 − 𝑡 (namely,
the time to maturity), then the option price and the early
exercise boundary (namely, the free-boundary function) are
denoted by 𝑃(𝑉, 𝜏) fl 𝑓(𝑉, 𝑇 − 𝜏) = 𝑓(𝑉, 𝑡) and 𝑉𝑓(𝜏),
respectively. Then the valuation of American volatility put
option can be formulated as a free-boundary problem𝜕𝑃 (𝑉, 𝜏)𝜕𝜏 = A𝑃 (𝑉, 𝜏) , 𝑉 > 𝑉𝑓 (𝜏) , 𝜏 > 0, (2)

𝑃 (𝑉, 𝜏) = 𝐾 − 𝑉, 0 ≤ 𝑉 ≤ 𝑉𝑓 (𝜏) (3)

Table 2: The values ofA(𝐾 − 𝑉) and 𝑉𝑓(0).
Model A(𝐾 − 𝑉) 𝑉𝑓(0)
GBMP (𝑟 − 2𝜇 − 𝜎2)𝑉 − 𝑟𝐾 𝐾
MRGP (𝑟 + 𝜆)𝑉 − 𝛼 − 𝑟𝐾 min(𝐾, 𝛼 + 𝑟𝐾𝜆 + 𝑟 )
MRSRP (𝑟 + 2𝜆)𝑉 − 𝜎2 − 𝑟𝐾 min(𝐾, 𝜎2 + 𝑟𝐾2𝜆 + 𝑟 )
MRLP (𝑟 + 𝜆 ln𝑉 − 𝛼)𝑉 − 𝑟𝐾 min (𝐾, 𝑉∗)
𝜕𝑃 (𝑉𝑓 (𝜏) , 𝜏)𝜕𝑉 = −1, (4)

lim
𝑉󳨀→∞

𝑃 (𝑉, 𝜏) = 0, (5)𝑃 (𝑉, 0) = max (𝐾 − 𝑉, 0) , (6)

where we can verify that

A [𝑃 (𝑉, 𝜏) 1{𝑉≤𝑉𝑓(𝜏)}] = A (𝐾 − 𝑉) , (7)

where 1{⋅} represents the indicator function and the values of
A(𝐾−𝑉) for different models are listed in the second column
of Table 2. Moreover the early exercise boundaries at initial𝑉𝑓(0) are given in the third column of Table 2, where 𝑉∗ is
the unique positive root of the following nonlinear algebraic
equation:

(𝑟 + 𝜆 ln𝑉 − 𝛼)𝑉 − 𝑟𝐾 = 0, (8)

It is proved by [17, 18] for GBMP model and [18] for
MRGP model, MRSRP model, and MRLP model that the
free-boundary functions 𝑉𝑓(𝜏) are continuously differen-
tiable, strictly decreasing and convex on the interval 𝑉 ∈[0, +∞), which are confirmed by the simulation results in
[19]. Moreover we note that the free-boundary functions𝑉𝑓(𝜏) are bounded on the interval (𝑉,𝑉], where 𝑉 =𝑉𝑓(∞) are the early exercise boundaries of the corresponding
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perpetual American volatility put options, whose values
satisfy the following ODEs:

A𝑃∞ (𝑉) = 0, 𝑉 > 𝑉𝑓 (∞) , (9)𝑃∞ (𝑉) = 𝐾 − 𝑉, 0 ≤ 𝑉 ≤ 𝑉𝑓 (∞) (10)𝑑𝑃∞ (𝑉𝑓 (∞))𝑑𝑉 = −1, (11)

lim
𝑉󳨀→∞

𝑃∞ (𝑉) = 0, (12)

where the differential operators A are listed in the third
column of Table 1 with replacement of 𝑃 by 𝑃∞.

3. Numerical Contour Integral Methods
for Free-Boundary PDEs from American
Volatility Options Pricing

The aim of this section is to study the numerical contour
integral methods (NCIMs) for solving the free-boundary
PDEs (2)-(6).

From the PDEs (2)-(6), if the volatility falls into the
exercise region 𝑉 ∈ [0,𝑉𝑓(𝜏)] for 𝜏 ∈ [0,∞), then the value
of American volatility put is given by 𝑃(𝑉, 𝜏) = 𝐾−𝑉, and we
can verify that it is equivalent to the following PDE:𝜕𝑃 (𝑉, 𝜏)𝜕𝜏 = A𝑃 (𝑉, 𝜏) −A (𝐾 − 𝑉) ,

0 ≤ 𝑉 ≤ 𝑉𝑓 (𝜏) , 𝜏 > 0. (13)

Combining (2) and (13) gives a unified form of PDE:𝜕𝑃 (𝑉, 𝜏)𝜕𝜏 = A𝑃 (𝑉, 𝜏) −A (𝐾 − 𝑉) 1{𝑉≤𝑉𝑓(𝜏)},𝑉 ≥ 0, 𝜏 > 0. (14)

Recall that 𝑉 ∈ [0,𝑉𝑓(𝜏)] for all 𝜏 ∈ [0, +∞); the value
of American volatility put option equals 𝐾 − 𝑉 on the region𝑉 ∈ [0,𝑉]. Therefore it suffices to solve the PDE (14) with
conditions 𝑃 (𝑉, 𝜏) = 𝐾 − 𝑉, (15)𝜕𝑃 (𝑉, 𝜏)𝜕𝑉 = −1, (16)

lim
𝑉󳨀→∞

𝑃 (𝑉, 𝜏) = 0, (17)𝑃 (𝑉, 0) = max (𝐾 − 𝑉, 0) . (18)

Now we focus on the Laplace-Carson transform (LCT)
methods for solving the unified PDE (14). For any complex
value 𝑧, the LCT is defined as

𝑃̂ (𝑉, 𝑧) = ∫+∞
0
𝑃 (𝑉, 𝜏) 𝑧𝑒−𝑧𝜏𝑑𝜏 fl LC [𝑃 (𝑉, 𝜏)] (𝑧) , (19)

which is essentially the same as the Laplace transform (LT),
and the reason for using the LCT is to simplify the notations

in later analysis. The relationship between LCT and LT is
given by

LC [𝑃 (𝑉, 𝜏)] (𝑧) = 𝑧L [𝑃 (𝑉, 𝜏)] (𝑧) . (20)

Let 𝜏𝑓(𝑉) be the inverse function of 𝑉𝑓(𝜏). Since 𝜏𝑓(𝑉)
is a strictly decreasing function on the interval (𝑉, 𝑉] with𝜏𝑓(𝑉+) = ∞, 𝜏𝑓(𝑉) = 0, then the LCT of 1{𝑉≤𝑉𝑓(𝜏)} is given
by

LC [1{𝑉≤𝑉𝑓(𝜏)}] = 𝑧∫+∞
0
𝑒−𝑧𝜏1{𝑉≤𝑉f(𝜏)}𝑑𝜏

= 𝑧∫+∞
0
𝑒−𝑧𝜏1{𝜏≤𝜏𝑓(𝑉)}𝑑𝜏

= 𝑧∫𝜏𝑓(𝑉)
0

𝑒−𝑧𝜏𝑑𝜏 = 1 − 𝑒−𝑧𝜏𝑓(𝑉).
(21)

Applying LCT to PDE (14) with respect to the time
variable on the fixed region 𝑉 ∈ [𝑉, +∞), we obtain that

A𝑃̂ (𝑉, 𝑧) − 𝑧𝑃̂ (𝑉, 𝑧) −A (𝐾 − 𝑉) (1 − 𝑒−𝑧𝜏𝑓(𝑉))+ 𝑧max (𝐾 − 𝑉, 0) = 0, 𝑉 ≥ 𝑉, (22)

and LCT to conditions (15)-(17) give that𝑃̂ (𝑉, 𝑧) = 𝐾 − 𝑉, (23)𝜕𝑃̂ (𝑉, 𝑧)𝜕𝑉 = −1, (24)

lim
𝑉󳨀→∞

𝑃̂ (𝑉, 𝑧) = 0. (25)

TheODEs (22)-(25) cannot be solved directly as the unknown𝑉 and the function 𝜏𝑓(𝑉) are involved. In next paragraphs, we
derive the value 𝑉 and design an approximation for 𝜏𝑓(𝑉).

Assume that 𝜙(𝑉) is a solution of (9) and satisfies
condition (12).Then𝑃∞(𝑉) = 𝐶𝜙(𝑉)with𝐶 being a constant
is also the solution of (9) with (12). Using (10) and (11), we have𝐶𝜙 (𝑉𝑓 (∞)) = 𝐾 − 𝑉𝑓 (∞) , (26)

𝐶𝑑𝜙 (𝑉)𝑑𝑉 |𝑉=𝑉𝑓(∞) = −1. (27)

This gives a nonlinear algebraic equation

𝜙 (𝑉𝑓 (∞)) = (𝑉𝑓 (∞) − 𝐾) 𝑑𝜙 (𝑉)𝑑𝑉 |𝑉=𝑉𝑓(∞), (28)

with unknown 𝑉𝑓(∞). Solving (28), we get the value 𝑉 =𝑉𝑓(∞). In the following, we aim to solve 𝜙(𝑉) exactly that
allows us to avoid using the iterative procedure in [16] for
approximating 𝜏𝑓(𝑉) and optimizing NCIMs.

Theorem 1. Under GBMP model, the value of 𝑉𝑓(∞) is given
by 𝑉𝑓 (∞) = 𝐾𝛾𝛾 − 1, (29)

𝛾 = − (2𝜇 − 𝜎2) − √(2𝜇 − 𝜎2)2 + 8𝜎2𝑟4𝜎2 . (30)



4 Discrete Dynamics in Nature and Society

Proof. The proof is provided by [20].

Theorem 2. Under MRGPmodel, the value of 𝑃∞(𝑉) is given
by

𝑃∞ (𝑉) = 𝐶𝜓[ 𝑟2𝜆 , 12 , (𝛼 − 𝜆𝑉)2𝜆𝜎2 ] , (31)

where 𝜓(⋅) is the degenerate hypergeometric function (see, e.g.,
[21]), and 𝐶 is a constant to be determined.

Proof. Under MRGP model, the ODE (9) can be rewritten as𝜎22 𝜕2𝑃∞𝜕𝑉2 + (𝛼 − 𝜆𝑉) 𝜕𝑃∞𝜕𝑉 − 𝑟𝑃∞ = 0. (32)

Using the variable transformation 𝑦 = 𝛼 − 𝜆𝑉, and the
function transformation 𝑃̃(𝑦) = 𝑃∞((𝛼 − 𝑦)/𝜆), further
inserting 𝜕𝑃∞𝜕𝑉 = −𝜆𝜕𝑃̃𝜕𝑦 , (33)

𝜕2𝑃∞𝜕𝑉2 = 𝜆2 𝜕2𝑃̃𝜕𝑦2 , (34)

into (32) yields 𝜆2𝜎22 𝜕2𝑃̃𝜕𝑦2 − 𝜆𝑦𝜕𝑃̃𝜕𝑦 − 𝑟𝑃̃ = 0, (35)

whose basic solutions are just the degenerate hypergeomet-
ric functions 𝜙(𝑟/2𝜆, 1/2, 𝑦2/𝜆𝜎2) and 𝜓(𝑟/2𝜆, 1/2, 𝑦2/𝜆𝜎2)
(see, e.g., [21]).

Thus the general solution of (32) can be expressed as

𝑃∞ (𝑉) = 𝐶1𝜙[ 𝑟2𝜆 , 12 , (𝛼 − 𝜆𝑉)2𝜆𝜎2 ]
+ 𝐶2𝜓[ 𝑟2𝜆 , 12 , (𝛼 − 𝜆𝑉)2𝜆𝜎2 ] , (36)

where 𝐶1 and 𝐶2 are constants to be determined.
Noting that lim𝑉󳨀→∞𝜙[𝑟/2𝜆, 1/2, (𝛼 − 𝜆𝑉)2/𝜆𝜎2] = +∞,

from condition (12), we obtain that 𝐶1 = 0. Thus the general
solution of (32) is

𝑃∞ (𝑉) = 𝐶2𝜓[ 𝑟2𝜆 , 12 , (𝛼 − 𝜆𝑉)2𝜆𝜎2 ] , (37)

where we complete the proof.

Theorem3. UnderMRSRPmodel, the value of𝑃∞(𝑉) is given
by

𝑃∞ (𝑉) = 𝐶𝑒𝜆𝑉/2𝜎2 (𝜆𝑉𝜎2 )−1/4𝑊𝑘,𝑚 (𝜆𝑉𝜎2 ) , (38)

where 𝑊𝑘,𝑚(⋅) is the Whittaker function (see, e.g., [22]), and𝑘 = 1/4 − 𝑟/2𝜆,𝑚 = 1/4, 𝐶 is a constant to be determined.

Proof. Under MRSRP model, the ODE (9) can be rewritten
as

2𝜎2𝑉𝜕2𝑃∞𝜕𝑉2 + (𝜎2 − 2𝜆𝑉) 𝜕𝑃∞𝜕𝑉 − 𝑟𝑃∞ = 0. (39)

Using the variable transformation 𝑦 = 𝜆𝑉/𝜎2, and
the function transformation 𝑃̃(𝑦) = 𝑃∞(𝜎2𝑦/𝜆), further
inserting 𝜕𝑃∞𝜕𝑉 = 𝜆𝜎2 𝜕𝑃̃𝜕𝑦 , (40)

𝜕2𝑃∞𝜕𝑉2 = 𝜆2𝜎4 𝜕2𝑃̃𝜕𝑦2 , (41)

into (39) yields

2𝜆𝑦𝜕2𝑃̃𝜕𝑦2 + 𝜆 (1 − 2𝑦) 𝜕𝑃̃𝜕𝑦 − 𝑟𝑃̃ = 0, (42)

further using the function transformation 𝑃̃(𝑦) =𝑦−1/4𝑒𝑦/2𝑊(𝑦), and inserting𝜕𝑃̃𝜕𝑦 = 𝑦−1/4𝑒𝑦/2 [(12 − 14𝑦)𝑊(𝑦) +𝑊󸀠 (𝑦)] , (43)

𝜕2𝑃̃𝜕𝑦2 = 𝑦−1/4𝑒𝑦/2 [( 516𝑦2 − 14𝑦 + 14)𝑊(𝑦)
+ (1 − 12𝑦)𝑊󸀠 (𝑦) +𝑊󸀠󸀠 (𝑦)] , (44)

into (42) yields𝑑2𝑊(𝑦)𝑑𝑦2 + (−14 + 𝑘𝑦 + 1/4 − 𝑚2𝑦2 )𝑊(𝑦) = 0, (45)

where

𝑚 = 14 ,𝑘 = 14 − 𝑟2𝜆, (46)

whose basic solutions are just Whittaker functions 𝑀𝑘,𝑚(𝑦)
and𝑊𝑘,𝑚(𝑦) (see, e.g., [22]). Therefore the basic solutions of
equation (39) are

𝜙 (𝑉) = (𝜆𝑉𝜎2 )−1/4 𝑒𝜆𝑉/2𝜎2𝑊𝑘,𝑚 (𝜆𝑉𝜎2 ) ,
𝜓 (𝑉) = (𝜆𝑉𝜎2 )−1/4 𝑒𝜆𝑉/2𝜎2𝑀𝑘,𝑚 (𝜆𝑉𝜎2 ) ,

(47)

and the general solution of (39) can be expressed as𝑃∞ (𝑉) = 𝐶1𝜙 (𝑉) + 𝐶2𝜓 (𝑉) , (48)

where 𝐶1 and 𝐶2 are constants to be determined.
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Noting that lim𝑉󳨀→∞𝜓(𝑉) = +∞, from condition (12),
we obtain that 𝐶2 = 0. Thus the general solution of (39) is

𝑃∞ (𝑉) = 𝐶1𝑒𝜆𝑉/2𝜎2 (𝜆𝑉𝜎2 )−1/4𝑊𝑘,𝑚 (𝜆𝑉𝜎2 ) , (49)

where we complete the proof.

Theorem 4. Under MRLP model, the value of 𝑃∞(𝑉) is given
by

𝑃∞ (𝑉) = 𝐶𝜓[[ 𝑟2𝜆 , 12 ,
(𝜆 ln𝑉 − 𝛼 + 𝜎2/2)2𝜆𝜎2 ]] , (50)

where 𝜓(⋅) is the degenerate hypergeometric function, and 𝐶 is
a constant to be determined.

Proof. Under MRLP model, the ODE (9) can be rewritten as𝜎2𝑉22 𝜕2𝑃∞𝜕𝑉2 + (𝛼 − 𝜆 ln𝑉)𝑉𝜕𝑃∞𝜕𝑉 − 𝑟𝑃∞ = 0. (51)

Using the variable transformation 𝑦 = 𝜆 ln𝑉 − 𝛼 + 𝜎2/2,
and the function transformation 𝑃̃(𝑦) = 𝑃∞(𝑒(𝑦−𝜎2/2+𝛼)/𝜆),
further inserting𝜕𝑃∞𝜕𝑉 = 𝜆𝑒(𝑦−𝜎2/2+𝛼)/𝜆 𝜕𝑃̃𝜕𝑦 , (52)

𝜕2𝑃∞𝜕𝑉2 = 𝜆2𝑒2(𝑦−𝜎2/2+𝛼)/𝜆 𝜕2𝑃̃𝜕𝑦2 − 𝜆𝑒2(𝑦−𝜎2/2+𝛼)/𝜆 𝜕𝑃̃𝜕𝑦 , (53)

into (51) yields 𝜎2𝜆22 𝜕2𝑃̃𝜕𝑦2 − 𝜆𝑦𝜕𝑃̃𝜕𝑦 − 𝑟𝑃̃ = 0, (54)

whose basic solutions are just the degenerate hypergeomet-
ric functions 𝜙(𝑟/2𝜆, 1/2, 𝑦2/𝜆𝜎2) and 𝜓(𝑟/2𝜆, 1/2, 𝑦2/𝜆𝜎2).
Thus the general solution of (51) can be expressed as

𝑃∞ (𝑉) = 𝐶1𝜙[[ 𝑟2𝜆 , 12 ,
(𝜆 ln𝑉 − 𝛼 + 𝜎2/2)2𝜆𝜎2 ]]

+ 𝐶2𝜓[[ 𝑟2𝜆, 12 ,
(𝜆 ln𝑉 − 𝛼 + 𝜎2/2)2𝜆𝜎2 ]] ,

(55)

where 𝐶1 and 𝐶2 are constants to be determined.
Noting that lim𝑉󳨀→∞𝜙[𝑟/2𝜆, 1/2, (𝜆 ln𝑉 − 𝛼 +𝜎2/2)2/𝜆𝜎2] = +∞, from condition (12), we obtain

that 𝐶1 = 0. Thus the general solution of equation (51) is

𝑃∞ (𝑉) = 𝐶2𝜓[[ 𝑟2𝜆 , 12 ,
(𝜆 ln𝑉 − 𝛼 + 𝜎2/2)2𝜆𝜎2 ]] , (56)

where we complete the proof.

Table 3: Difference operators.

Model Ã𝑃̂𝑖(𝑧)
GBMP 2𝜎2𝑉2𝑖 𝑃̂𝑖+1 −2𝑃̂𝑖 + 𝑃̂𝑖−1Δ𝑉2 + (2𝜇 + 𝜎2)𝑉𝑖 𝑃̂𝑖+1 −𝑃̂𝑖−12Δ𝑉 − 𝑟𝑃̂𝑖
MRGP 𝜎22 𝑃̂𝑖+1 − 2𝑃̂𝑖 + 𝑃̂𝑖−1Δ𝑉2 + (𝛼 − 𝜆𝑉𝑖) 𝑃̂𝑖+1 − 𝑃̂𝑖−12Δ𝑉 − 𝑟𝑃̂𝑖
MRSRP 2𝜎2𝑉𝑖 𝑃̂𝑖+1 − 2𝑃̂𝑖 + 𝑃̂𝑖−1Δ𝑉2 + (𝜎2 − 2𝜆𝑉𝑖) 𝑃̂𝑖+1 − 𝑃̂𝑖−12Δ𝑉 − 𝑟𝑃̂𝑖
MRLP

𝜎2𝑉2𝑖2 𝑃̂𝑖+1 − 2𝑃̂𝑖 + 𝑃̂𝑖−1Δ𝑉2 + (𝛼 − 𝜆 ln𝑉𝑖)𝑉𝑖 𝑃̂𝑖+1 − 𝑃̂𝑖−12Δ𝑉 − 𝑟𝑃̂𝑖
Recall again that 𝜏𝑓(𝑉) is the strictly decreasing function

on the interval (𝑉, 𝑉]with 𝜏𝑓(𝑉+) = ∞, 𝜏𝑓(𝑉) = 0. Thus it is
similar to [16], and we construct an approximation of 𝜏𝑓(𝑉)

𝜏𝑓 (𝑉) = {{{{{{{{{{{
0, 𝑉 ≥ 𝑉,
ℓ1 (− ln 𝑉 − 𝑉𝑉 − 𝑉)ℓ2 , 𝑉 < 𝑉 < 𝑉,+∞, 𝑉 = 𝑉,

(57)

where ℓ𝑘, 𝑘 = 1, 2 are positive numbers to be determined by
the following optimization.

Now we adopt the finite difference method (FDM) to
solve the ODE (22) with boundary conditions (23)-(25). We
define uniform mesh𝑉𝑖 = 𝑉+ 𝑖Δ𝑉, 𝑖 = 0, 1, . . . ,𝑁with𝑉𝑁 =𝑉max, where 𝑉max is a sufficiently larger number such that𝑃̂(𝑉max, 𝑧) ≈ 0. Let 𝑃̂𝑖 be the approximation of𝑃(𝑉𝑖, 𝑧) atmesh
point 𝑉 = 𝑉𝑖 for any complex value 𝑧, i.e., 𝑃̂𝑖(𝑧) ≈ 𝑃̂(𝑉𝑖, 𝑧);
then theODE (22) can be discretized as, for 𝑖 = 1, 2, . . . , 𝑁−1,

Ã𝑃̂𝑖 (𝑧) − 𝑧𝑃̂𝑖 (𝑧) = A (𝐾 − 𝑉𝑖) (1 − 𝑒−𝑧𝜏𝑓(𝑉𝑖))− 𝑧max (𝐾 − 𝑉𝑖, 0) , (58)

with boundary conditions𝑃̂0 = 𝐾 − 𝑉,𝑃̂𝑁 = 0, (59)

where the difference operators Ã are defined in the second
column of Table 3.

Using (59), the linear system (58) can be expressed as in
the matrix form (A − 𝑧I) P̂ (𝑧) = g (𝑧) , (60)

where the coefficient matrix A is defined as

A =(((
(

𝑏1 𝑐1 0 ⋅ ⋅ ⋅ 0𝑎2 𝑏2 𝑐2 ⋅ ⋅ ⋅ 0... d d d
...0 . . . 𝑎𝑁−2 𝑏𝑁−2 𝑐𝑁−20 . . . 0 𝑎𝑁−1 𝑏𝑁−1
)))
)
, (61)
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Table 4: Coefficients.

Model 𝑎𝑖 𝑏𝑖 𝑐𝑖
GBMP

2𝜎2𝑉2𝑖Δ𝑉2 − (2𝜇 + 𝜎2)𝑉𝑖2Δ𝑉 −4𝜎2𝑉2𝑖Δ𝑉2 − 𝑟 2𝜎2𝑉2𝑖Δ𝑉2 + (2𝜇 + 𝜎2)𝑉𝑖2Δ𝑉
MRGP 𝜎22Δ𝑉2 − 𝛼 − 𝜆𝑉𝑖2Δ𝑉 − 𝜎2Δ𝑉2 − 𝑟 𝜎22Δ𝑉2 + 𝛼 − 𝜆𝑉𝑖2Δ𝑉
MRSRP

2𝜎2𝑉𝑖Δ𝑉2 − 𝜎2 − 2𝜆𝑉𝑖2Δ𝑉 −4𝜎2𝑉𝑖Δ𝑉2 − 𝑟 2𝜎2𝑉𝑖Δ𝑉2 + 𝜎2 − 2𝜆𝑉𝑖2Δ𝑉
MRLP

𝜎2𝑉2𝑖2Δ𝑉2 − (𝛼 − 𝜆 ln𝑉𝑖)𝑉𝑖2Δ𝑉 −𝜎2𝑉2𝑖Δ𝑉2 − 𝑟 𝜎2𝑉2𝑖2Δ𝑉2 + (𝛼 − 𝜆 ln𝑉𝑖)𝑉𝑖2Δ𝑉
moreover the solution vector P̂(𝑧) and the constant vector
g(𝑧) are defined as, respectively,

P̂ (𝑧) = (𝑃̂1 (𝑧) , 𝑃̂2 (𝑧) , ⋅ ⋅ ⋅ , 𝑃̂𝑁−2 (𝑧) , 𝑃̂𝑁−1 (𝑧))󸀠 , (62)

g (𝑧)
= (𝑔1 (𝑧) − 𝑎1𝑃̂0, 𝑔2 (𝑧) , ⋅ ⋅ ⋅ , 𝑔𝑁−2 (𝑧) , 𝑔𝑁−1 (𝑧) − 𝑐𝑁−1𝑃̂𝑁)󸀠 , (63)

where elements in the matrix A are listed in Table 4, and𝑔𝑖 (𝑧) = A (𝐾 − 𝑉𝑖) (1 − 𝑒−𝑧𝜏𝑓(𝑉𝑖))− 𝑧max (𝐾 − 𝑉𝑖, 0) . (64)

Let a(𝑧) be the first row of (A − 𝑧I)−1; then a(𝑧) is given
by the following linear system:

a (𝑧) (A − 𝑧I) = [1, 0, 0, . . . , 0] . (65)

Thus the first element in the solution vector is given by𝑃̂1 (𝑧) = a (𝑧) g (𝑧; ℓ1, ℓ2) , (66)

where g(𝑧; ℓ1, ℓ2) fl g(𝑧), and the approximation of 𝜏𝑓(𝑉𝑖)
involved in g(𝑧), for 𝑖 = 1, 2, . . . , 𝑁 − 1, is given by (57).

We find the parameters {ℓ𝑘}, 𝑘 = 1, 2 such that the
condition (24) holds for all real values of 𝑧 > 0. A practicable
way given by Zhou,Ma, and Sun [16] is to consider a sequence
of 𝑧1, 𝑧2, . . . , 𝑧𝑚 (𝑚 ≥ 2) and find the values of unknown{ℓ𝑘}, 𝑘 = 1, 2 that minimize the sum of residue

𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝑃̂ (𝑉, 𝑧𝑗)𝜕𝑉 − (−1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≈ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑃̂ (𝑉1, 𝑧𝑗) − (𝐾 − 𝑉)Δ𝑉 + 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(67)

Inserting (66) into (67), we can find the values of
parameters {ℓ𝑘}, 𝑘 = 1, 2 by solving the following dis-
crete optimization problem, for given real positive numbers𝑧1, 𝑧2, . . . , 𝑧𝑚 (𝑚 ≥ 2),

min
ℓ1 ,ℓ2≥0

𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨a (𝑧𝑗) g (𝑧𝑗; ℓ1, ℓ2) − (𝐾 − 𝑉)Δ𝑉 + 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (68)

for approximation formula (57). After carrying out the opti-
mization procedure (68), then we can find the approximation
of the early exercise boundary 𝑉𝑓(𝜏) as the inverse of the
function 𝜏𝑓(𝑉).

After solving the linear system (60) and only by recog-
nizing the relationship between LCT and LT (20), we can
use Laplace inversion to recover the nodal values, for 𝑖 =0, 1, . . . , 𝑁,

𝑃 (𝑉𝑖, 𝜏) =L−1 [𝑃̂ (𝑉𝑖, 𝑧)𝑧 ] , (69)

and apply the cubic spline interpolation to obtain the option
value function 𝑃(𝑉, 𝜏).

In the following, the hyperbolic contour integral methods
for Laplace inversion are studied to restore the option prices.
Denote

V = (𝑉1, 𝑉2, . . . , 𝑉𝑁−1)󸀠 , (70)

P (𝜏) fl (𝑃 (𝑉1, 𝜏) , 𝑃 (𝑉2, 𝜏) , . . . , 𝑃 (𝑉𝑁−1, 𝜏))󸀠 , (71)

P̂ (𝑧) fl (𝑃̂ (𝑉1, 𝑧) , 𝑃̂ (𝑉2, 𝑧) , . . . , 𝑃̂ (𝑉𝑁−1, 𝑧))󸀠 . (72)

And the term g(𝑧) can be rewritten as two parts

g (𝑧) = g1 (𝑧) + g2 (𝑧) , (73)

With

g1 (𝑧) = (𝑔1,1 (𝑧)− 𝑎1𝑃̂0, 𝑔1,2 (𝑧) , . . . , 𝑔1,𝑁−2 (𝑧) , 𝑔1,𝑁−1 (𝑧)− 𝑐𝑁−1𝑃̂𝑁)󸀠 ,
(74)

g2 (𝑧) = (𝑔2,1 (𝑧) , 𝑔2,2 (𝑧) , . . . , 𝑔2,𝑁−2 (𝑧) , 𝑔2,𝑁−1 (𝑧))󸀠 , (75)

where

𝑔1,𝑖 (𝑧) = −A (𝐾 − 𝑉𝑖) 𝑒−𝑧𝜏𝑓(𝑉𝑖)1{𝜏>𝜏𝑓(𝑉𝑖)}+A (𝐾 − 𝑉𝑖) − 𝑧max (𝐾 − 𝑉𝑖, 0) , (76)

and 𝑔2,𝑖 (𝑧) = −A (𝐾 − 𝑉𝑖) 𝑒−𝑧𝜏𝑓(𝑉𝑖)1{𝜏≤𝜏𝑓(𝑉𝑖)}, (77)

for 𝑖 = 1, 2, . . . , 𝑁 − 1.
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Figure 1: An example of Hankel contours.

From (76) and (77), we can see that 𝑒𝑧𝜏|g1(𝑧)/𝑧| 󳨀→ 0
as Re(𝑧) 󳨀→ −∞ and 𝑒𝑧𝜏|g2(𝑧)/𝑧| 󳨀→ 0 as Re(𝑧) 󳨀→ +∞,
which guarantee that the following Laplace inversion formula
is feasible (see [16]):

P (𝜏) = P1 (𝜏) + P2 (𝜏)
= 12𝜋i ∫Γ1 𝑒𝑧𝜏P̂1 (𝑧)𝑧 𝑑𝑧 + 12𝜋i ∫Γ2 𝑒𝑧𝜏P̂2 (𝑧)𝑧 𝑑𝑧,
= 12𝜋i ∫Γ1 𝑒𝑧𝜏 (A − 𝑧I)−1 g1 (𝑧)𝑧 𝑑𝑧
+ 12𝜋i ∫Γ2 𝑒𝑧𝜏 (A − 𝑧I)−1 g2 (𝑧)𝑧 𝑑𝑧,

(78)

where the contours Γ1 and Γ2 should be chosen as two special
Hankel contours as in Figure 1 which enclose all singularities
of P̂1(𝑧)/𝑧 and P̂1(𝑧)/𝑧, respectively. From expression (78),
we can see that 𝑒𝑧𝜏P̂1(𝑧)/z 󳨀→ 0 as Re(𝑧) 󳨀→ −∞ and𝑒𝑧𝜏P̂2(𝑧)/𝑧 󳨀→ 0 as Re(𝑧) 󳨀→ +∞ provided that all
singularities of (A − 𝑧I)−1g1(𝑧)/𝑧 and (A − 𝑧I)−1g2(𝑧)/𝑧 lie
in the left-half plane of the contour Γ1 or equivalently the
spectrumΛ(A) lies in a sectorial region Σ𝛿 that will be proved
in the following.

Following [16, 23], the parameterized hyperbolic contourΓ1 on the left-hand side is selected asΓ1 : 𝑧 (𝜁) = ] [1 + sin (i𝜁 − 𝜃)] , −∞ < 𝜁 < ∞, (79)

where parameters ] > 0 and 𝜃 set the width and the
asymptotic angle of the hyperbolic contour, respectively.

Substituting the contour (79) into (78) gives

P1 (𝜏) = 12𝜋i ∫Γ1 𝑒𝑧𝜏P̂1 (𝑧)𝑧 𝑑𝑧
= 12𝜋i ∫+∞−∞ 𝑒𝑧(𝜁)𝜏𝑧󸀠 (𝜁) P̂1 (𝑧 (𝜁))𝑧 (𝜁) 𝑑𝜁
≈ ℎ2𝜋i L∑

𝑚=−𝐿

𝑒𝑧(𝜁𝑚)𝜏𝑧󸀠 (𝜁𝑚) P̂1 (𝑧 (𝜁𝑚))𝑧 (𝜁𝑚) ,
(80)

where 𝜁𝑚 = 𝑚ℎ for the trapezoidal rule and 𝐿 is the number
of quadrature nodes. The parameters ℎ, ] are given by (see,
e.g., [23])

ℎ = 𝜌 (𝜃)𝐿 ,
] = 4𝜋𝜃 − 𝜋2 + 2𝜋𝛿𝜌 (𝜃) 𝐿𝜏 ,

𝜌 (𝜃) = cosh−1 ( 2𝜃(4𝜃 − 𝜋 + 2𝛿) sin 𝜃) ,
(81)

which ensure that all singularities of the integrand in (80) lie
in a sectorial region

Σ𝛿 = {𝑧 ∈ C : 󵄨󵄨󵄨󵄨arg (−𝑧)󵄨󵄨󵄨󵄨 ≤ 𝛿, 𝛿 ∈ (0, 𝜋2 )} , (82)

where 𝜃 is a free parameter. The choice of the parameters (81)
leads to the following predicted convergence rate:󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩P1 (𝜏) − ℎ2𝜋i 𝐿∑

𝑚=−𝐿

𝑒𝑧(𝜁𝑚)𝜏𝑧󸀠 (𝜁𝑚) P̂1 (𝑧 (𝜁𝑚))𝑧 (𝜁𝑚)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩≤ O (𝑒−𝑅(𝜃)𝐿) , (83)

where

𝑅 (𝜃) = 𝜋2 − 2𝜋𝜃 − 2𝜋𝛿𝜌 (𝜃) , (84)

and ‖ ⋅ ‖ is some vector norm. According to expressions
(81)-(84), after the semiangle 𝛿 of the sectorial region (82)
is given, then we can get the optimal 𝜃 by maximizing the
function 𝑅(𝜃), and thus the optimal parameters ℎ and ] can
be computed from the formulas (81).

The parameterized hyperbolic contour Γ2 on the right-
hand side is selected asΓ2 : 𝑧 (𝜁) = ] [1 + sin (i𝜁 + 𝜃)] , −∞ < 𝜁 < ∞, (85)

where parameters ℎ and ] are given by formulas (81) with
setting 𝛿 = 0 and

P2 (𝜏) ≈ ℎ2𝜋i 𝐿∑
𝑚=−𝐿

𝑒𝑧(𝜁𝑚)𝜏𝑧󸀠 (𝜁𝑚) P̂2 (𝑧 (𝜁𝑚))𝑧 (𝜁𝑚) . (86)

To analyze the spectrum of the coefficient matrix (61), we
follow the idea in [24] and construct a Toeplitz matrix A to
replace analyzing (61)

A =((((
(

𝑏 𝑐 0 ⋅ ⋅ ⋅ 0𝑎 𝑏 𝑐 ⋅ ⋅ ⋅ 0... d d d
...0 . . . 𝑎 𝑏 𝑐0 ⋅ ⋅ ⋅ 0 𝑎 𝑏
))))
)
, (87)



8 Discrete Dynamics in Nature and Society

where the elements in the matrix A are defined as𝑎 = 𝑎Δ𝑉2 − 𝑏2Δ𝑉,𝑏 = − 2𝑎Δ𝑉2 − 𝑟,𝑐 = 𝑎Δ𝑉2 + 𝑏2Δ𝑉,
(88)

where 𝑎 and 𝑏 are the mean values of the coefficients of
diffusion term and convection term of the studied PDEs
on the truncated domain [𝑉, 𝑉max], respectively. With the
constructed Toeplitz matrix, we can analyze the spectrumΛ(A) and estimate the parameters of hyperbolic contour
roughly.

Theorem 5. �e numerical range W(A) of A defined by (87)
lies in a sectorial region Σ𝛿 such that

W (A) ⊆ Σ𝛿 ≡ {𝑧 ∈ C : 󵄨󵄨󵄨󵄨arg (−𝑧)󵄨󵄨󵄨󵄨 ≤ 𝛿} , (89)

with 𝛿 = arctan ( |𝑏|2√𝑎𝑟) . (90)

And Λ(A) ⊆W󸀠 (A) ⊆ Σ𝛿. (91)

Proof. Denote 𝑓(𝜂) the generating function of A andΩ(𝑓(𝜂)) = {𝑓(𝜂) | 𝜂 ∈ (−𝜋, 𝜋)}. We shall use the following
two conclusions (see, e.g., [8, 16]): the numerical rangeW(A)
is a subset of the closure of convex hull of Ω(𝑓(𝜂)), i.e.,
W(A) ⊆ conv(Ω(𝑓)); let A,D ∈ C𝑛×𝑛 and suppose that D
is positive definite; then the spectrum Λ(DA) is a subset of
the angular numerical range of A, i.e., Λ(DA) ⊆W󸀠(A).

The generating function can be written as𝑓 (𝜂) = 𝑏𝑒i0𝜂 + 𝑐𝑒−i𝜂 + 𝑎𝑒i𝜂= 𝑏 + (𝑎 + 𝑐) cos 𝜂 + i (𝑎 − 𝑐) sin 𝜂, (92)

inserting (88) into (92) yields

𝑓 (𝜂) = 2𝑎Δ𝑉2 (cos 𝜂 − 1) − 𝑟 − i 𝑏Δ𝑉 sin 𝜂,
𝜂 ∈ (−𝜋, 0) ∪ (0, 𝜋) , (93)

further using (93), we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Im (𝑓 (𝜂))Re (𝑓 (𝜂)) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = (|𝑏| /Δ𝑉) 󵄨󵄨󵄨󵄨sin 𝜂󵄨󵄨󵄨󵄨𝑟 + (1 − cos 𝜂) (2𝑎/Δ𝑉2)
= (|𝑏| /Δ𝑉) 󵄨󵄨󵄨󵄨2 sin (𝜂/2) cos (𝜂/2)󵄨󵄨󵄨󵄨𝑟 + 2 sin2 (𝜂/2) (2𝑎/Δ𝑉2)
= (|𝑏| /Δ𝑉) 󵄨󵄨󵄨󵄨cos (𝜂/2)󵄨󵄨󵄨󵄨𝑟/ 󵄨󵄨󵄨󵄨2 sin (𝜂/2)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨2 sin (𝜂/2)󵄨󵄨󵄨󵄨 (𝑎/Δ𝑉2)≤ |𝑏|2√𝑎𝑟 ,

(94)

which shows that Ω(𝑓(𝜂)) ⊆ Σ𝛿. Apparently the sectorial
region Σ𝛿 is a closed convex hull; thus we have

W (A) ⊆ conv (Ω (𝑓)) ⊆ Σ𝛿. (95)

SinceW󸀠(A) is also a sectorial region whose angle is just the
angular opening of the smallest angular sector that includes
W(A), thus we haveΛ(A) ⊆W󸀠 (A) ⊆ Σ𝛿, (96)

where we complete the proof.

WithTheorem 5, the Laplace inversion formulas (80) and
(86) can be properly used.

4. Numerical Examples

In this section, we use NCIMs for solving the free-boundary
PDEs (2)-(6) under four stochastic volatility processes:
GBMP, MRGP, MRSRP, and MRLP.The results are compared
with that by the FDMs [25]; moreover the relative error (RE)
criterion is adopted to measure the computational accuracy.
Relative error is defined by (see, e.g., [26])

RE fl
󵄨󵄨󵄨󵄨𝑃NCIM − 𝑃FDM󵄨󵄨󵄨󵄨𝑃FDM , (97)

In the test, we set 𝑉max = 4𝐾 and 𝑇 = 2, the space mesh
partition number𝑁 = 4000 for FDMs andNCIMs.Moreover
the FDMs, when time mesh sizes equal 𝑇/2000, are taken as
the benchmark methods. The positive values 𝑧𝑘 = 𝑘 (𝑘 =1, 2, . . . , 𝑚) with 𝑚 = 4 (see expression (68)). The Matlab
command “fminsearch” is used to search the approximate
parameters ℓ𝑘, 𝑘 = 1, 2, with initial values ℓ𝑘 = 1, 𝑘 = 1, 2,
besides we use the technique in [16] to get the optimal 𝑉 for
MRGP and MRLP models since it achieves more accurate
results. Moreover we compute the option prices in one Table,
plot one figure including two subfigures, i.e., the early exercise
boundaries (left), NCIMs errors versus 𝐿 (right) in the sense
of 𝐿2-norm, for the given volatility model. The 𝐿2-norm is
defined as

󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩𝐿2 fl [ 1𝑁 + 1 𝑁∑𝑖=0𝜉2𝑖 ]
1/2 . (98)

The codes are run in MATLAB R2014a on a PC with
the configuration: AMD, CPU A10-9600P@2.40GHz, and
24.0GB RAM.

4.1. Implementations for GBMPModel. In this test, the model
parameters are taken as 𝜇 = 0.4, 𝜎 = 0.5, 𝑟 = 0.05, and𝐾 = 1. The numerics in Table 5 show that the prices obtained
byNCIM and FDMbenchmark are very close and the relative
errors are less than 0.25% in most cases, whereas the CPU
time for NCIM is less than the FDM, and the reasons for
NCIM achieving good performance have two aspects: on the
one hand, the NCIM has the exponential-order convergence
rate with respect to the number of the quadrature nodes 𝐿
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Table 5: Comparison results (option values, relative errors and CPU time).

𝑉0 FDM NCIM
T/250 T/500 T/1000 T/2000 L=14

value value RE (%)
0.5 0.50000 0.50000 0.50000 0.50000 0.50000 0.00000
1 0.19484 0.19489 0.19491 0.19493 0.19441 0.26676
1.5 0.10127 0.10132 0.10135 0.10136 0.10113 0.22691
CPU times (s) 315 453 732 1335 186 –

Table 6: Comparison results (option values, relative errors and CPU time).

𝑉0 FDM NCIM
T/250 T/500 T/1000 T/2000 L=6

value value RE (%)
0.5 0.69600 0.69624 0.69636 0.69642 0.69152 0.70217
1 0.58613 0.58649 0.58668 0.58677 0.58206 0.80270
1.5 0.52618 0.52663 0.52685 0.52696 0.52280 0.78755
CPU times (s) 613 785 1141 1808 87 –

Table 7: Comparison results (option values, relative errors and CPU time).

𝑉0 FDM NCIM
T/250 T/500 T/1000 T/2000 L=10

value value RE (%)
4 2.46906 2.46997 2.47044 2.47068 2.45192 0.75931
5 2.15034 2.15138 2.15189 2.15216 2.13482 0.80570
6 1.87964 1.88074 1.88129 1.88158 1.86568 0.84503
CPU times (s) 551 716 1045 1729 95 –

for the hyperbolic contour integral (see formula (83)); on the
other hand, there is no iterative procedure for numerical find-
ing the free-boundary value of the corresponding perpetual
American volatility put; thus it is not like [16]. In Figure 2
(left), we can see the boundary obtained by NCIM is very
close to that by FDM. Moreover in Figure 2 (right), we can
see that the error of the NCIM with respect to 𝐿 roughly
behaves proportional to the theoretical ones exp(−0.2313𝐿),
whichmeans that the error exponentially decays with respect
to 𝐿.
4.2. Implementations forMRGPModel. In this test, the model
parameters are taken as 𝛼 = 1.6, 𝜎 = 1, 𝜆 = 2, 𝑟 = 0.05, and𝐾 = 1. The numerics in Table 6 show that the prices obtained
byNCIM and FDMbenchmark are very close and the relative
errors are less than 0.8% inmost cases, whereas the CPU time
for NCIM is much less than the FDM. In Figure 3 (left), we
can see the boundary obtained by NCIM almost matches that
by FDM; moreover the realized convergence rate of NCIM
roughly behaves proportional to the theoretical ones from the
right subfigure.

4.3. Implementations for MRSRP Model. In this test, the
model parameters are taken as 𝜎 = 1.4, 𝜆 = 0.001, 𝑟 = 0.05,
and 𝐾 = 5. The numerics in Table 7 show that the prices
obtained by NCIM and FDM benchmark are very close and

the relative errors are less than 0.8% in most cases, whereas
the CPU time for NCIM is less than the FDM. In Figure 4
(left), we can see the boundary obtained by NCIM is very
close to that by FDM; moreover the realized convergence
rate of NCIM roughly behaves proportional to the theoretical
ones from the right subfigure.

4.4. Implementations for MRLPModel. In this test, the model
parameters are taken as 𝛼 = 0.6, 𝜆 = 0.1, 𝜎 = 1, 𝑟 = 0.05, and𝐾 = 5. The numerics in Table 8 show that the prices obtained
byNCIM and FDMbenchmark are very close and the relative
errors are less than 0.9% in most cases, whereas the CPU
time for NCIM is less than the FDM. In Figure 5 (left), we
can see the boundary obtained by NCIM is very close to that
by FDM; moreover the realized convergence rate of NCIM
roughly behaves proportional to the theoretical ones from the
right subfigure.

5. Conclusions

This paper studied the NCIMs for solving free-boundary
PDEs from American volatility options pricing. The free-
boundary PDEs could be written as a unified form of PDEs
on a fixed space region, and performing the Laplace trans-
form gave the parameterized ODEs with unknown inverse
function of free boundary, then the value of early exercise
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Figure 2: Early exercise boundaries (left) under GBMPmodel with 𝑇/2000 for FDM and 𝐿 = 14 for NCIM, NCIM errors in log-scale versus𝐿 (right).
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Figure 3: Early exercise boundaries (left) under MRGP model with 𝑇/2000 for FDM and 𝐿 = 6 for NCIM, NCIM errors in log-scale versus𝐿 (right).
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Table 8: Comparison results (option values, relative errors and CPU time).

𝑉0 FDM NCIM
T/250 T/500 T/1000 T/2000 L=14

value value RE (%)
4 1.94291 1.94363 1.94399 1.94418 1.93598 0.42177
5 1.63948 1.64031 1.64073 1.64095 1.62844 0.76236
6 1.40529 1.40617 1.40662 1.40684 1.39302 0.98234
CPU times (s) 431 582 1519 128 –
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Figure 5: Early exercise boundaries (left) under MRLP model with 𝑇/2000 for FDM and 𝐿 = 14 for NCIM, NCIM errors in log-scale versus𝐿 (right).
boundary of the perpetual American volatility put was solved
which enabled the inverse function of free boundary to be
well approximated, finally the FDM was adopted to solve the
ODEs, and the results were restored via numerical Laplace
inversion. Numerical comparisons of the NCIMs with the
FDMs were conducted to verify the effectiveness of the
method.
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