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This paper is concernedwith a nonautonomous discrete Lotka-Volterra competitive systemwith time delay. By using some analytical
techniques, we prove that, under certain conditions, one of the specieswill be driven to extinctionwhile the other onewill be globally
attractive with any positive solution of a discrete logistic equation.

1. Introduction

In this paper, we study the following Lotka-Volterra compet-
itive system of difference equations

𝑥1 (𝑛 + 1)
= 𝑥1 (𝑛) exp [𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘1 (𝑛) − 𝜇2 (𝑛) 𝑥2 (𝑛 − 𝜏))] ,
𝑥2 (𝑛 + 1)
= 𝑥2 (𝑛) exp [𝑟2 (𝑛) (1 − 𝜇1 (𝑛) 𝑥1 (𝑛) − 𝑥2 (𝑛 − 𝜏)𝑘2 (𝑛) )] ,

(1)

where 𝑥1(𝑛), 𝑥2(𝑛) are population density of species 𝑥1 and𝑥2 at time 𝑛, respectively, and {𝑟𝑖(𝑛)}, {𝑘𝑖(𝑛)}, and {𝜇𝑖(𝑛)} for𝑖 = 1, 2 are bounded positive sequences such that

0 < 𝑘𝑖∗ ≤ 𝑘𝑖 (𝑛) ≤ 𝑘∗𝑖 ,
0 < 𝑟𝑖∗ ≤ 𝑟𝑖 (𝑛) ≤ 𝑟∗𝑖 ,
0 < 𝜇𝑖∗ ≤ 𝜇𝑖 (𝑛) ≤ 𝜇∗𝑖 ,

𝑛 ∈ 𝑁.
(2)

Here, for any bounded sequence {𝑎(𝑛)}, 𝑎∗ = sup𝑛∈𝑁𝑎(𝑛) and𝑎∗ = inf𝑛∈𝑁𝑎(𝑛).

We consider system (1) with the following initial condi-
tions:

𝑥1 (0) > 0,
𝑥2 (𝜗) = 𝜑 (𝜗) > 0,

𝜗 ∈ 𝑁 [−𝜏, 0] = {−𝜏, −𝜏 + 1, . . . , 0} .
(3)

It is not difficult to see that solutions of (1) are well defined
for all 𝑛 ≥ 0 and satisfy 𝑥𝑖(𝑛) > 0, 𝑖 = 1, 2.

During the last decades, the study of extinction and per-
manence of the species has become one of themost important
topics in population dynamics, and most of the studies are
based on the traditional Lotka-Volterra competitive systems;
see, for example, [1–15].

Consider the following nonautonomous Lotka-Volterra
system of differential equations:

𝑥󸀠𝑖 (𝑡) = 𝑥𝑖 (𝑡) [[
𝑏𝑖 (𝑡) − 𝑛∑

𝑗=1

𝑎𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)]]
,

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, 𝑛 ≥ 2,
(4)

where 𝑥𝑖(𝑡) is population density of the 𝑖th species at time 𝑡
and 𝑎𝑖𝑗(𝑡) and 𝑏𝑖(𝑡), 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, are continuous bounded
functions defined on 𝑅.
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Assume that

𝑎𝑙𝑖𝑗 > 0,
𝑎𝑢𝑖𝑗 < +∞,

𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛,
(5)

𝑏𝑙𝑖 > 0,
𝑏𝑢𝑖 < +∞,

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛;
(6)

that is, the coefficients of system (4) are bounded above
and below by strictly positive reals. Here, for any bounded
function 𝑓(𝑡), 𝑓𝑢 = sup𝑡∈𝑅𝑓(𝑡) and 𝑓𝑙 = inf 𝑡∈𝑅𝑓(𝑡).

Montes deOca andZeeman [11] studied system (4), under
which the functions 𝑎𝑖𝑗(𝑡) and 𝑏𝑖(𝑡) were assumed to satisfy
conditions (5) and (6). It was shown that if, for each 𝑘 > 1,
there exists 𝑖𝑘 < 𝑘 such that for any 𝑗 ≤ 𝑘 the inequality

𝑏𝑢𝑘𝑎𝑙𝑘𝑗 <
𝑏𝑙𝑖𝑘𝑎𝑢𝑖𝑘𝑗 (7)

holds, then every solution (𝑥1(𝑡), 𝑥2(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡)) of system
(4) with 𝑥𝑖(𝑡0) > 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, for some 𝑡0 ∈ 𝑅 has the
property

lim
𝑡󳨀→+∞

(𝑥1 (𝑡) − 𝑢1 (𝑡)) = 0,
lim
𝑡󳨀→+∞

𝑥𝑗 (𝑡) = 0, 𝑗 = 2, 3, ⋅ ⋅ ⋅ , 𝑛, (8)

where 𝑢1(𝑡) is the unique solution of the logistic differential
equation

𝑢󸀠 (𝑡) = 𝑢 (𝑡) [𝑏1 (𝑡) − 𝑎11 (𝑡) 𝑢 (𝑡)] (9)

which is bounded above and below by strictly positive reals
for all 𝑡 ∈ 𝑅.

Zeeman [12], Ahmad [13], Teng [14], and Zhao et al. [15]
have also studied the extinction of species in system (4),
especially in [15], and Zhao et al. obtained the same results as
[11–13] did under the weaker assumption that, for each 𝑘 > 1,
there exists 𝑖𝑘 < 𝑘 such that for any 𝑗 ≤ 𝑘 the inequality

sup
𝑡∈[𝑡0,+∞)

𝑏𝑘 (𝑡)𝑏𝑖𝑘 (𝑡) < inf
𝑡∈[𝑡0 ,+∞)

𝑎𝑘𝑗 (𝑡)𝑎𝑖𝑘𝑗 (𝑡) (10)

holds for some 𝑡0 ∈ 𝑅.
In addition, the nonautonomous discrete population

models also received much attention from many scholars in
the last decades, since the discrete time models governed by
difference equation aremore appropriate than the continuous
ones when the populations have nonoverlapping generations.
One of the famous models is the discrete Lotka-Volterra
competitive system. Owing to its theoretical and practical
significance, various discrete Lotka-Volterra competitive sys-
tems have been studied; see, for example, [16–18]. In these
literatures, systems which have been studied are all delayed

systems. Research has shown that time delays have a great
destabilizing influence on species populations [19]. However,
there are seldom results on the extinction and stability of
species in a discrete population dynamic system, especially
for a population dynamic system with time delay.

Motivated by the above works, the main purpose of this
paper is to study the extinction and stability of system (1) and
derive some sufficient conditions which guarantee one of the
species will be driven to extinction while the other one will
be globally attractive with any positive solution of a discrete
logistic equation.

The organization of this paper is as follows. In Section 2,
preliminary results are presented. In Sections 3 and 4,
the main results are stated and proved. In Section 5, two
examples together with their numerical simulations are given
to illustrate the feasibility of the obtained results. In the last
section, a brief discussion is stated.

2. Preliminaries

In this section, we shall develop some preliminary results,
which will be used to prove the main results.

Lemma 1 (see [20]). Assume that {𝑥(𝑛)} satisfies
𝑥 (𝑛 + 1) ≥ 𝑥 (𝑛) exp {𝑟 (𝑛) (1 − 𝑎𝑥 (𝑛))} , 𝑛 ≥ 𝑛0, (11)

lim sup𝑛󳨀→+∞𝑥(𝑛) ≤ 𝑥∗ and 𝑥(𝑛0) > 0, where 𝑎 is a positive
constant such that 𝑎𝑥∗ > 1 and 𝑛0 ∈ 𝑁. Then

lim inf
𝑛󳨀→+∞

𝑥 (𝑛) ≥ 1𝑎 exp {𝑟∗ (1 − 𝑎𝑥∗)} . (12)

Lemma2 (see [20]). Assume that {𝑥(𝑛)} satisfies𝑥(𝑛) > 0 and
𝑥 (𝑛 + 1) ≤ 𝑥 (𝑛) exp {𝑟 (𝑛) (1 − 𝑎𝑥 (𝑛))} (13)

for 𝑛 ∈ [𝑛1, +∞), where 𝑎 is a positive constant. Then

lim sup
𝑛󳨀→+∞

𝑥 (𝑛) ≤ 1𝑎𝑟∗ exp (𝑟∗ − 1) . (14)

Lemma 3. For every solution (𝑥1(𝑛), 𝑥2(𝑛))𝑇 of (1) we have
lim sup
𝑛󳨀→+∞

𝑥𝑖 (𝑛) ≤ 𝑥∗𝑖 , 𝑖 = 1, 2, (15)

where 𝑥∗1 = (𝑘∗1 /𝑟∗1 ) exp(𝑟∗1 − 1), 𝑥∗2 = (𝑘∗2 /𝑟∗2 ) exp(𝑟∗2 (𝜏 + 1) −1).
Proof. Let 𝑥(𝑛) = (𝑥1(𝑛), 𝑥2(𝑛))𝑇 be any positive solution of
system (1). From the first equation of (1),

𝑥1 (𝑛 + 1) ≤ 𝑥1 (𝑛) exp [𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘1 (𝑛))]
≤ 𝑥1 (𝑛) exp [𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘∗1 )] .

(16)

By Lemma 2, we have

lim sup
𝑛󳨀→+∞

𝑥1 (𝑛) ≤ 𝑘∗1𝑟∗1 exp (𝑟∗1 − 1) ≜ 𝑥∗1 . (17)



Discrete Dynamics in Nature and Society 3

From the second equation of (1), we have

𝑥2 (𝑛 + 1) ≤ 𝑥2 (𝑛) exp (𝑟2 (𝑛)) , (18)

and, then,

𝑥2 (𝑛 − 𝜏) ≥ 𝑥2 (𝑛) exp (−𝜏𝑟∗2 ) . (19)

Substituting (19) into the second equation of (1), then

𝑥2 (𝑛 + 1) ≤ 𝑥2 (𝑛)
⋅ exp [𝑟2 (𝑛) (1 − 𝑥2 (𝑛 − 𝜏)𝑘2 (𝑛) )] ≤ 𝑥2 (𝑛)
⋅ exp[𝑟2 (𝑛) (1 − exp (−𝜏𝑟∗2 )𝑘∗2 𝑥2 (𝑛))] .

(20)

By Lemma 2, we have

lim sup
𝑛󳨀→+∞

𝑥2 (𝑛) ≤ 𝑘∗2𝑟∗2 exp (𝑟∗2 (𝜏 + 1) − 1) ≜ 𝑥∗2 . (21)

This completes the proof.

3. Extinction of 𝑥2 and Stability of 𝑥1
In this section, we firstly present the extinction of the species𝑥2.
Theorem 4. Assume that the inequality

lim sup
𝑛󳨀→+∞

𝑟2 (𝑛)𝑟1 (𝑛)
< lim inf
𝑛󳨀→+∞

{𝑟2 (𝑛) 𝜇1 (𝑛) 𝑘1 (𝑛)𝑟1 (𝑛) , 𝑟2 (𝑛)𝑟1 (𝑛) 𝜇2 (𝑛) 𝑘2 (𝑛)}
(22)

holds, and then the species 𝑥2 will be driven to extinction;
that is, for any positive solution (𝑥1(𝑛), 𝑥2(𝑛))𝑇 of system (1),𝑥2(𝑛) 󳨀→ 0 exponentially as 𝑛 󳨀→ +∞.

Proof. Let 𝑥(𝑛) = (𝑥1(𝑛), 𝑥2(𝑛))𝑇 be a solution of system (1)
with initial conditions (3). First we show that 𝑥2(𝑛) 󳨀→ 0
exponentially as 𝑛 󳨀→ +∞.

From (1), we have

ln𝑥1 (𝑛 + 1) − ln𝑥1 (𝑛)
= 𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘1 (𝑛) − 𝜇2 (𝑛) 𝑥2 (𝑛 − 𝜏)) ,

ln𝑥2 (𝑛 + 1) − ln𝑥2 (𝑛)
= 𝑟2 (𝑛) (1 − 𝜇1 (𝑛) 𝑥1 (𝑛) − 𝑥2 (𝑛 − 𝜏)𝑘2 (𝑛) ) .

(23)

By inequality (22), we can choose 𝛼, 𝛽, 𝜀 > 0 such that

lim sup
𝑛󳨀→+∞

𝑟2 (𝑛)𝑟1 (𝑛) < 𝛼𝛽 − 𝜀 < 𝛼𝛽
< lim inf
𝑛󳨀→+∞

{𝑟2 (𝑛) 𝜇1 (𝑛) 𝑘1 (𝑛)𝑟1 (𝑛) , 𝑟2 (𝑛)𝑟1 (𝑛) 𝜇2 (𝑛) 𝑘2 (𝑛)} ,
(24)

and then there exists an 𝑁1 > 0 such that, for all 𝑛 > 𝑁1,
𝑟2 (𝑛) 𝛽 − 𝑟1 (𝑛) 𝛼 < −𝜀𝛽𝑟1 (𝑛) < −𝜀𝛽𝑟1∗ < 0; (25)

𝛼𝑟1 (𝑛) − 𝛽𝑟2 (𝑛) 𝜇1 (𝑛) 𝑘1 (𝑛) < 0; (26)

𝛼𝑟1 (𝑛) 𝜇2 (𝑛) 𝑘2 (𝑛) − 𝛽𝑟2 (𝑛) < 0. (27)

It follows from (23) and (25)-(27) that

𝛽 (ln𝑥2 (𝑛 + 1) − ln𝑥2 (𝑛))
− 𝛼 (ln𝑥1 (𝑛 + 1) − ln𝑥1 (𝑛))
= (𝑟2 (𝑛) 𝛽 − 𝑟1 (𝑛) 𝛼)
− (𝛽𝑟2 (𝑛) 𝜇1 (𝑛) − 𝛼𝑟1 (𝑛)𝑘1 (𝑛) ) 𝑥1 (𝑛)
− (𝛽𝑟2 (𝑛)𝑘2 (𝑛) − 𝛼𝑟1 (𝑛) 𝜇2 (𝑛)) 𝑥2 (𝑛 − 𝜏) ≤ 𝑟2 (𝑛) 𝛽
− 𝑟1 (𝑛) 𝛼 < −𝜀𝛽𝑟1∗ < 0.

(28)

Summating both sides of inequality (28) from 0 to 𝑛−1, then
𝛽 (ln𝑥2 (𝑛) − ln𝑥2 (0)) − 𝛼 (ln𝑥1 (𝑛) − ln𝑥1 (0))

< −𝜀𝛽𝑟1∗𝑛. (29)

So, we can get

𝑥2 (𝑛) < [(𝑥1 (𝑛)𝑥1 (0))
𝛼 (𝑥2 (0))𝛽]

1/𝛽

exp (−𝜀𝑟1∗𝑛)

< [( 𝑥∗1𝑥1 (0))
𝛼 (𝑥2 (0))𝛽]

1/𝛽

exp (−𝜀𝑟1∗𝑛) .
(30)

Therefore, we have 𝑥2(𝑛) 󳨀→ 0 exponentially as 𝑛 󳨀→ +∞.
This completes the proof.

Lemma 5. Under the assumption of Theorem 4. Let 𝑥(𝑛) =(𝑥1(𝑛), 𝑥2(𝑛))𝑇 be any positive solution of system (1), and then
there exists a positive constant 𝑥1∗ such that

lim inf
𝑛󳨀→+∞

𝑥1 (𝑛) ≥ 𝑥1∗ , (31)

where 𝑥1∗ = 𝑘1∗ exp[𝑟∗1 (1−𝑥∗1 /𝑘1∗)] is a constant independent
of any positive solution of system (1); i.e., the first species 𝑥1 of
system (1) is permanent.

Proof. By Lemma 3 andTheorem 4,

lim sup
𝑛󳨀→+∞

𝑥1 (𝑛) ≤ 𝑥∗1 ,
lim
𝑛󳨀→+∞

𝑥2 (𝑛) = 0, (32)

and, for arbitrarily small positive constant 𝜀(0 < 𝜀 < 1/𝜇∗2 ),
there exists an 𝑁2 > 0 such that

𝑥1 (𝑛) < 𝑥∗1 + 𝜀,
𝑥2 (𝑛) < 𝜀 (33)

for all 𝑛 > 𝑁2.
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From the first equation of (1), for 𝑛 > 𝑁2 + 𝜏,
𝑥1 (𝑛 + 1) = 𝑥1 (𝑛)

⋅ exp [𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘1 (𝑛) − 𝜇2 (𝑛) 𝑥2 (𝑛 − 𝜏))]
> 𝑥1 (𝑛) exp [𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘1∗ − 𝜇∗2 𝜀)] = 𝑥1 (𝑛)
⋅ exp[𝑟1 (𝑛) (1 − 𝜇∗2 𝜀) (1 − 𝑥1 (𝑛)(1 − 𝜇∗2 𝜀) 𝑘1∗)] .

(34)

Let 𝜀 󳨀→ 0, and then

𝑥1 (𝑛 + 1) ≥ 𝑥1 (𝑛) exp [𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘1∗ )] . (35)

It is easy to check that the inequality 𝑥∗1 /𝑘1∗ > 1 holds. By
Lemma 1, we have

lim inf
𝑛󳨀→+∞

𝑥1 (𝑛) ≥ 𝑘1∗ exp [𝑟∗1 (1 − 𝑥∗1𝑘1∗)] ≜ 𝑥1∗ . (36)

This completes the proof.

Consider the following discrete logistic equation:

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp [𝑟1 (𝑛) (1 − 𝑥 (𝑛)𝑘1 (𝑛))] . (37)

Lemma 6 (see [21]). Assume that {𝑟1(𝑛)} and {𝑘1(𝑛)} satisfy
(2), and then any positive solution {𝑥(𝑛)} of (37) satisfies

𝑥1∗ < lim inf
𝑛󳨀→+∞

𝑥 (𝑛) ≤ lim sup
𝑛󳨀→+∞

𝑥 (𝑛) ≤ 𝑥∗1 . (38)

Theorem7. Under the assumptions ofTheorem4 andLemmas
5 and 6, furthermore, suppose that

𝑘∗1𝑘1∗ exp (𝑟∗1 − 1) ≤ 2. (39)

Let 𝑥(𝑛) = (𝑥1(𝑛), 𝑥2(𝑛))𝑇 be any positive solution of system
(1), and then the species 𝑥2 will be driven to extinction; that is,𝑥2(𝑛) 󳨀→ 0 as 𝑛 󳨀→ +∞, and 𝑥1(𝑛) 󳨀→ 𝑥(𝑛) as 𝑛 󳨀→ +∞,
where 𝑥(𝑛) is any positive solution of (37).

Proof. Let 𝑥(𝑛) = (𝑥1(𝑛), 𝑥2(𝑛))𝑇 be a solution of system (1)
with initial conditions (3). From Lemmas 3 and 5, 𝑥1(𝑛) is
bounded above and below by positive constants on [0, +∞).
To finish the proof of Theorem 7, it is enough to show that𝑥1(𝑛) 󳨀→ 𝑥(𝑛) as 𝑛 󳨀→ +∞, where 𝑥(𝑛) is any positive
solution of (37).

Let

𝑦 (𝑛) = ln𝑥1 (𝑛) − ln𝑥 (𝑛) , (40)

and then

𝑥1 (𝑛) = 𝑥 (𝑛) exp {𝑦 (𝑛)} . (41)

From the first equation of (1) and (37), we have

ln𝑥1 (𝑛 + 1) − ln𝑥1 (𝑛)
= 𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘1 (𝑛) − 𝜇2 (𝑛) 𝑥2 (𝑛 − 𝜏)) ,

ln𝑥 (𝑛 + 1) − ln𝑥 (𝑛) = 𝑟1 (𝑛) (1 − 𝑥 (𝑛)𝑘1 (𝑛)) ,
(42)

and then

𝑦 (𝑛 + 1) = ln𝑥1 (𝑛 + 1) − ln𝑥 (𝑛 + 1)
= ln𝑥1 (𝑛)

+ 𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘1 (𝑛) − 𝜇2 (𝑛) 𝑥2 (𝑛 − 𝜏))
− ln𝑥 (𝑛) − 𝑟1 (𝑛) (1 − 𝑥 (𝑛)𝑘1 (𝑛))

= 𝑦 (𝑛) − 𝑟1 (𝑛)𝑘1 (𝑛) (𝑥1 (𝑛) − 𝑥 (𝑛))
− 𝑟1 (𝑛) 𝜇2 (𝑛) 𝑥2 (𝑛 − 𝜏)

= 𝑦 (𝑛) − 𝑟1 (𝑛)𝑘1 (𝑛)𝑥 (𝑛) (exp {𝑦 (𝑛)} − 1)
− 𝑟1 (𝑛) 𝜇2 (𝑛) 𝑥2 (𝑛 − 𝜏) .

(43)

By the mean value theorem, exp{𝑦(𝑛)} − 1 = exp{𝜃𝑦(𝑛)}𝑦(𝑛),
where 𝜃 ∈ (0, 1). It follows from (43) that

𝑦 (𝑛 + 1) = 𝑦 (𝑛) [1 − 𝑟1 (𝑛)𝑘1 (𝑛)𝑥 (𝑛) exp {𝜃𝑦 (𝑛)}]
− 𝑟1 (𝑛) 𝜇2 (𝑛) 𝑥2 (𝑛 − 𝜏) .

(44)

Notice that 𝜃 ∈ (0, 1) and (40) implies that 𝑥(𝑛)exp{𝜃𝑦(𝑛)}
lies between 𝑥(𝑛) and 𝑥1(𝑛). From Lemmas 3, 5, and 6 and
Theorem 4, for arbitrarily small 𝜀 > 0, there exists an 𝑁3 > 0
such that

𝑥1∗ − 𝜀 < 𝑥1 (𝑛) < 𝑥∗1 + 𝜀,
𝑥2 (𝑛) < 𝜀,

𝑥1∗ − 𝜀 < 𝑥 (𝑛) < 𝑥∗1 + 𝜀
(45)

for all 𝑛 > 𝑁3. Therefore,
󵄨󵄨󵄨󵄨𝑦 (𝑛 + 1)󵄨󵄨󵄨󵄨 = 𝜆 󵄨󵄨󵄨󵄨𝑦 (𝑛)󵄨󵄨󵄨󵄨 + 𝑟∗1 𝜇∗2 𝜀, (46)

where

𝜆 = max{󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 − 𝑟∗1𝑘1∗ (𝑥∗1 + 𝜀)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 − 𝑟1∗𝑘∗1 (𝑥1∗ − 𝜀)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨} . (47)

Repeated iteration of (46) is

󵄨󵄨󵄨󵄨𝑦 (𝑛 + 1)󵄨󵄨󵄨󵄨 < 𝜆𝑛−𝑁3 󵄨󵄨󵄨󵄨𝑦 (𝑁3)󵄨󵄨󵄨󵄨 + 1 − 𝜆𝑛−𝑁31 − 𝜆 𝑟∗1 𝜇∗2 𝜀. (48)
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If (𝑘∗1 /𝑘1∗)exp(𝑟∗1 − 1) < 2, then −1 < 1 − (𝑟∗1 /𝑘1∗)𝑥∗1 . For the
above small enough 𝜀, there is −1 < 1 − (𝑟∗1 /𝑘1∗)(𝑥∗1 + 𝜀). On
the other hand, 1−(𝑟∗1 /𝑘1∗)(𝑥∗1 +𝜀) < 1−(𝑟1∗/𝑘∗1 )(𝑥1∗−𝜀) < 1;
that is, 0 < 𝜆 < 1. From (48), we can obtain

lim
𝑛󳨀→+∞

𝑦 (𝑛) = 0; (49)

that is,

lim
𝑛󳨀→+∞

(𝑥1 (𝑛) − 𝑥 (𝑛)) = 0. (50)

This completes the proof.

4. Extinction of 𝑥1 and Stability of 𝑥2
In this section, we firstly present the extinction of the species𝑥1.
Theorem 8. Assume that the inequality

lim inf
𝑛󳨀→+∞

𝑟2 (𝑛)𝑟1 (𝑛)
> lim sup
𝑛󳨀→+∞

{𝑟2 (𝑛) 𝜇1 (𝑛) 𝑘1 (𝑛)𝑟1 (𝑛) , 𝑟2 (𝑛)𝑟1 (𝑛) 𝜇2 (𝑛) 𝑘2 (𝑛)}
(51)

holds, and then the species 𝑥1 will be driven to extinction;
that is, for any positive solution (𝑥1(𝑛), 𝑥2(𝑛))𝑇 of system (1),𝑥1(𝑛) 󳨀→ 0 exponentially as 𝑛 󳨀→ +∞.

Proof. Let 𝑥(𝑛) = (𝑥1(𝑛), 𝑥2(𝑛))𝑇 be a solution of system (1)
with initial conditions (3). First we show that 𝑥1(𝑛) 󳨀→ 0
exponentially as 𝑛 󳨀→ +∞.

From (1), we have

ln𝑥1 (𝑛 + 1) − ln𝑥1 (𝑛)
= 𝑟1 (𝑛) (1 − 𝑥1 (𝑛)𝑘1 (𝑛) − 𝜇2 (𝑛) 𝑥2 (𝑛 − 𝜏)) ,

ln𝑥2 (𝑛 + 1) − ln𝑥2 (𝑛)
= 𝑟2 (𝑛) (1 − 𝜇1 (𝑛) 𝑥1 (𝑛) − 𝑥2 (𝑛 − 𝜏)𝑘2 (𝑛) ) .

(52)

By inequality (51), we can choose 𝜉, 𝜂, 𝜀 > 0 such that

lim inf
𝑛󳨀→+∞

𝑟2 (𝑛)𝑟1 (𝑛) > 𝜉𝜂 + 𝜀 > 𝜉𝜂
> lim sup
𝑛󳨀→+∞

{𝑟2 (𝑛) 𝜇1 (𝑛) 𝑘1 (𝑛)𝑟1 (𝑛) , 𝑟2 (𝑛)𝑟1 (𝑛) 𝜇2 (𝑛) 𝑘2 (𝑛)} ,
(53)

and then there exists an 𝑁4 > 0 such that, for all 𝑛 > 𝑁4,
𝑟2 (𝑛) 𝜂 − 𝑟1 (𝑛) 𝜉 > 𝜀𝜂𝑟1 (𝑛) > 𝜀𝜂𝑟1∗ > 0; (54)

𝜉𝑟1 (𝑛) − 𝜂𝑟2 (𝑛) 𝜇1 (𝑛) 𝑘1 (𝑛) > 0; (55)

𝜉𝑟1 (𝑛) 𝜇2 (𝑛) 𝑘2 (𝑛) − 𝜂𝑟2 (𝑛) > 0. (56)

It follows from (52) and (54)-(56) that

𝜉 (ln𝑥1 (𝑛 + 1) − ln𝑥1 (𝑛))
− 𝜂 (ln𝑥2 (𝑛 + 1) − ln𝑥2 (𝑛))
= (𝑟1 (𝑛) 𝜉 − 𝑟2 (𝑛) 𝜂)
− (𝜉𝑟1 (𝑛)𝑘1 (𝑛) − 𝜂𝑟2 (𝑛) 𝜇1 (𝑛)) 𝑥1 (𝑛)
− (𝜉𝑟1 (𝑛) 𝜇2 (𝑛) − 𝜂𝑟2 (𝑛)𝑘2 (𝑛) ) 𝑥2 (𝑛 − 𝜏) ≤ 𝑟1 (𝑛) 𝜉
− 𝑟2 (𝑛) 𝜂 < −𝜀𝜂𝑟1∗ < 0.

(57)

Summating both sides of inequality (57) from 0 to 𝑛− 1, then
𝜉 (ln𝑥1 (𝑛) − ln𝑥1 (0)) − 𝜂 (ln𝑥2 (𝑛) − ln𝑥2 (0))

< −𝜀𝜂𝑟1∗𝑛. (58)

So, we can get

𝑥1 (𝑛) < [(𝑥2 (𝑛)𝑥2 (0))
𝜂 (𝑥1 (0))𝜉 exp (−𝜀𝜂𝑟1∗𝑛)]

1/𝜉

< 𝑥1 (0) [( 𝑥∗2𝑥2 (0))
𝜂

exp (−𝜀𝜂𝑟1∗𝑛)]
1/𝜉 .

(59)

Therefore, we have 𝑥1(𝑛) 󳨀→ 0 exponentially as 𝑛 󳨀→ +∞.
This completes the proof.

Lemma 9. Under the assumption of Theorem 8, let 𝑥(𝑛) =(𝑥1(𝑛), 𝑥2(𝑛))𝑇 be any positive solution of system (1), and then
there exists a positive constant 𝑥2∗ such that

lim inf
𝑛󳨀→+∞

𝑥2 (𝑛) ≥ 𝑥2∗ , (60)

where

𝑥2∗ = 𝑘2∗ exp [𝜏𝑟∗2 (1 − 𝑥∗2𝑘2∗)]
⋅ exp[𝑟∗1 (1 − exp [−𝜏𝑟∗2 (1 − 𝑥∗2 /𝑘2∗)]𝑘2∗ 𝑥∗2)]

(61)

is a constant independent of any positive solution of system (1);
i.e., the second species 𝑥2 of system (1) is permanent.

Proof. By Lemma 3 andTheorem 8,

lim
𝑛󳨀→+∞

𝑥1 (𝑛) = 0,
lim sup
𝑛󳨀→+∞

𝑥2 (𝑛) ≤ 𝑥∗2 , (62)

for arbitrarily small positive constant 𝜀(0 < 𝜀 < 1/𝜇∗2 ), there
exists an 𝑁5 > 0 such that

𝑥1 (𝑛) < 𝜀,
𝑥2 (𝑛) < 𝑥∗2 + 𝜀 (63)

for all 𝑛 > 𝑁5.
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From the second equation of (1), for 𝑛 > 𝑁5 + 𝜏,
𝑥2 (𝑛 + 1)
= 𝑥2 (𝑛) exp [𝑟2 (𝑛) (1 − 𝜇1 (𝑛) 𝑥 (𝑛) − 𝑥2 (𝑛 − 𝜏)𝑘2 (𝑛) )]
> 𝑥2 (𝑛) exp [𝑟2 (𝑛) (1 − 𝜇∗1 𝜀 − 𝑥∗2 + 𝜀𝑘2∗ )] .

(64)

Let 𝜀 󳨀→ 0, and then

𝑥2 (𝑛 + 1) ≥ 𝑥2 (𝑛) exp [𝑟2 (𝑛) (1 − 𝑥∗2𝑘2∗)] . (65)

Noting the fact that exp(𝑥 − 1)/𝑥 ≥ 1 for 𝑥 > 0, we obtain
1 − 𝑥∗2𝑘2∗ = 1 − 𝑘∗2𝑘2∗

exp (𝑟∗2 (𝜏 + 1) − 1)
𝑟∗2 ≤ 0. (66)

Therefore, from (65), we have

𝑥2 (𝑛 + 1) ≥ 𝑥2 (𝑛) exp [𝑟∗2 (1 − 𝑥∗2𝑘2∗)] . (67)

Using (67), one could easily obtain that

𝑥2 (𝑛 − 𝜏) ≤ 𝑥2 (𝑛) exp [−𝜏𝑟∗2 (1 − 𝑥∗2𝑘2∗)] . (68)

Substituting (68) into the second equation (1), for 𝑛 > 𝑁5 +𝜏,
deduces

𝑥2 (𝑛 + 1) > 𝑥2 (𝑛) exp[𝑟2 (𝑛)
⋅ (1 − 𝜇∗1 𝜀 − exp [−𝜏𝑟∗2 (1 − 𝑥∗2 /𝑘2∗)]𝑘2∗ 𝑥2 (𝑛))] .

(69)

Let 𝜀 󳨀→ 0, and then

𝑥2 (𝑛 + 1) ≥ 𝑥2 (𝑛) exp[𝑟2 (𝑛)
⋅ (1 − exp [−𝜏𝑟∗2 (1 − 𝑥∗2 /𝑘2∗)]𝑘2∗ 𝑥2 (𝑛))] .

(70)

It is easy to check that the inequality

exp [−𝜏𝑟∗2 (1 − 𝑥∗2 /𝑘2∗)]𝑘2∗ 𝑥∗2 > 1 (71)

holds. By Lemma 1, we have

lim inf
𝑛󳨀→+∞

𝑥2 (𝑛) ≥ 𝑘2∗ exp [𝜏𝑟∗2 (1 − 𝑥∗2𝑘2∗)]
⋅ exp[𝑟∗2 (1 − exp [−𝜏𝑟∗2 (1 − 𝑥∗2 /𝑘2∗)]𝑘2∗ 𝑥∗2)]
≜ 𝑥2∗.

(72)

This completes the proof.

Consider the following discrete logistic equation:

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp [𝑟2 (𝑛) (1 − 𝑥 (𝑛 − 𝜏)𝑘2 (𝑛) )] . (73)

Lemma 10 (see [22]). Assume that {𝑟2(𝑛)} and {𝑘2(𝑛)} satisfy
(2), and then any positive solution 𝑥(𝑛) of (73) satisfies

𝑥2∗ < lim inf
𝑛󳨀→+∞

𝑥 (𝑛) ≤ lim sup
𝑛󳨀→+∞

𝑥 (𝑛) ≤ 𝑥∗2 . (74)

Theorem 11. Under the assumptions of Theorem 8 and Lem-
mas 9 and 10, furthermore, suppose that

𝑘∗2𝑘2∗ exp (𝑟∗2 (1 + 𝜏) − 1) ≤ 21 + 2𝜏 . (75)

Let 𝑥(𝑛) = (𝑥1(𝑛), 𝑥2(𝑛))𝑇 be any positive solution of system
(1), and then the species 𝑥1 will be driven to extinction; that is,𝑥1(𝑛) 󳨀→ 0 as 𝑛 󳨀→ +∞ and 𝑥2(𝑛) 󳨀→ 𝑥(𝑛) as 𝑛 󳨀→ +∞,
where 𝑥(𝑛) is any positive solution of (73).

Proof. Let 𝑥(𝑛) = (𝑥1(𝑛), 𝑥2(𝑛))𝑇 be a solution of system (1)
with initial conditions (3). To finish the proof of Theorem 11,
it is enough to show that 𝑥2(𝑛) 󳨀→ 𝑥(𝑛) as 𝑛 󳨀→ +∞, where𝑥(𝑛) is any positive solution of (73).

FromLemmas 3 and 9,Theorem8, and (74), for arbitrarily
small positive constant 𝜀 > 0, there exists an𝑁6 > 0 such that,
for all 𝑛 > 𝑁6,

𝑥2∗ − 𝜀 < 𝑥2 (𝑛) ,
𝑥 (𝑛) < 𝑥∗2 + 𝜀,

𝑥1 (𝑛) < 𝜀.
(76)

Let

𝑢 (𝑛) = ln𝑥2 (𝑛) − ln𝑥 (𝑛)
− 𝑛−1∑
𝑠=𝑛−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠)) . (77)

From the second equation of (1) and (73), we have

ln𝑥2 (𝑛 + 1) − ln𝑥2 (𝑛)
= 𝑟2 (𝑛) (1 − 𝜇1 (𝑛) 𝑥1 (𝑛) − 𝑥2 (𝑛 − 𝜏)𝑘2 (𝑛) ) ,

ln𝑥 (𝑛 + 1) − ln𝑥 (𝑛) = 𝑟2 (𝑛) (1 − 𝑥 (𝑛 − 𝜏)𝑘2 (𝑛) ) ,
(78)

and then

𝑢 (𝑛 + 1) = ln𝑥2 (𝑛) − ln𝑥 (𝑛) − 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛 − 𝜏)
− 𝑥 (𝑛 − 𝜏)) − 𝑛∑

𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠))
− 𝑟2 (𝑛) 𝜇1 (𝑛) 𝑥1 (𝑛) .

(79)
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Therefore, we have

Δ𝑢 (𝑛) = 𝑢 (𝑛 + 1) − 𝑢 (𝑛)
= − 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))

− 𝑟2 (𝑛) 𝜇1 (𝑛) 𝑥1 (𝑛) ,
(80)

and

𝑢 (𝑛 + 1) + 𝑢 (𝑛)
= 2 (ln𝑥2 (𝑛) − ln𝑥 (𝑛))

− 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛 − 𝜏) − 𝑥 (𝑛 − 𝜏))
− 𝑛−1∑
𝑠=𝑛−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠))
− 𝑛∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠))
− 𝑟2 (𝑛) 𝜇1 (𝑛) 𝑥1 (𝑛)

= 2 (ln𝑥2 (𝑛) − ln𝑥 (𝑛))
− 2 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛 − 𝜏) − 𝑥 (𝑛 − 𝜏))
− 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))
− 2 𝑛−1∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠))
− 𝑟2 (𝑛) 𝜇1 (𝑛) 𝑥1 (𝑛) .

(81)

Define

𝑉1 (𝑛) = 𝑢2 (𝑛) , (82)

and then

Δ𝑉1 (𝑛) = 𝑢2 (𝑛 + 1) − 𝑢2 (𝑛) = Δ𝑢 (𝑛) (𝑢 (𝑛 + 1)
+ 𝑢 (𝑛)) = [− 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))
− 𝑟2 (𝑛) 𝜇 (𝑛) 𝑥1 (𝑛)] (𝑢 (𝑛 + 1) + 𝑢 (𝑛))
= − 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛)) (𝑢 (𝑛 + 1) + 𝑢 (𝑛))
− 𝑟2 (𝑛) 𝜇1 (𝑛) 𝑥1 (𝑛) (𝑢 (𝑛 + 1) + 𝑢 (𝑛)) = −2
⋅ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛)) (ln𝑥2 (𝑛) − ln𝑥 (𝑛))
+ 2 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛) − 𝑥 (𝑛)) (𝑥2 (𝑛 − 𝜏)

− 𝑥 (𝑛 − 𝜏)) + 𝑟22 (𝑛 + 𝜏)𝑘22 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2 + 2

⋅ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
𝑛−1∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠)) (𝑥2 (𝑛)
− 𝑥 (𝑛)) + [ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))
− (𝑢 (𝑛 + 1) + 𝑢 (𝑛))] 𝑟2 (𝑛) 𝜇1 (𝑛) 𝑥1 (𝑛) .

(83)

Using the mean value theorem, then

ln𝑥2 (𝑛) − ln𝑥 (𝑛) = 1𝜁 (𝑛) (𝑥2 (𝑛) − 𝑥 (𝑛)) , (84)

where 𝜁(𝑛) lies between 𝑥2(𝑛) and 𝑥(𝑛).
Noting the fact that 2𝑎𝑏 ≤ 𝑎2 + 𝑏2, it follows from (83)

that

Δ𝑉1 (𝑛) ≤ −2 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) 1𝜁 (𝑛) (𝑥2 (𝑛) − 𝑥 (𝑛))2

+ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛) − 𝑥 (𝑛))2 + 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
⋅ 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛 − 𝜏) − 𝑥 (𝑛 − 𝜏))2

+ 𝑟22 (𝑛 + 𝜏)𝑘22 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2 + 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
⋅ 𝑛−1∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠))2 + 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
⋅ 𝑛−1∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2

+ [ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))
− (𝑢 (𝑛 + 1) + 𝑢 (𝑛))] 𝑟2 (𝑛) 𝜇1 (𝑛) 𝑥1 (𝑛) .

(85)

From (76) and (85), let 𝜀 be a sufficient small positive
constant, for 𝑛 > 𝑁6, and we have

Δ𝑉1 (𝑛)
≤ −2 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) 1𝜁 (𝑛) (𝑥2 (𝑛) − 𝑥 (𝑛))2

+ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛) − 𝑥 (𝑛))2

+ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛 − 𝜏) − 𝑥 (𝑛 − 𝜏))2

+ 𝑟22 (𝑛 + 𝜏)𝑘22 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2
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+ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
𝑛−1∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠))2

+ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
𝑛−1∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2 .
(86)

Let

𝑉2 (𝑛) = 𝑛−1∑
𝑠=𝑛−𝜏

𝑟2 (𝑠 + 2𝜏)𝑘2 (𝑠 + 2𝜏) 𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠))2 ,
𝑉3 (𝑛)

= 𝑛−2+𝜏∑
𝑙=𝑛

𝑟2 (𝑙 + 𝜏)𝑘2 (𝑙 + 𝜏)
𝑛−1∑
𝑠=𝑙+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑠) − 𝑥 (𝑠))2 ,
(87)

and then

Δ𝑉2 (𝑛)
= 𝑟2 (𝑛 + 2𝜏)𝑘2 (𝑛 + 2𝜏) 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2

− 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛 − 𝜏) − 𝑥 (𝑛 − 𝜏))2 ,
Δ𝑉3 (𝑛)

= 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
𝑛−1+𝜏∑
𝑠=𝑛+1

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2

− 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
𝑛−1∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2 .

(88)

Define

𝑉 (𝑛) = 𝑉1 (𝑛) + 𝑉2 (𝑛) + 𝑉3 (𝑛) . (89)

It follows from (86) and (88) that

Δ𝑉 (𝑛) ≤ −2 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) 1𝜁 (𝑛) (𝑥2 (𝑛) − 𝑥 (𝑛))2

+ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) 𝑟2 (𝑛)𝑘2 (𝑛) (𝑥2 (𝑛) − 𝑥 (𝑛))2

+ 𝑟22 (𝑛 + 𝜏)𝑘22 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2 + 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
⋅ 𝑛−1∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2 + 𝑟2 (𝑛 + 2𝜏)𝑘2 (𝑛 + 2𝜏)
⋅ 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2 + 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
⋅ 𝑛−1+𝜏∑
𝑠=𝑛+1

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) (𝑥2 (𝑛) − 𝑥 (𝑛))2

= − 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) ( 2𝜁 (𝑛) − 𝑟2 (𝑛)𝑘2 (𝑛) − 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
− 𝑛−1∑
𝑠=𝑛+1−𝜏

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏) − 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏)
− 𝑛−1+𝜏∑
𝑠=𝑛+1

𝑟2 (𝑠 + 𝜏)𝑘2 (𝑠 + 𝜏)) (𝑥2 (𝑛) − 𝑥 (𝑛))2 .
(90)

From (75), we have

2𝑥∗2 − (1 + 2𝜏) 𝑟∗2𝑘2∗ > 0, (91)

and then, for the above small enough 𝜀, there exists a positive
constant 𝑞 > 0 such that

2𝑥∗2 + 𝜀 − (1 + 2𝜏) 𝑟∗2𝑘2∗ > 𝑞 > 0. (92)

From (76), (90), and (92), for 𝑛 > 𝑁6, we have
Δ𝑉 (𝑛) ≤ − 𝑟2 (𝑛 + 𝜏)𝑘2 (𝑛 + 𝜏) ( 2𝑥∗1 + 𝜀 − (1 + 2𝜏) 𝑟∗2𝑘2∗)

⋅ (𝑥2 (𝑛) − 𝑥 (𝑛))2 < −𝑞𝑟2∗𝑘∗2 (𝑥2 (𝑛) − 𝑥 (𝑛))2 .
(93)

Summating both sides of (93) from 𝑁6 + 𝜏 to 𝑛, we have
𝑛∑
𝑗=𝑁6+𝜏

(𝑉 (𝑗 + 1) − 𝑉 (𝑗))

≤ −𝑞𝑟2∗𝑘∗2
𝑛∑
𝑗=𝑁6+𝜏

(𝑥2 (𝑗) − 𝑥 (𝑗))2 ,
(94)

then

𝑉 (𝑛 + 1) + 𝑞𝑟2∗𝑘∗2
𝑛∑
𝑗=𝑁6+𝜏

(𝑥2 (𝑗) − 𝑥 (𝑗))2

≤ 𝑉 (𝑁6 + 𝜏) ,
(95)

and so,
𝑛∑
𝑗=𝑁6+𝜏

(𝑥2 (𝑗) − 𝑥 (𝑗))2 ≤ 𝑉 (𝑁6 + 𝜏)
𝑞 𝑘∗2𝑟2∗ . (96)

It follows from (76) that𝑉𝑖(𝑁6+𝜏), 𝑖 = 1, 2, 3 are all bounded.
Hence,

𝑛∑
𝑗=𝑁6+𝜏

(𝑥2 (𝑗) − 𝑥 (𝑗))2 ≤ 𝑉 (𝑁6 + 𝜏)
𝑞 𝑘∗2𝑟2∗ < +∞, (97)

and then

lim sup
𝑛󳨀→+∞

𝑛∑
𝑗=𝑁6+𝜏

(𝑥2 (𝑗) − 𝑥 (𝑗))2 ≤ 𝑉 (𝑁6 + 𝜏)
𝑞 𝑘∗2𝑟2∗

< +∞.
(98)
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This implies that

lim
𝑛󳨀→+∞

(𝑥2 (𝑛) − 𝑥 (𝑛))2 = 0. (99)

This completes the proof.

5. Numerical Examples and Simulations

In this section, we give two examples to illustrate the
feasibility of our results.

Example 1. Consider the following system:

𝑥1 (𝑛 + 1) = 𝑥1 (𝑛) exp [(0.5 − 0.2 sin (𝑛))
⋅ (1 − 𝑥1 (𝑛)2 + 0.2 cos (𝑛) − 𝑥2 (𝑛 − 2))] ,

𝑥2 (𝑛 + 1) = 𝑥2 (𝑛) exp [(0.2 − 0.1 cos (𝑛))
⋅ (1 − 𝑥1 (𝑛) − 𝑥2 (𝑛 − 2)0.5 + 0.1 sin (𝑛))] ;

(100)

that is

𝑟1 (𝑛) = 0.5 − 0.2 sin (𝑛) ,
𝑘1 (𝑛) = 2 + 0.2 cos (𝑛) ,
𝜇2 (𝑛) = 1,
𝑟2 (𝑛) = 0.2 − 0.1 cos (𝑛) ,
𝜇1 (𝑛) = 1,
𝑘2 (𝑛) = 0.5 + 0.1 sin (𝑛) .

(101)

By a direct calculation, we can get

𝑥∗1 = 2.3283,
𝑥1∗ = 1.4657,
𝑥∗2 = 1.8097;
lim sup
𝑛󳨀→+∞

𝑟2 (𝑛)𝑟1 (𝑛) = 0.3709 < 0.4078
= lim inf
𝑛󳨀→+∞

{𝑟2 (𝑛) 𝜇1 (𝑛) 𝑘1 (𝑛)𝑟1 (𝑛) ,
𝑟2 (𝑛)𝑟1 (𝑛) 𝜇2 (𝑛) 𝑘2 (𝑛)} ;

𝑘∗1𝑘1∗ exp (𝑟∗1 − 1) = 0.9054 < 2;

(102)
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Figure 1: Dynamic behaviors of species 𝑥1 and 𝑥2 in (100) with
initial values 𝑥1(0) = 1, 3, 5 and 𝑥2(𝜗) = 1, 3, 5 for 𝜗 = −2, −1, 0,
respectively; 𝑥 is a solution of (103).

that is, the conditions of Theorem 7 hold, and so species 𝑥2
will be driven to extinction while species 𝑥1 is asymptotic to
any positive solution of

𝑥1 (𝑛 + 1) = 𝑥1 (𝑛) exp [(0.15 + 0.05 sin (𝑛))
⋅ (1 − 𝑥1 (𝑛)1.2 + 0.2 cos (𝑛))] .

(103)

The solutions of systems (100) and (103) corresponding to
initial values are displayed in Figure 1.

Example 2. Consider the following system:

𝑥1 (𝑛 + 1) = 𝑥1 (𝑛) exp [(0.15 + 0.05 sin (𝑛))
⋅ (1 − 𝑥1 (𝑛)1.2 + 0.2 cos (𝑛) − 𝑥2 (𝑛 − 1))] ,

𝑥2 (𝑛 + 1) = 𝑥2 (𝑛) exp [(0.17 + 0.07 cos (𝑛))
⋅ (1 − 0.3𝑥1 (𝑛) − 𝑥2 (𝑛 − 1)2.1 + 0.1 sin (𝑛))] ;

(104)

that is,

𝑟1 (𝑛) = 0.15 + 0.05 sin (𝑛) ,
𝑘1 (𝑛) = 1.2 + 0.2 cos (𝑛) ,
𝜇2 (𝑛) = 1,
𝑟2 (𝑛) = 0.17 + 0.07 cos (𝑛) ,
𝜇1 (𝑛) = 0.3,
𝑘2 (𝑛) = 2.1 + 0.1 sin (𝑛) .

(105)
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Figure 2: Dynamic behaviors of species 𝑥1 and 𝑥2 in (104) with
initial values 𝑥1(0) = 1, 3, 5 and 𝑥2(𝜗) = 1, 3, 5 for 𝜗 = −1, 0,
respectively; 𝑥 is a solution of (107).

By a direct calculation, we can get

𝑥∗1 = 3.1453,
𝑥∗2 = 5.4498,
𝑥2∗ = 1.7240;
lim inf
𝑛󳨀→+∞

𝑟2 (𝑛)𝑟1 (𝑛) = 1.0712 > 0.9552
= lim sup
𝑛󳨀→+∞

{𝑟2 (𝑛) 𝜇1 (𝑛) 𝑘1 (𝑛)𝑟1 (𝑛) ,
𝑟2 (𝑛)𝑟1 (𝑛) 𝜇2 (𝑛) 𝑘2 (𝑛)} ;

𝑘∗2𝑘2∗ exp (𝑟∗2 (1 + 𝜏) − 1) = 0.6540 < 0.6667
= 21 + 2𝜏 ;

(106)

that is, the conditions of Theorem 11 hold, and so species 𝑥1
will be driven to extinction while species 𝑥2 is asymptotic to
any positive solution of

𝑥2 (𝑛 + 1) = 𝑥2 (𝑛) exp [(0.17 + 0.07 cos (𝑛))
⋅ (1 − 𝑥2 (𝑛 − 1)2.1 + 0.1 sin (𝑛))] .

(107)

The solutions of systems (104) and (107) corresponding to
initial values are displayed in Figure 2.

6. Conclusion

A nonautonomous discrete Lotka-Volterra competitive sys-
tem with time delay has been studied in this paper. It is

shown that if the coefficients are bounded above and below
by positive constants and satisfy certain inequalities, then one
of the species will be driven to extinction while the other one
will stabilize at a certain solution of a nonlinear single species
model.

This paper provided an effective method for the further
study on permanence and extinction of population dynamic
systems with time delay. In fact, our techniques in this paper
are applicable to a pure delayed discrete 𝑛-species Lotka-
Volterra competitive system. Furthermore, one may consider
a discrete Lotka-Volterra competitive system with infinite
delay, which we leave for future work.

As we know, system (1) is a basic model, and, based on
system (1), we can establish different types of Lotka-Volterra
competitive systems according to the ecological signifi-
cance, such as plankton allelopathy systems and functional
response systems, by using the same methods and analytical
techniques, and similar results can be obtained. From the
obtained results, we not only can reveal the inherent law of
the system and predict the development of the population but
also can control or adjust the ecological development of the
population in a better way. Besides, the results obtained in
this paper also can be applied to economic systems, such as
systems of industrial clusters and financial ecology; one may
see [23].
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