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This paper is concerned with the existence and multiplicity of the positive solutions for a fractional boundary value problem with
multistrip Riemann–Stieltjes integral boundary conditions. Our results are based on the Leggett–Williams fixed point theorem. In
the end, two examples are worked out to illustrate our main work.

1. Introduction

Nowadays, differential equations with fractional order have
gained much attention and importance since they provided
valuable tools for their applications in various sciences,
such as gas dynamics, nuclear physics, electrodynamics of
complex medium, and polymer rheology. With this advan-
tage, fractional order models are regarded as more realistic
and practical. For more details about fractional differential
equations, we refer the readers to the monographs [1–4] and
papers [5–9].

Many scholars have studied the existence of nonlinear
fractional differential equations with a variety boundary con-
ditions. However, it is better to impose nonlocal conditions
because they can accurately describe the actual phenomenon.
Some authors studied multipoint boundary value problems;
for example, [10] discussed the infinite-point boundary value
problems

𝐷𝛼0+𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝐷𝛽0+𝑢 (0) = 0,

𝐷𝛽0+𝑢 (1) = ∞∑
𝑖=1

𝜉𝑖𝐷𝛽0+𝑢 (𝜂𝑖) ,
(1)

where 2 < 𝛼 ⩽ 3, 1 ⩽ 𝛽 ⩽ 2, 1 ⩽ 𝛼 − 𝛽, 0 < 𝜉𝑖, 𝜂𝑖 < 1 with∑∞𝑖=1 𝜉𝑖𝜂𝛼−𝛽−1𝑖 < 1. Existence result of at least two positive
solutions is given via fixed point theorem in a cone.

Different from [10], some work focuses on the solvability
of the fractional differential equations with integral boundary
conditions.The details are found in [11–16] and the references
therein. In [17], Sun and Zhao investigated the following
fractional differential equation with integral boundary con-
ditions:

𝐷𝛼0+𝑢 (𝑡) + 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝑢 (0) = 0,
𝑢 (1) = ∫1

0
𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

(2)

where 2 < 𝛼 ⩽ 3. By using the monotone iteration method
and some inequalities technique, the existence result of
positive solutions is obtained.

By the same method, Zhang [18] discussed the following
fractional differential equation with Riemann–Stieltjes inte-
gral boundary conditions:

𝐷𝛼0+𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝑢 (0) = 0,

𝐷𝛽0+𝑢 (1) = ∫1
0
𝐷𝛽0+𝑢 (𝑡) 𝑑𝐴 (𝑡) ,

(3)

where 2 < 𝛼 ⩽ 3, 0 ⩽ 𝛽 ⩽ 1, 𝐴(𝑡) is a bounded variation, and
∫1
0
𝐷𝛽0+𝑢(𝑡)𝑑𝐴(𝑡) denotes a Riemann–Stieltjes integral with
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a signed measure. This includes both the multipoint and a
Riemann integral in a single framework.

Motivated by the wide applications of nonlocal boundary
value problems and the results mentioned above, we consider
the following fractional differential equation with multistrip
Riemann–Stieltjes integral boundary conditions:

𝐷𝛼0+𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷𝛽0+𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) , (4)

𝑢 (0) = 𝐷𝛽0+𝑢 (0) = 0,
𝑢 (1) = 𝑚∑

𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡) , (5)

where 2 < 𝛼 ⩽ 3, 0 < 𝛽 < 1, 𝐼𝑖 ⊂ (0, 1), 𝑖 = 1, 2, . . . , 𝑚, and𝐷𝛼0+ is the standard Riemann-Liouville derivative; the nonlin-
ear term 𝑓 is related to the lower derivative of the function 𝑢.
We emphasize that multistrip integral boundary conditions
in (5) state that the value of unknown function at the right
end point 𝑡 = 1 of the given interval is equal to the linear
combination of the Riemann–Stieltjes integral values of the
unknown function on the subinterval 𝐼𝑖, for 𝑖 = 1, 2, . . . , 𝑚.
The consideration of the fractional differential equation
togetherwithmultistrip Riemann–Stieltjes integral boundary
conditions makes problem (4) and (5) new. The proof of our
main results is based on the Leggett–Williams fixed point
theorem in a cone, which we present now.

Theorem 1 (Leggett–Williams fixed point theorem). Let 𝑃 be
a cone in a real Banach space 𝐸, 𝑃𝑐 = {𝑥 ∈ 𝑃 | ‖𝑥‖ ⩽ 𝑐},Ψ be a
nonnegative continuous concave functional on 𝑃 such thatΨ(𝑥) ⩽ ‖𝑥‖ for all 𝑥 ∈ 𝑃𝑐, and 𝑃(Ψ, 𝑏, 𝑑) = {𝑥 ∈ 𝑃 | 𝑏 ⩽Ψ(𝑥), ‖𝑥‖ ⩽ 𝑑}. Suppose that 𝑇 : 𝑃𝑐 → 𝑃𝑐 is completely
continuous and there exist constants 0 < 𝑎 < 𝑏 < 𝑑 ⩽ 𝑐 such
that

(𝑆1) {𝑥 ∈ 𝑃(Ψ, 𝑏, 𝑑) | Ψ(𝑥) > 𝑏} ̸= ⌀, and Ψ(𝑇𝑥) > 𝑏 for𝑥 ∈ 𝑃(Ψ, 𝑏, 𝑑);
(𝑆2) ‖𝑇𝑥‖ < 𝑎 for ‖𝑥‖ ⩽ 𝑎;
(𝑆3) Ψ(𝑇𝑥) > 𝑏 for 𝑥 ∈ 𝑃(Ψ, 𝑏, 𝑐), with ‖𝑇𝑥‖ > 𝑑.
Then 𝑇 has at least three fixed points 𝑥1, 𝑥2, and 𝑥3, which

satisfy 𝑥1 < 𝑎,
𝑏 < Ψ (𝑥2) ,

𝑎 < 𝑥3 with Ψ (𝑥3) < 𝑏. (6)

If there holds 𝑑 = 𝑐, then condition (𝑆1) implies condition(𝑆3) ofTheorem 1.Throughout this paper, we alwaysmake the
following assumptions:

(𝐻1) 𝑓 : [0, 1] × [0, +∞) ×R → [0, +∞) is continuous;
(𝐻2) 2 < 𝛼 ⩽ 3, 0 < 𝛽 < 1, 1 < 𝛼 − 𝛽 < 2;
(𝐻3) 𝛼𝑖 ∈ [0, +∞), 𝐼𝑖 ⊂ (0, 1), 𝑖 = 1, 2, . . . , 𝑚, and 𝐴 :[0, 1] → R is an increasing function of bounded

variation;
(𝐻4) 0 < 𝛿1 < 1, where 𝛿1 = ∑𝑚𝑖=1 𝛼𝑖 ∫𝐼𝑖 𝑡𝛼−1𝑑𝐴(𝑡).

2. Preliminaries

In this section, wewill present several definitions and lemmas
that are necessary for the proof of our main results.

Definition 2 (see [1]). The Riemann-Liouville fractional inte-
gral of order 𝛼 > 0 of a function 𝑦 : (0,∞) → R is given
by

𝐼𝛼0+𝑦 (𝑡) = 1Γ (𝛼) ∫𝑡
0
(𝑡 − 𝑠)𝛼−1 𝑦 (𝑠) 𝑑𝑠, (7)

provided the right side is pointwise defined on [0,∞).
Definition 3 (see [1]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0 of a function 𝑦 : (0,∞) → R is
given by

𝐷𝛼0+𝑦 (𝑡) = 1Γ (𝑛 − 𝛼) ( 𝑑𝑑𝑡)
𝑛 ∫𝑡
0
(𝑡 − 𝑠)𝑛−𝛼−1 𝑦 (𝑠) 𝑑𝑠, (8)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of number 𝛼,
provided the right side is pointwise defined on [0,∞).

From the definitions of Riemann-Liouville’s derivative,
we can obtain the following statement.

Lemma 4. Let 𝛼 > 0; if we assume 𝑢 ∈ 𝐶(0, 1) ∩𝐿1(0, 1), then
the fractional differential equation

𝐷𝛼0+𝑢 (𝑡) = 0 (9)

has 𝑢(𝑡) = 𝐶1𝑡𝛼−1+𝐶2𝑡𝛼−2+⋅ ⋅ ⋅+𝐶𝑁𝑡𝛼−𝑁, for some𝐶𝑖 ∈ R, 𝑖 =1, 2, . . . , 𝑁, as a unique solution, where𝑁 is the smallest integer
greater than or equal to 𝛼.
Lemma 5. Let 𝛼 > 0; if we assume 𝑢 ∈ 𝐶(0, 1) ∩ 𝐿(0, 1), then

𝐼𝛼0+𝐷𝛼0+𝑢 (𝑡) = 𝑢 (𝑡) + 𝐶1𝑡𝛼−1 + 𝐶2𝑡𝛼−2 + ⋅ ⋅ ⋅
+ 𝐶𝑁𝑡𝛼−𝑁, (10)

for some 𝐶𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑁, where 𝑁 is the smallest
integer greater than or equal to 𝛼.
Remark 6. The following properties are useful for our discus-
sion:

(1) 𝐼𝛼0+𝐼𝛽0+𝑦(𝑡) = 𝐼𝛼+𝛽0+ 𝑦(𝑡), for 𝛼 > 0, 𝛽 > 0, 𝑦(𝑡) ∈𝐿1(0, 1);
(2) 𝐷𝛼0+𝐼𝛼0+𝑦(𝑡) = 𝑦(𝑡), for 𝛼 > 0, 𝑦(𝑡) ∈ 𝐿1(0, 1).

Lemma 7. Suppose that (H4) holds. For 𝑦 ∈ 𝐶(0, 1)∩𝐿1(0, 1),
the unique solution of

𝐷𝛼0+𝑢 (𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝐷𝛽0+𝑢 (0) = 0,
𝑢 (1) = 𝑚∑

𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡)
(11)
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is 𝑢(𝑡) = ∫1
0
𝐺(𝑡, 𝑠)𝑦(𝑠)𝑑𝑠, in which

𝐺 (𝑡, 𝑠) = 𝐺0 (𝑡, 𝑠) + 𝑡𝛼−11 − 𝛿1
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡) , (12)

where

𝐺0 (𝑡, 𝑠) = 1Γ (𝛼)
⋅ {{{

𝑡𝛼−1 (1 − 𝑠)𝛼−1 − (𝑡 − 𝑠)𝛼−1 , 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1,
𝑡𝛼−1 (1 − 𝑠)𝛼−1 , 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1.

(13)

Proof. In view of Lemma 5, we reduce problem (11) to an
equivalent integral equation

𝑢 (𝑡) = −𝐼𝛼0+𝑢 (𝑡) + 𝐶1𝑡𝛼−1 + 𝐶2𝑡𝛼−2 + 𝐶3𝑡𝛼−3, (14)
where 𝐶1, 𝐶2, 𝐶3 ∈ R are arbitrary constants. Consequently
the general solution of the problem (11) can be written as

𝑢 (𝑡) = − 1Γ (𝛼) ∫𝑡
0
(𝑡 − 𝑠)𝛼−1 𝑦 (𝑠) 𝑑𝑠 + 𝐶1𝑡𝛼−1 + 𝐶2𝑡𝛼−2

+ 𝐶3𝑡𝛼−3.
(15)

By 𝑢(0) = 𝐷𝛽0+𝑢(0) = 0, we find𝐶2 = 𝐶3 = 0. Set 𝑡 = 1 in (15),
then

𝑢 (1) = − 1Γ (𝛼) ∫1
0
(1 − 𝑠)𝛼−1 𝑦 (𝑠) 𝑑𝑠 + 𝐶1. (16)

Together with the boundary condition 𝑢(1) =∑𝑚𝑖=1 𝛼𝑖 ∫𝐼𝑖 𝑢(𝑡)𝑑𝐴(𝑡), we have
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡) = − 1Γ (𝛼) ∫1
0
(1 − 𝑠)𝛼−1 𝑦 (𝑠) 𝑑𝑠

+ 𝐶1.
(17)

Hence the unique solution of (11) is

𝑢 (𝑡) = − 1Γ (𝛼) ∫𝑡
0
(𝑡 − 𝑠)𝛼−1 𝑦 (𝑠) 𝑑𝑠

+ 𝑡𝛼−1Γ (𝛼) ∫1
0
(1 − 𝑠)𝛼−1 𝑦 (𝑠) 𝑑𝑠

+ 𝑡𝛼−1 𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡)

= ∫1
0
𝐺0 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 + 𝑡𝛼−1 𝑚∑

𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡) .

(18)

Furthermore,
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡)
= 𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

∫1
0
𝐺0 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑡)

+ ( 𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑡𝛼−1𝑑𝐴 (𝑡))( 𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡)) .
(19)

Then
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡)
= 11 − 𝛿1

𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

∫1
0
𝐺0 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑡) .

(20)

Hence, the solution of (11) is

𝑢 (𝑡) = ∫1
0
𝐺0 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 + 𝑡𝛼−11 − 𝛿1

𝑚∑
𝑖=1

𝛼𝑖
⋅ ∫
𝐼𝑖

∫1
0
𝐺0 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 𝑑𝐴 (𝑡) = ∫1

0
𝐺0 (𝑡, 𝑠)

⋅ 𝑦 (𝑠) 𝑑𝑠 + 𝑡𝛼−11 − 𝛿1
𝑚∑
𝑖=1

𝛼𝑖
⋅ ∫1
0
∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝐴 (𝑡) 𝑑𝑠
= ∫1
0
[𝐺0 (𝑡, 𝑠) + 𝑡𝛼−11 − 𝛿1

𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)]
⋅ 𝑦 (𝑠) 𝑑𝑠 = ∫1

0
𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(21)

Lemma 8. The function 𝐺0(𝑡, 𝑠) defined by (13) satisfies the
following inequality:

𝑡𝛼−1 (1 − 𝑠)𝛼−1 (1 − 𝑡) 𝑠Γ (𝛼) ⩽ 𝐺0 (𝑡, 𝑠) ⩽ 𝑠 (1 − 𝑠)𝛼−1Γ (𝛼 − 1) ,
for 𝑡, 𝑠 ∈ [0, 1] .

(22)

Proof. For 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1, we have 1 − 𝑠 ⩾ 1 − 𝑡, and then

𝐺0 (𝑡, s) = 1Γ (𝛼) [𝑡𝛼−1 (1 − 𝑠)𝛼−1 − (𝑡 − 𝑠)𝛼−1]
= (𝛼 − 1)Γ (𝛼) ∫𝑡−𝑡𝑠

𝑡−𝑠
𝑥𝛼−2𝑑𝑥

⩽ (𝑡 − 𝑡𝑠)𝛼−2 [(𝑡 − 𝑡𝑠) − (𝑡 − 𝑠)]Γ (𝛼 − 1)
= 𝑡𝛼−2 (1 − 𝑠)𝛼−2 (1 − 𝑡) 𝑠Γ (𝛼 − 1) ⩽ 𝑠 (1 − 𝑠)𝛼−1Γ (𝛼 − 1) ,

𝐺0 (𝑡, 𝑠) = 1Γ (𝛼) [𝑡𝛼−1 (1 − 𝑠)𝛼−1 − (𝑡 − 𝑠)𝛼−1]
= 1Γ (𝛼) [(𝑡 − 𝑡𝑠)𝛼−2 (𝑡 − 𝑡𝑠) − (𝑡 − 𝑠)𝛼−2 (𝑡 − 𝑠)]
⩾ 1Γ (𝛼) [(𝑡 − 𝑡𝑠)𝛼−2 (𝑡 − 𝑡𝑠) − (𝑡 − 𝑡𝑠)𝛼−2 (𝑡 − 𝑠)]
= 1Γ (𝛼) [𝑡𝛼−2 (1 − 𝑠)𝛼−2 (1 − 𝑡) 𝑠]
⩾ 1Γ (𝛼) [𝑡𝛼−1 (1 − 𝑠)𝛼−1 (1 − 𝑡) 𝑠] .

(23)
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For 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1, since 2 < 𝛼 ⩽ 3, we have
𝐺0 (𝑡, 𝑠) = 𝑡𝛼−1 (1 − 𝑠)𝛼−1Γ (𝛼) ⩽ (𝛼 − 1) 𝑡𝛼−2𝑡 (1 − 𝑠)𝛼−1Γ (𝛼)

⩽ 𝑡𝛼−2𝑠 (1 − 𝑠)𝛼−1Γ (𝛼 − 1) ⩽ 𝑠 (1 − 𝑠)𝛼−1Γ (𝛼 − 1) ,
𝐺0 (𝑡, 𝑠) = 𝑡𝛼−1 (1 − 𝑠)𝛼−1Γ (𝛼) ⩾ 𝑡𝛼−1 (1 − 𝑠)𝛼−1 (1 − 𝑡) 𝑠Γ (𝛼) .

(24)

Then the proof is completed.

For convenience, denote

𝛿2 = 𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑑𝐴 (𝑡) ,

𝛿3 = 𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑡𝛼𝑑𝐴 (𝑡) ,

𝐺 (𝑠) = (1 − 𝛿1 + 𝛿2) 𝑠 (1 − 𝑠)𝛼−1
(1 − 𝛿1) Γ (𝛼 − 1) , for 𝑠 ∈ [0, 1] ,

Λ (𝑠) = (1 − 𝛿1) (1 − 𝑠)𝛼−𝛽−1 + 𝛿2 (1 − 𝑠)𝛼−1
Γ (𝛼 − 𝛽) (1 − 𝛿1) ,

for 𝑠 ∈ [0, 1] ,
𝜆 = 𝜃𝛼 (1 − 𝛿1) + 𝜃𝛼−1 (𝛿1 − 𝛿3)(1 − 𝛿1 + 𝛿2) (𝛼 − 1) ,

where 𝜃 ∈ (0, 12) is aconstant.

(25)

𝛿1 is introduced (𝐻4). It is obvious that 𝛿2 > 𝛿1 > 𝛿3, 𝜆 > 0
and 𝐺(𝑠) > 0 for 𝑠 ∈ (0, 1).

The following properties of the Green function 𝐺(𝑡, 𝑠)
play an important role in this paper.

Lemma 9. The Green function 𝐺(𝑡, 𝑠) defined by (12) satisfies
the following properties:

(1) 𝐺(𝑡, 𝑠) is continuous on [0, 1] × [0, 1];
(2) 𝐺(𝑡, 𝑠) ⩾ 0 for 𝑡, 𝑠 ∈ [0, 1];
(3) 𝐺(𝑡, 𝑠) ⩽ 𝐺(𝑠) for 𝑡, 𝑠 ∈ [0, 1];
(4) 𝐺(𝑡, 𝑠) ⩾ 𝜆𝐺(𝑠) for 𝑠 ∈ [0, 1], 𝑡 ∈ [𝜃, 1 − 𝜃];
(5) |𝐷𝛽0+𝐺(𝑡, 𝑠)| ⩽ Λ(𝑠) for 𝑡, 𝑠 ∈ [0, 1].

Proof. (1) and (2) hold obviously; we only show that (3)–(5)
are true.(3) For any 𝑡, 𝑠 ∈ [0, 1], by (12), (13), and the right
inequality of (22), we get

𝐺 (𝑡, 𝑠) = 𝐺0 (𝑡, 𝑠) + 𝑡𝛼−11 − 𝛿1
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)

⩽ 𝑠 (1 − 𝑠)𝛼−1Γ (𝛼 − 1)

+ 𝑡𝛼−11 − 𝛿1
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑠 (1 − 𝑠)𝛼−1Γ (𝛼 − 1) 𝑑𝐴 (𝑡)

= 𝑠 (1 − 𝑠)𝛼−1Γ (𝛼 − 1) + 𝑡𝛼−1𝑠 (1 − 𝑠)𝛼−1 𝛿2(1 − 𝛿1) Γ (𝛼 − 1)
⩽ (1 − 𝛿1 + 𝛿2) 𝑠 (1 − 𝑠)𝛼−1

(1 − 𝛿1) Γ (𝛼 − 1) = 𝐺 (𝑠) .
(26)

(4) For any 𝑠 ∈ [0, 1], by (12), (13), and the left inequality
of (22), we get

min
𝑡∈[𝜃,1−𝜃]

𝐺 (𝑡, 𝑠) = min
𝑡∈[𝜃,1−𝜃]

{𝐺0 (𝑡, 𝑠)

+ 𝑡𝛼−11 − 𝛿1
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)}

⩾ min
𝑡∈[𝜃,1−𝜃]

{𝑡𝛼−1 (1 − 𝑡) 𝑠 (1 − 𝑠)𝛼−1Γ (𝛼)
+ 𝑡𝛼−11 − 𝛿1

𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑡𝛼−1 (1 − 𝑡) 𝑠 (1 − 𝑠)𝛼−1Γ (𝛼) 𝑑𝐴 (𝑡)}

⩾ 𝜃𝛼−1𝜃𝑠 (1 − 𝑠)𝛼−1Γ (𝛼) + 𝜃𝛼−11 − 𝛿1
𝑚∑
𝑖=1

𝛼𝑖

⋅ ∫
𝐼𝑖

(𝑡𝛼−1 − 𝑡𝛼) 𝑠 (1 − 𝑠)𝛼−1
Γ (𝛼) 𝑑𝐴 (𝑡)

= 𝑠 (1 − 𝑠)𝛼−1Γ (𝛼) [𝜃𝛼 + 𝜃𝛼−1 (𝛿1 − 𝛿3)1 − 𝛿1 ] = 𝜆𝐺 (𝑠) .

(27)

(5) By the definition of 𝐺0(𝑡, 𝑠) and 𝐷𝛽0+𝑡𝜇 = (Γ(𝜇 + 1)/Γ(𝜇 − 𝛽 + 1))𝑡𝜇−𝛽(𝜇 > −1), we have
𝐷𝛽0+𝐺0 (𝑡, 𝑠) = 1Γ (𝛼 − 𝛽)

⋅ {{{
𝑡𝛼−𝛽−1 (1 − 𝑠)𝛼−1 − (𝑡 − 𝑠)𝛼−𝛽−1 , 0 ⩽ 𝑠 ⩽ 𝑡 ≤ 1,
𝑡𝛼−𝛽−1 (1 − 𝑠)𝛼−1 , 0 ⩽ 𝑡 ⩽ 𝑠 ≤ 1.

(28)

Therefore,𝐷𝛽0+𝐺0 (𝑡, 𝑠) = 1Γ (𝛼 − 𝛽)
⋅ {{{

𝑡𝛼−𝛽−1 (1 − 𝑠)𝛼−1 − (𝑡 − 𝑠)𝛼−𝛽−1 , 0 ⩽ 𝑠 ⩽ 𝑡 ≤ 1,
𝑡𝛼−𝛽−1 (1 − 𝑠)𝛼−1 , 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1

⩽ 1Γ (𝛼 − 𝛽)
⋅ {{{

max {𝑡𝛼−𝛽−1 (1 − 𝑠)𝛼−1 , (𝑡 − 𝑠)𝛼−𝛽−1} , 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1,
(1 − 𝑠)𝛼−1 , 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1
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⩽ 1Γ (𝛼 − 𝛽)
⋅ {{{

max {(1 − 𝑠)𝛼−1 , (1 − 𝑠)𝛼−𝛽−1} , 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1,
(1 − 𝑠)𝛼−1 , 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1

⩽ 1Γ (𝛼 − 𝛽) (1 − 𝑠)𝛼−𝛽−1 .
(29)

From (13), it is evident that

𝐺0 (𝑡, 𝑠) = 𝐺0 (𝑡, 𝑠) ⩽ 1Γ (𝛼) (1 − 𝑠)𝛼−1 . (30)

It follows from (29) and (30) that
𝐷𝛽0+𝐺 (𝑡, 𝑠)

⩽ 𝐷𝛽0+𝐺0 (𝑡, 𝑠)
+ 

Γ (𝛼) 𝑡𝛼−𝛽−1Γ (𝛼 − 𝛽) (1 − 𝛿1)
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)
⩽ (1 − 𝑠)𝛼−𝛽−1Γ (𝛼 − 𝛽)

+ Γ (𝛼)Γ (𝛼 − 𝛽) (1 − 𝛿1)
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

(1 − 𝑠)𝛼−1Γ (𝛼) 𝑑𝐴 (𝑡)

= (1 − 𝛿1) (1 − 𝑠)𝛼−𝛽−1 + 𝛿2 (1 − 𝑠)𝛼−1
Γ (𝛼 − 𝛽) (1 − 𝛿1) = Λ (𝑠) .

(31)

The proof of the Lemma is completed.

3. Existence Result

Define the space 𝐸 = {𝑢(𝑡) | 𝑢(𝑡) ∈ 𝐶[0, 1] and𝐷𝛽0+𝑢(𝑡) ∈𝐶[0, 1]} is endowed with the ordering 𝑢 ⩽ V if 𝑢(𝑡) ⩽
V(𝑡), for all 𝑡 ∈ [0, 1], and endowed with the norm ‖𝑢‖ =
max{‖𝑢‖0, ‖𝐷𝛽0+𝑢‖0}, where ‖𝑢‖0 = max𝑡∈[0,1]|𝑢(𝑡)|.
Lemma 10. (𝐸, ‖ ⋅ ‖) is a Banach space.
Proof. Let {𝑢𝑛}∞𝑛=1 be a Cauchy sequence in the space (𝐸, ‖ ⋅ ‖).
Then clearly {𝑢𝑛}∞𝑛=1 and {𝐷𝛽0+𝑢𝑛}∞𝑛=1 are Cauchy sequences in
the space𝐶[0, 1].Therefore, {𝑢𝑛}∞𝑛=1 and {𝐷𝛽0+𝑢𝑛}∞𝑛=1 converge
to some V and 𝑤 on [0, 1] uniformly and V, 𝑤 ∈ 𝐶[0, 1]. We
need to proof that 𝑤 = 𝐷𝛽0+V.

Note that𝐼𝛽0+𝐷𝛽0+𝑢𝑛 (𝑡) − 𝐼𝛽0+𝑤 (𝑡)
⩽ 1Γ (𝛽) ∫𝑡

0
(𝑡 − 𝑠)𝛽−1 𝐷𝛽0+𝑢𝑛 (𝑠) − 𝑤 (𝑠) 𝑑𝑠

⩽ 1Γ (𝛽 + 1) max
𝑠∈[0,1]

𝐷𝛽0+𝑢𝑛 (𝑠) − 𝑤 (𝑠) .
(32)

By the convergence of {𝐷𝛽0+𝑢𝑛}∞𝑛=1, we have
lim
𝑛→∞

𝐼𝛽0+𝐷𝛽0+𝑢𝑛 (𝑡) = 𝐼𝛽0+𝑤 (𝑡) (33)

uniformly for 𝑡 ∈ [0, 1]. On the other hand, by Lemma 5 one
has 𝐼𝛽0+𝐷𝛽0+𝑢𝑛(𝑡) = 𝑢𝑛(𝑡) + 𝐶1𝑡𝛽−1, for 𝑡 ∈ [0, 1] and some𝐶1 ∈ R. Further, we can obtain

lim
𝑛→∞

𝐼𝛽0+𝐷𝛽0+𝑢𝑛 (𝑡) = lim
𝑛→∞

𝑢𝑛 (𝑡) + 𝐶1𝑡𝛽−1
= V (𝑡) + 𝐶1𝑡𝛽−1.

(34)

From (33) and (34), we have

𝐼𝛽0+𝑤 (𝑡) = V (𝑡) + 𝐶1𝑡𝛽−1, for 𝑡 ∈ [0, 1] . (35)

Taking the 𝛽-order derivative on both sides of (35) yields

𝐷𝛽0+𝐼𝛽0+𝑤 (𝑡) = 𝐷𝛽0+ [V (𝑡) + 𝐶1𝑡𝛽−1] , for 𝑡 ∈ [0, 1] . (36)

In view of Remark 6 and Lemma 4, we find that

𝑤 (𝑡) = 𝐷𝛽0+V (𝑡) , for 𝑡 ∈ [0, 1] . (37)

This completes the proof.

Define the cone 𝑃 ⊂ 𝐸 by

𝑃 = {𝑢 ∈ 𝐸 | 𝑢 (𝑡) ⩾ 0} . (38)

Let the nonnegative continuous concave functional Ψ on
the cone 𝑃 be defined by

Ψ (𝑢) = min
𝜃⩽𝑡⩽1−𝜃

|𝑢 (𝑡)| . (39)

Lemma 11. Assume conditions (H1)–(H4) hold. For any 𝑢 ∈ 𝐸,
define the operator 𝑇 by

(𝑇𝑢) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐷𝛽0+𝑢 (𝑠)) 𝑑𝑠,

0 ⩽ 𝑡 ⩽ 1,
(40)

and then 𝑇 : 𝑃 → 𝑃 is completely continuous.

Proof. First, we prove that 𝑇 : 𝑃 → 𝑃. In view of the nonneg-
ativeness and continuity of 𝐺(𝑡, 𝑠) and 𝑓(𝑡, 𝑢(𝑡), 𝐷𝛽0+𝑢(𝑡)), 𝑇
is continuous and (𝑇𝑢)(𝑡) ⩾ 0 for 𝑢 ∈ 𝑃. Hence 𝑇𝑃 ⊂ 𝑃.

Next, we show 𝑇 is uniformly bounded. Let Ω ⊂ 𝑃 be
bounded; that is, there exists a positive constant 𝑀 > 0
such that ‖𝑢‖ ⩽ 𝑀, for all 𝑢 ∈ Ω. Let 𝐿 = 1 + max{𝑓(𝑡,𝑢(𝑡), 𝐷𝛽0+𝑢(𝑡)) | 0 ⩽ 𝑡 ⩽ 1, 0 ⩽ 𝑢 ⩽ 𝑀, −𝑀 ⩽ 𝐷𝛽0+𝑢(𝑡) ⩽𝑀}; then for 𝑢 ∈ Ω, from the Lemma 9, we have

|(𝑇𝑢) (𝑡)| = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐷𝛽0+𝑢 (𝑠)) 𝑑𝑠

⩽ 𝐿∫1
0
𝐺 (𝑠) 𝑑𝑠,
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𝐷𝛽0+ (𝑇𝑢) (𝑡)
= ∫
1

0
𝐷𝛽0+𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐷𝛽0+𝑢 (𝑠)) 𝑑𝑠

⩽ 𝐿∫1
0

𝐷𝛽0+𝐺 (𝑡, 𝑠) 𝑑𝑠 ⩽ 𝐿∫1
0
Λ (𝑠) 𝑑𝑠.

(41)

Hence, 𝑇(Ω) is bounded.
Finally, we show 𝑇 is equicontinuous. Indeed, for any 𝑢 ∈Ω, 𝑡1, 𝑡2 ∈ [0, 1], 𝑡1 < 𝑡2, we have
(𝑇𝑢) (𝑡2) − (𝑇𝑢) (𝑡1) ⩽ ∫1

0

𝐺 (𝑡2, 𝑠) − 𝐺 (𝑡1, 𝑠)
⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝐷𝛽0+𝑢 (𝑠)) 𝑑𝑠 ⩽ 𝐿∫1

0

𝐺0 (𝑡2, 𝑠)
− 𝐺0 (𝑡1, 𝑠)
+ (𝑡𝛼−12 − 𝑡𝛼−11 )

1 − 𝛿1
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)
 𝑑𝑠

= 𝐿∫1
0


1Γ (𝛼) (𝑡𝛼−12 − 𝑡𝛼−11 ) (1 − 𝑠)𝛼−1

− 1Γ (𝛼) [(𝑡2 − 𝑠)𝛼−1 − (𝑡1 − 𝑠)𝛼−1]

+ (𝑡𝛼−12 − 𝑡𝛼−11 )
1 − 𝛿1

𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)
 𝑑𝑠

⩽ 𝐿Γ (𝛼) ∫1
0

(𝑡𝛼−12 − 𝑡𝛼−11 ) (1 − 𝑠)𝛼−1 𝑑𝑠 + 𝐿Γ (𝛼)
⋅ ∫1
0

(𝑡2 − 𝑠)𝛼−1 − (𝑡1 − 𝑠)𝛼−1 𝑑𝑠 + 𝐿1 − 𝛿1
⋅ ∫1
0

𝑡𝛼−12 − 𝑡𝛼−11 
𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡) 𝑑𝑠.

(42)

Note that, applying the mean value theorem, we arrive at𝑡𝛼−12 − 𝑡𝛼−11 < (𝛼 − 1)(𝑡2 − 𝑡1) and (𝑡2 − 𝑠)𝛼−1 − (𝑡1 − 𝑠)𝛼−1 <(𝛼 − 1)(𝑡2 − 𝑡1), which implies that

(𝑇𝑢) (𝑡2) − (𝑇𝑢) (𝑡1) < 𝐿 (𝛼 − 1) [ 2Γ (𝛼)
+ 11 − 𝛿1max

0⩽𝑠⩽1
{ 𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)}] (𝑡2 − 𝑡1)
→ 0, as 𝑡2 → 𝑡1.

(43)

Moreover,
𝐷𝛽0+ (𝑇𝑢) (𝑡2) − 𝐷𝛽0+ (𝑇𝑢) (𝑡1) ⩽ ∫1

0

𝐷𝛽0+𝐺 (𝑡2, 𝑠)
− 𝐷𝛽0+𝐺 (𝑡1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐷𝛽0+𝑢 (𝑠)) 𝑑𝑠

⩽ 𝐿∫1
0

𝐷
𝛽
0+𝐺0 (𝑡2, 𝑠) − 𝐷𝛽0+𝐺0 (𝑡1, 𝑠)

+ Γ (𝛼) (𝑡𝛼−𝛽−12 − 𝑡𝛼−𝛽−11 )
Γ (𝛼 − 𝛽) (1 − 𝛿1)

𝑚∑
𝑖=1

𝛼𝑖

⋅ ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)
 𝑑𝑠

= 𝐿∫1
0


1Γ (𝛼 − 𝛽) (𝑡𝛼−𝛽−12 − 𝑡𝛼−𝛽−11 ) (1 − 𝑠)𝛼−1

− 1Γ (𝛼 − 𝛽) [(𝑡2 − 𝑠)𝛼−𝛽−1 − (𝑡1 − 𝑠)𝛼−𝛽−1]

+ Γ (𝛼) (𝑡𝛼−𝛽−12 − 𝑡𝛼−𝛽−11 )
Γ (𝛼 − 𝛽) (1 − 𝛿1)

𝑚∑
𝑖=1

𝛼𝑖

⋅ ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)
 𝑑𝑠 ⩽ 𝐿Γ (𝛼 − 𝛽)

⋅ ∫1
0

(𝑡𝛼−𝛽−12 − 𝑡𝛼−𝛽−11 ) (1 − 𝑠)𝛼−1 𝑑𝑠
+ 𝐿Γ (𝛼 − 𝛽) ∫1

0

(𝑡2 − 𝑠)𝛼−𝛽−1 − (𝑡1 − 𝑠)𝛼−𝛽−1 𝑑𝑠
+ 𝐿Γ (𝛼)Γ (𝛼 − 𝛽) (1 − 𝛿1) ∫1

0

𝑡𝛼−𝛽−12 − 𝑡𝛼−𝛽−11 
𝑚∑
𝑖=1

𝛼𝑖
⋅ ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡) 𝑑𝑠 < 𝐿Γ (𝛼 − 𝛽 − 1) [2

+ Γ (𝛼)1 − 𝛿1max
0⩽𝑠⩽1

{ 𝑚∑
𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝐺0 (𝑡, 𝑠) 𝑑𝐴 (𝑡)}] (𝑡2 − 𝑡1)
→ 0, as 𝑡2 → 𝑡1.

(44)

Therefore, (43) and (44) imply that 𝑇 : 𝑃 → 𝑃 is
equicontinuous for all 𝑢 ∈ Ω. By means of the Arzela-Ascoli
theorem, 𝑇 : 𝑃 → 𝑃 is completely continuous.

For convenience, we denote

𝑀 = 1
max {∫1

0
Λ (𝑠) 𝑑𝑠, ∫1

0
𝐺 (𝑠) 𝑑𝑠} ,

𝑁 = 1
𝜆 ∫1−𝜃
𝜃

𝐺 (𝑠) 𝑑𝑠 .
(45)

Theorem 12. Assume that conditions (H1)–(H4) hold, there
exist nonnegative numbers 0 < 𝑎 < 𝑏 < 𝑐𝜃, and 𝑓(𝑡, 𝑢, V)
satisfies the following conditions:

(𝐻5) 𝑓(𝑡, 𝑢, V) ⩽ 𝑀𝑐, for (𝑡, 𝑢, V) ∈ [0, 1] × [0, 𝑐] × [−𝑐, 𝑐];
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(𝐻6) 𝑓(𝑡, 𝑢, V) < 𝑀𝑎, for (𝑡, 𝑢, V) ∈ [0, 1] × [0, 𝑎] × [−𝑎, 𝑎];
(𝐻7) 𝑓(𝑡, 𝑢, V) ⩾ 𝑁𝑏, for (𝑡, 𝑢, V) ∈ [𝜃, 1−𝜃]×[𝑏, 𝑐]×[−𝑐, 𝑐].

Then BVP (4) and (5) has at least three positive solutions 𝑢1,𝑢2, and 𝑢3 such that𝑢1 < 𝑎,
𝑏 < Ψ (𝑢2) < 𝑢2 ⩽ 𝑐,
𝑎 < 𝑢3 ⩽ 𝑐 with Ψ (𝑢3) < 𝑏.

(46)

Proof. We will verity that the conditions (𝑆1)–(𝑆3) of
Theorem 1 are satisfied.

Let 𝑃𝐶 = {𝑢 ∈ 𝐸 | 𝑢(𝑡) ⩾ 0 and ‖𝑢‖ ⩽ 𝑐}. We first prove
that 𝑇 : 𝑃𝑐 → 𝑃𝑐 is completely continuous. From Lemma 11,
we only need to prove that 𝑇𝑃𝑐 ⊂ 𝑃𝑐. For any 𝑢 ∈ 𝑃𝑐, we have0 ⩽ 𝑢(𝑡) ⩽ 𝑐, −𝑐 ⩽ 𝐷𝛽0+𝑢(𝑡) ⩽ 𝑐, for all 𝑡 ∈ [0, 1].Theassump-
tion (𝐻5) implies 𝑓(𝑡, 𝑢(𝑡), 𝐷𝛽0+𝑢(𝑡)) ⩽ 𝑀𝑐 for 0 ⩽ 𝑡 ⩽ 1.
Consequently, for 𝑡 ∈ [0, 1],

|(𝑇𝑢) (𝑡)| = ∫
1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐷𝛽0+𝑢 (𝑠)) 𝑑𝑠

⩽ 𝑀𝑐∫1
0
𝐺 (𝑠) 𝑑𝑠 ⩽ 𝑐,

𝐷𝛽0+ (𝑇𝑢) (𝑡)
= ∫
1

0
𝐷𝛽0+𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐷𝛽0+𝑢 (𝑠)) 𝑑𝑠

⩽ 𝑀𝑐∫1
0

𝐷𝛽0+𝐺 (𝑡, 𝑠) 𝑑𝑠 ⩽ 𝑀𝑐∫1
0
Λ (𝑠) 𝑑𝑠 ⩽ 𝑐.

(47)

Thus, ‖𝑇𝑢‖ ⩽ 𝑐 and further to get 𝑇𝑃𝑐 ⊂ 𝑃𝑐. Therefore𝑇 : 𝑃𝑐 → 𝑃𝑐 is completely continuous.
Similarly, the conditions (𝑆2) of Theorem 1 can be

obtained by the assumption (𝐻6). Here we do not do more
explanation.

Finally, in order to verity {𝑢 ∈ 𝑃(Ψ, 𝑏, 𝑐) | Ψ(𝑢) > 𝑏} ̸= ⌀,
we make 𝑢(𝑡) = (𝑏/𝜃)𝑡𝛽, 0 ⩽ 𝑡 ⩽ 1. It is easy to find that

Ψ (𝑢) = min
𝜃⩽𝑡⩽1−𝜃


𝑏𝜃 𝑡𝛽 ⩾

𝑏𝜃𝜃𝛽 > 𝑏,
‖𝑢‖ = max{max

𝑡∈[0,1]
|𝑢 (𝑡)| , max

𝑡∈[0,1]

𝐷𝛽0+𝑢 (𝑡)}
= max{𝑏𝜃 , Γ (𝛽 + 1) 𝑏𝜃} = 𝑏𝜃 < 𝑐.

(48)

If 𝑢 ∈ 𝑃(Ψ, 𝑏, 𝑐), we have 𝑏 ⩽ 𝑢(𝑡) ⩽ 𝑐, −𝑐 ⩽ 𝐷𝛽0+𝑢(𝑡) ⩽ 𝑐, for𝜃 ⩽ 𝑡 ⩽ 1 − 𝜃.Then
Ψ (𝑇𝑢) = min

𝜃⩽𝑡⩽1−𝜃
|(𝑇𝑢) (𝑡)|

⩾ ∫1
0
𝜆𝐺 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐷𝛽0+𝑢 (𝑠)) 𝑑𝑠

> 𝑁𝑏∫1−𝜃
𝜃

𝜆𝐺 (𝑠) 𝑑𝑠 = 𝑏;
(49)

that is, Ψ(𝑇𝑢) > 𝑏 for all 𝑢 ∈ 𝑃(Ψ, 𝑏, 𝑐). This shows that
condition (𝑆1) of Theorem 1 is also satisfied.

From the above, BVP (4) and (5) has at least three positive
solutions 𝑢1, 𝑢2, and 𝑢3 such that

𝑢1 < 𝑎,
𝑏 < Ψ (𝑢2) < 𝑢2 ⩽ 𝑐,
𝑎 < 𝑢3 ⩽ 𝑐 with Ψ (𝑢3) < 𝑏.

(50)

The proof is completed.

4. Example

Herewe provide two cases to verify the feasibility and breadth
of the conclusion, where the strip intervals in boundary con-
dition (5) satisfy intersection relation and inclusion relation
in Examples 1 and 2, respectively.

Example 1. Consider the boundary value problem of nonlin-
ear fractional differential equations as follows:

𝐷2.30+𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷0.50+𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝐷0.50+𝑢 (0) = 0,
𝑢 (1) = 2∑

𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡) ,
(51)

where 𝛼1 = 1/2, 𝛼2 = 3/5, 𝐼1 = [1/8, 5/8], and 𝐼2 =[3/8, 7/8] satisfy 𝐼1 ∩ 𝐼2 ̸= ⌀ and 𝐼1, 𝐼2 do not contain each
other. Let 𝐴(𝑡) = 𝑡2 + 𝑡 for 𝑡 ∈ [0, 1] and

𝑓 (𝑡, 𝑢, V) = {{{{{{{

𝑡10 + |V|100 + 5𝑢79 , 𝑢 < 3,
𝑡10 + |V|100 + 1215, 𝑢 ⩾ 3. (52)

It is easy to see that 𝑓(𝑡, 𝑢, V) satisfies condition (𝐻1).
Take 𝜃 = 1/10. By a simple calculation, we obtain 𝛿1 =

0.5202 < 1, 𝛿2 = 1.1125, 𝛿3 = 0.3257, ∫1
0
𝐺(𝑠)𝑑𝑠 =

0.4827, ∫1
0
Λ(𝑠)𝑑𝑠 = 1.3431, 𝜆 = 0.0059, 𝑀 = 0.7445, 𝑁 =366.23.

Set 𝑎 = 1, 𝑏 = 3, 𝑐 = 2000 such that 0 < 𝑎 < 𝑏 < 𝑐𝜃, and,
in addition,

(𝐻5) 𝑓(𝑡, 𝑢, V) ⩽ 1235.1 < 1489 = 𝑀𝑐, for (𝑡, 𝑢, V) ∈ [0, 1]×[0, 2000] × [−2000, 2000];
(𝐻6) 𝑓(𝑡, 𝑢, V) ⩽ 0.6656 < 0.7445 = 𝑀𝑎, for (𝑡, 𝑢, V) ∈[0, 1] × [0, 1] × [−1, 1];
(𝐻7) 𝑓(𝑡, 𝑢, V) ⩾ 1215.01 > 1098.69 = 𝑁𝑏, for (𝑡, 𝑢, V) ∈[0.1, 0.9] × [3, 2000] × [−2000, 2000].
Thus, all the conditions are satisfied. According to

Theorem 12, BVP (51) has at least three positive solutions𝑢1, 𝑢2, and 𝑢3 such that ‖𝑢1‖ < 1, 3 < min𝑡∈[0.1,0.9]𝑢2(𝑡) <‖𝑢2‖ ⩽ 2000, and 1 < ‖𝑢3‖ ⩽ 2000 with min𝑡∈[0.1,0.9]𝑢3(𝑡) < 3.
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Example 2. Consider the boundary value problem of nonlin-
ear fractional differential equations as follows:

𝐷2.30+𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷0.50+𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝐷0.50+𝑢 (0) = 0,
𝑢 (1) = 2∑

𝑖=1

𝛼𝑖 ∫
𝐼𝑖

𝑢 (𝑡) 𝑑𝐴 (𝑡) ,
(53)

where 𝛼1 = 1/2, 𝛼2 = 3/5, 𝐼1 = [1/8, 7/8], 𝐼2 = [3/8, 5/8],
and 𝐼1 ⊃ 𝐼2. Let 𝐴(𝑡) = 𝑡2 + 𝑡 for 𝑡 ∈ [0, 1],

𝑓 (𝑡, 𝑢, V) = {{{{{{{

𝑡20 + |V|50 + 9𝑢616 , 𝑢 < 4,
𝑡20 + |V|50 + 2304, 𝑢 ⩾ 4. (54)

It is easy to see that 𝑓(𝑡, 𝑢, V) satisfies condition (𝐻1).
Take 𝜃 = 1/10. By a simple calculation, we obtain 𝛿1 =

0.4768 < 1, 𝛿2 = 1.05, 𝛿3 = 0.2929, ∫1
0
𝐺(𝑠)𝑑𝑠 = 0.4414,

∫1
0
Λ(𝑠)𝑑𝑠 = 1.5333, 𝜆 = 0.0058, 𝑀 = 0.6522, 𝑁 = 411.18.
Set 𝑎 = 1, 𝑏 = 4, 𝑐 = 4000 such that 0 < 𝑎 < 𝑏 < 𝑐𝜃, and,

in addition,

(𝐻5) 𝑓(𝑡, 𝑢, V) ⩽ 2384.05 < 2608.8 = 𝑀𝑐, for (𝑡, 𝑢, V) ∈[0, 1] × [0, 4000] × [−4000, 4000];
(𝐻6) 𝑓(𝑡, 𝑢, V) ⩽ 0.6325 < 0.6522 = 𝑀𝑎, for (𝑡, 𝑢, V) ∈[0, 1] × [0, 1] × [−1, 1];
(𝐻7) 𝑓(𝑡, 𝑢, V) ⩾ 2304.005 > 1644.72 = 𝑁𝑏, for (𝑡, 𝑢, V) ∈[0.1, 0.9] × [4, 4000] × [−4000, 4000].
Thus, all the conditions are satisfied. According to

Theorem 12, BVP (53) has at least three positive solutions𝑢1, 𝑢2, and 𝑢3 such that ‖𝑢1‖ < 1, 4 < min𝑡∈[0.1,0.9]𝑢2(𝑡) <‖𝑢2‖ ⩽ 4000, and 1 < ‖𝑢3‖ ⩽ 4000 with min𝑡∈[0.1,0.9]𝑢3(𝑡) < 4.
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