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We study an initial-boundary value problem for a nonlinear evolution system with damping and diffusion; our main purpose is to
investigate the boundary layer effects when the vanishing diffusion limit 𝛼 → 0+, especially for the mixed boundary conditions; we
prove that the thickness of layer is of the order 𝑂(𝛼). Furthermore, the corresponding convergence rates are also obtained.

1. Introduction and Main Results

Themain objective of this article is to study the nonlinear evo-
lution equations with damping and diffusion on the domain
[0, 1] × [0, ∞):

𝜓𝛼𝑡 = − (𝑘 − 1) 𝛼𝜓𝛼 − 𝑘𝛼𝜃𝛼𝑥 + 𝛼𝜓𝛼𝑥𝑥,
𝜃𝛼𝑡 = − (1 − 𝛽) 𝜃𝛼 + 𝜇𝛼𝜓𝛼𝑥 + 2𝜓𝛼𝜃𝛼𝑥 + 𝛽𝜃𝛼𝑥𝑥,

0 < 𝑥 < 1, 𝑡 > 0
(1)

with initial data
(𝜓𝛼, 𝜃𝛼) (𝑥, 0) = (𝜓0, 𝜃0) (𝑥) , 0 ≤ 𝑥 ≤ 1, (2)

and the mixed boundary conditions, that is, Neumann-Dir-
ichlet boundary conditions

(𝜓𝛼𝑥 , 𝜃𝛼) (0, 𝑡) = (𝜓𝛼𝑥 , 𝜃𝛼) (1, 𝑡) = (0, 0) , 𝑡 ≥ 0, (3)
which implies that

(𝜓𝛼𝑥𝑡, 𝜃𝛼𝑡 ) (0, 𝑡) = (𝜓𝛼𝑥𝑡, 𝜃𝛼𝑡 ) (1, 𝑡) = (0, 0) , 𝑡 ≥ 0, (4)
where 𝑘, 𝛼, 𝛽, and 𝜇 are positive constants with 𝑘 > 1 and
0 < 𝛽 < 1. The limit problem of the vanishing parameter
𝛼 → 0+; we have

𝜓0𝑡 = 0,
𝜃0𝑡 = − (1 − 𝛽) 𝜃0 + 2𝜓0𝜃0𝑥 + 𝛽𝜃0𝑥𝑥, 0 < 𝑥 < 1, 𝑡 > 0

(5)

with the initial conditions

(𝜓0, 𝜃0) (𝑥, 0) = (𝜙1 (𝑥) , 𝜙2 (𝑥)) , 0 ≤ 𝑥 ≤ 1, (6)

and the Dirichlet boundary conditions

𝜃0 (0, 𝑡) = 𝜃0 (1, 𝑡) = (0, 0) , 𝑡 ≥ 0, (7)

which implies that

𝜃0𝑡 (0, 𝑡) = 𝜃0𝑡 (1, 𝑡) = 0,
(2𝜓0𝜃0𝑥 + 𝛽𝜃0𝑥𝑥) (0, 𝑡) = (2𝜓0𝜃0𝑥 + 𝛽𝜃0𝑥𝑥) (1, 𝑡) = 0,

𝑡 ≥ 0.
(8)

We expect to prove that the solution (𝜓𝛼, 𝜃𝛼) of (1)–(3)
converges to the solution (𝜓0, 𝜃0) of the limit problem (5)–(7),
as the diffusion parameter 𝛼 → 0+, and get the boundary
layer thickness.

The nonlinear interaction between ellipticity and dissipa-
tion is involved quite broadly in physical andmechanical sys-
tems, such as Rayleigh-Benard problem, superposed fluids,
Taylor-Couette instability, dynamic phase transitions, and
fluid flow down an inclined plane. [1–3]. As these systems are
usually quite complicated, they are far from being well under-
stood. System (1) was originally proposed by Hsieh in [2] to
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investigate the nonlinear interaction between ellipticity and
dissipation.We also refer to [1–3] for the physical background
of (1).This study is expected to yield insights into physical sys-
tems with similar mechanism, such as the Ginzburg-Landau
equation and the Kuramoto-Sivashinsky equation [1, 3, 4]; it
may also help us, by comparison, to understand better the
nonlinear interaction between other instabilities and dissipa-
tion.

System (1) has been extensively studied by several authors
in different contexts [2, 3, 5–9], such as the well-posedness
problems, the nonlinear stability problem, and optimal decay
rate of the solutions. However, all the results above need
to assume that all parameters are fixed constants. Another
interesting problem is the zero diffusion limit: that is, con-
sider the limit problem of solution sequences when one or
more of parameters vanishes for the corresponding Cauchy
problem or initial-boundary value problem [5–7, 9]. It should
be emphasized that flows often move in bounded domains
with constraints from boundaries in real world; in the
bounded domains case, the boundary effect requires a careful
mathematical analysis. Ruan and Zhu [5] consider the initial-
boundary value problem (1) with the zeroDirichlet boundary
conditions when diffusion parameter 𝛽 → 0+ and they show
that the boundary layer thickness 𝛿(𝛽) is of the order 𝑂(𝛽𝛾)
with 0 < 𝛾 < 1/2. Subsequently, Peng et al. [6] consider the
initial-boundary value problem (1) with the Dirichlet-Neu-
mann boundary conditions when diffusion parameter 𝛽 →
0+ and they show that the boundary layer thickness 𝛿(𝛽) is of
the order 𝑂(𝛽𝛾) with 0 < 𝛾 < 3/4. For the parameter 𝛼 →
0+, Chen and Zhu in [10] consider the Cauchy problem for
(1); Peng in [7] study the initial-boundary value problem for
(1) with the zero Dirichlet boundary conditions and obtain
the thickness of layer of the order 𝑂(𝛼1/2). However, for the
asymptotic limit 𝛼 → 0+, all these results are restricted to the
boundary conditions to the Dirichlet boundary conditions.
By [6], which motivates our investigation in this paper, we
concentrate our efforts to investigate the boundary layer
effect and the convergence rates on the initial-boundary value
(1)–(3) with the Dirichlet-Neumann boundary conditions
when diffusion parameter 𝛼 → 0+, and the solutions of the
mixed boundary conditions usually exhibit different behav-
iors and much rich phenomena comparing with the general
boundary conditions.

For later presentation, next we state the notation as fol-
lows.

Notations. Throughout this paper, we denote positive con-
stant independent of 𝛼 by 𝐶. And the constant 𝐶 may vary
from line to line. 𝐿2 = 𝐿2([0, 1]) and 𝐿∞ = 𝐿∞([0, 1]) denote
the usual Lebesgue space in [0, 1] with its norms ‖𝑓‖𝐿2([0,1]) =
‖𝑓‖ = (∫1

0
|𝑓(𝑥)|2𝑑𝑥)1/2 and ‖𝑓‖𝐿∞ = sup𝑥∈[0,1]|𝑓(𝑥)|.

𝐻𝑙([0, 1]) denotes the usual 𝑙-th order Sobolev space with its
norm ‖𝑓‖𝐻𝑙([0,1]) = ‖𝑓‖𝑙 = (∑𝑙𝑖=0 ‖𝜕𝑖𝑥𝑓‖2)1/2. For simplicity,
‖𝑓(⋅, 𝑡)‖𝐿2 , ‖𝑓(⋅, 𝑡)‖𝐿∞ and ‖𝑓‖𝑙, respectively.

Before we state themain results, let us recall the definition
of boundary layer thickness (BL-thickness) in [11] as follows.

Definition 1. A positive function 𝛿(𝛼) is called a boundary
layer thickness for problem (1)–(3) with vanishing diffusion
𝛼, if 𝛿(𝛼) → 0 as 𝛼 → 0, and

lim
𝛼→0

󵄩󵄩󵄩󵄩󵄩𝜃𝛼 − 𝜃0󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿∞[0,1]) = 0, (9)

lim
𝛼→0

󵄩󵄩󵄩󵄩󵄩𝜓𝛼 − 𝜓0󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿∞[𝛿,1−𝛿]) = 0, (10)

lim inf
𝛼→0

󵄩󵄩󵄩󵄩󵄩𝜓𝛼 − 𝜓0󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿∞[0,1]) > 0, (11)

where 0 < 𝛿 = 𝛿(𝛽) < 1, (𝜓𝛼, 𝜃𝛼), and (𝜓0, 𝜃0) is the solution
to problem (1)–(3) and the limit problem (5)–(7), respectively.

Our first purpose is to show that the initial-boundary
value problem (1)–(3) admits a unique global smooth solution
(𝜓𝛼, 𝜃𝛼).
Theorem2. Suppose that the initial data satisfy the conditions:
(𝜓0, 𝜃0) ∈ 𝐻2, (𝜓0, 𝜃0)(0) = (𝜓0, 𝜃0)(1) = (0, 0) and
‖𝜓0‖1 + ‖𝜃0‖1 is sufficiently small, then there exists a unique
solution (𝜓𝛼, 𝜃𝛼) to the initial-boundary value problem (1)–(3)
satisfying

𝜃𝛼 ∈ 𝐿∞ (0, 𝑇; 𝐻2) ∩ 𝐿2 (0, 𝑇; 𝐻2) ,
𝜃𝛼𝑡 ∈ 𝐿∞ (0, 𝑇; 𝐻2) ∩ 𝐿2 (0, 𝑇; 𝐻1) ,

(12)

where the norms are all uniform in 𝛼.
Then our second result shows that the initial-boundary

value problem (5)–(7) admits a unique global smooth solu-
tion (𝜓0, 𝜃0).
Theorem3. Suppose that the initial data satisfy the conditions:
(𝜙1, 𝜙2) ∈ 𝐻2, 𝜙2(0) = 𝜙2(1) = 0 ≤ 𝜀, and 𝜀 is sufficiently
small, then there exists a unique solution (𝜓0, 𝜃0) to the initial-
boundary value problem (5)–(7) satisfying

𝜓0 ∈ 𝐿∞ (0, 𝑇; 𝐻2) ,
𝜃0 ∈ 𝐿∞ (0, 𝑇; 𝐻2) ∩ 𝐿2 (0, 𝑇; 𝐻2) ,
𝜃0𝑡 ∈ 𝐿∞ (0, 𝑇; 𝐿2) ∩ 𝐿2 (0, 𝑇; 𝐻1) .

(13)

Furthermore, we give the convergence rates and bound-
ary layer thickness.

Theorem 4. Under the assumptions of Theorems 2 and 3,
suppose that

󵄩󵄩󵄩󵄩𝜓0 (𝑥) − 𝜙1 (𝑥)󵄩󵄩󵄩󵄩21 ≤ 𝐶𝛼,
󵄩󵄩󵄩󵄩𝜃0 (𝑥) − 𝜙2 (𝑥)󵄩󵄩󵄩󵄩21 ≤ 𝐶𝛼;

(14)
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then any function 𝛿(𝛼) satisfying the conditions 𝛿(𝛼) → 0 and
𝛼/𝛿(𝛼) → 0 as 𝛼 → 0+ is a BL-thickness such that

󵄩󵄩󵄩󵄩󵄩𝜃𝛼 − 𝜃0󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿∞[0,1]) ≤ 𝐶𝛼,
󵄩󵄩󵄩󵄩󵄩𝜓𝛼 − 𝜓0󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿∞[𝛿,1−𝛿]) ≤ 𝐶 𝛼

𝛿 (𝛼) ,
lim inf
𝛼→0

󵄩󵄩󵄩󵄩󵄩𝜓𝛼 − 𝜓0󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿∞[0,1]) > 0.
(15)

Consequently,

lim
𝛼→0

󵄩󵄩󵄩󵄩󵄩𝜃𝛼 − 𝜃0󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿∞[0,1]) = 0,
lim
𝛼→0

󵄩󵄩󵄩󵄩󵄩𝜓𝛼 − 𝜓0󵄩󵄩󵄩󵄩󵄩𝐿∞(0,𝑇;𝐿∞[𝛿,1−𝛿]) = 0.
(16)

The plan of this paper is as follows. Section 2 is devoted
to the global existence results on the initial-boundary value
problem (1)–(3) and the local existence for the limit problem
(5)–(7). Section 3 details convergence rates and the BL-
thickness as the diffusion parameter 𝛼 → 0+ for the mixed
boundary conditions.

2. Proof of Theorems 2 and 3

2.1. Proof of Theorem 2. In this subsection, we shall prove
Theorem 2 by adapting the elaborate nonlinear energy
method. In the following, we devote ourselves to the a priori
estimate of solution (𝜓𝛼(𝑥, 𝑡), 𝜃𝛼(𝑥, 𝑡)) of (1)–(3) under the a
priori assumption

𝑁1 (𝑡) = sup
0<𝑡<𝑇

󵄩󵄩󵄩󵄩(𝜓𝛼, 𝜃𝛼) (𝑡)󵄩󵄩󵄩󵄩21 ≤ 𝜀21 , (17)

where 𝜀1 is a positive constant satisfying 0 < 𝜀1 ≤ 1, inde-
pendent of 𝛼.

By Sobolev inequality, we have

󵄩󵄩󵄩󵄩(𝜓𝛼, 𝜃𝛼) (𝑡)󵄩󵄩󵄩󵄩𝐿∞ ≤ 𝜀1. (18)

2.1.1. 𝐿2-Estimates

Lemma5. Assume that the conditions inTheorem2hold.Then
a positive constant 𝐶 exists independent of 𝛼, such that

1
2 ∫1
0

[(𝜓𝛼)2 + (𝜃𝛼)2] 𝑑𝑥 + ∫𝑡
0

∫1
0

[(𝑘 − 1) 𝛼 (𝜓𝛼)2

+ (1 − 𝛽) (𝜃𝛼)2 + (𝜓𝛼𝑥)2 + (𝜃𝛼𝑥)2] 𝑑𝑥 𝑑𝜏
≤ 𝐶.

(19)

Proof. Multiplying the first and the second equations of (1)
by 𝜓𝛼 and 𝜃𝛼, respectively, then integrating the resulting

equations over (0, 1), using integration by parts and the
boundary conditions (3), and then adding them, we have

1
2

𝑑
𝑑𝑡 ∫1
0

[(𝜓𝛼)2 + (𝜃𝛼)2] 𝑑𝑥

+ ∫1
0

[(𝑘 − 1) 𝛼 (𝜓𝛼)2 + (1 − 𝛽) (𝜃𝛼)2] 𝑑𝑥

+ 𝛼 ∫1
0

(𝜓𝛼𝑥)2 𝑑𝑥 + 𝛽 ∫1
0

(𝜃𝛼𝑥)2 𝑑𝑥

= (𝑘 + 𝜇) 𝛼 ∫1
0

𝜓𝛼𝑥𝜃𝛼𝑑𝑥 − ∫1
0

𝜓𝛼𝑥 (𝜃𝛼)2 𝑑𝑥.

(20)

Integrating (20) over (0, 𝑡), using Cauchy-Schwarz inequality
and (18), we obtain for any 𝑝1 > 0

1
2 ∫1
0

[(𝜓𝛼)2 + (𝜃𝛼)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝑘 − 1) 𝛼 (𝜓𝛼)2 + (1 − 𝛽) (𝜃𝛼)2] 𝑑𝑥 𝑑𝜏

+ 𝛼 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥)2 𝑑𝑥 𝑑𝜏 + 𝛽 ∫1
0

(𝜃𝛼𝑥)2 𝑑𝑥

= 1
2 ∫1
0

[(𝜓𝛼)2 + (𝜃𝛼)2]
𝑡=0

𝑑𝑥

+ (𝑘 + 𝜇) 𝛼 ∫𝑡
0

∫1
0

𝜓𝛼𝑥𝜃𝛼𝑑𝑥 𝑑𝜏

− ∫𝑡
0

∫1
0

𝜓𝛼𝑥 (𝜃𝛼)2 𝑑𝑥 𝑑𝜏

= 1
2 ∫1
0

[(𝜓𝛼)2 + (𝜃𝛼)2]
𝑡=0

𝑑𝑥

+ ∫𝑡
0

((𝑘 + 𝜇) 𝛼 + 󵄩󵄩󵄩󵄩𝜃𝛼 (𝑡)󵄩󵄩󵄩󵄩𝐿∞) ∫1
0

󵄨󵄨󵄨󵄨𝜓𝛼𝑥𝜃𝛼󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝜏

≤ 1
2 ∫1
0

[(𝜓0)2 + (𝜃0)2] 𝑑𝑥 + 𝑝1 ∫
𝑡

0
∫1
0

(𝜓𝛼𝑥)2 𝑑𝑥 𝑑𝜏

+ ((𝑘 + 𝜇) 𝛼 + 𝐶𝜀1)2
4𝑝1 ∫𝑡

0
∫1
0

(𝜃𝛼)2 𝑑𝑥 𝑑𝜏.

(21)

If we choose 𝑝1 > 0 such that

1 − 𝛽 − ((𝑘 + 𝜇) 𝛼 + 𝐶𝜀1)2
4𝑝1 > 0, 𝛼 − 𝑝1 > 0, (22)

then we have
1
2 ∫1
0

[(𝜓𝛼)2 + (𝜃𝛼)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝜓𝛼)2 + (𝜃𝛼)2 + (𝜓𝛼𝑥)2 + (𝜃𝛼𝑥)2] 𝑑𝑥 𝑑𝜏
≤ 𝐶 󵄩󵄩󵄩󵄩(𝜓0, 𝜃0)󵄩󵄩󵄩󵄩2 .

(23)
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2.1.2. High-Order Energy Estimates

Lemma 6. Assume that the conditions in Theorem 2 hold.
Then a positive constant 𝐶 exists independent of 𝛼, such that

1
2 ∫1
0

[(𝜓𝛼𝑥)2 + (𝜃𝛼𝑥)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝜓𝛼𝑥)2 + (𝜃𝛼𝑥)2 + (𝜓𝛼𝑥𝑥)2 + 𝛽 (𝜃𝛼𝑥𝑥)2] 𝑑𝑥 𝑑𝜏
≤ 𝐶.

(24)

Proof. Multiplying the first and the second equations of (1)
by −𝜓𝛼𝑥𝑥 and −𝜃𝛼𝑥𝑥, respectively, then integrating the resulting
equations over (0, 1), using integration by parts and the
boundary conditions (3), and then adding them, we have

1
2

𝑑
𝑑𝑡 ∫1
0

[(𝜓𝛼𝑥)2 + (𝜃𝛼𝑥)2] 𝑑𝑥

+ ∫1
0

[(𝑘 − 1) 𝛼 (𝜓𝛼𝑥)2 + (1 − 𝛽) (𝜃𝛼𝑥)2] 𝑑𝑥 𝑑𝜏

+ 𝛼 ∫1
0

(𝜓𝛼𝑥𝑥)2 𝑑𝑥 + 𝛽 ∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥

= (𝑘 + 𝜇) 𝛼 ∫1
0

𝜓𝛼𝑥𝑥𝜃𝛼𝑥𝑑𝑥 + ∫1
0

𝜓𝛼𝑥 (𝜃𝛼𝑥)2 𝑑𝑥.

(25)

Integrating (25) over (0, 𝑡), using Cauchy-Schwarz inequality
and (17)-(18), we obtain for any 𝑝1 > 0

1
2 ∫1
0

[(𝜓𝛼𝑥)2 + (𝜃𝛼𝑥)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝑘 − 1) 𝛼 (𝜓𝛼𝑥)2 + (1 − 𝛽) (𝜃𝛼𝑥)2] 𝑑𝑥

+ 𝛼 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏 + 𝛽 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏

= 1
2 ∫1
0

[(𝜓𝛼𝑥)2 + (𝜃𝛼𝑥)2]𝑡=0 𝑑𝑥

+ (𝑘 + 𝜇) 𝛼 ∫𝑡
0

∫1
0

𝜓𝛼𝑥𝑥𝜃𝛼𝑥𝑑𝑥 𝑑𝜏

+ ∫𝑡
0

∫1
0

𝜓𝛼𝑥 (𝜃𝛼𝑥)2 𝑑𝑥 𝑑𝜏

≤ 1
2 ∫1
0

[(𝜓0𝑥)2 + (𝜃0𝑥)2] 𝑑𝑥

+ 𝑝1 ∫
𝑡

0
∫1
0

(𝜓𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏

+ ((𝑘 + 𝜇)2 𝛼2 + 𝐶𝜀1)2
4𝑝1 ∫𝑡

0
∫1
0

(𝜃𝛽𝑥)2 𝑑𝑥 𝑑𝜏.

(26)

If we choose 𝑝1 > 0 such that

1 − 𝛽 − ((𝑘 + 𝜇)2 𝛼2 + 𝐶𝜀1)2
4𝑝1 > 0, 𝛼 − 𝑝1 > 0, (27)

then we have

1
2 ∫1
0

[(𝜓𝛼𝑥)2 + (𝜃𝛼𝑥)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝜓𝛼𝑥)2 + (𝜃𝛼𝑥)2 + 𝛼 (𝜓𝛼𝑥𝑥)2 + 𝛽 (𝜃𝛼𝑥𝑥)2] 𝑑𝑥 𝑑𝜏
≤ 𝐶 󵄩󵄩󵄩󵄩(𝜓0, 𝜃0)󵄩󵄩󵄩󵄩21 .

(28)

Lemma 7. Let the assumptions of Theorem 2 hold. Then a
positive constant 𝐶 exists independent of 𝛼, such that

∫1
0

[(𝜓𝛼𝑡 )2 + (𝜃𝛼𝑡 )2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝜓𝛼𝑥𝑡)2 𝑑𝑥 𝑑𝜏 + (𝜃𝛼𝑥𝑡)2] 𝑑𝑥 𝑑𝜏 ≤ 𝐶.
(29)

Proof. Differentiating (1) with respect to 𝑡, we get
𝜓𝛼𝑡𝑡 = − (𝑘 − 1) 𝛼𝜓𝛼𝑡 − 𝑘𝛼𝜃𝛼𝑥𝑡 + 𝛼𝜓𝛼𝑥𝑥𝑡,
𝜃𝛼𝑡𝑡 = − (1 − 𝛽) 𝜃𝛼𝑡 + 𝜇𝛼𝜓𝛼𝑥𝑡 + 2 (𝜓𝛼𝜃𝛼𝑥)𝑡 + 𝛽 (𝜃𝛼𝑥𝑥𝑡) . (30)

Multiplying the first and the second equations of (1) by −𝜓𝛼𝑡
and−𝜃𝛼𝑡 , respectively, then integrating the resulting equations
over (0, 1), using integration by parts and the boundary
conditions (3), and then adding them, we have

1
2 ∫1
0

[(𝜓𝛼𝑡 )2 + (𝜃𝛼𝑡 )2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

(𝑘 − 1) 𝛼 (𝜓𝛼𝑡 )2 𝑑𝑥 𝑑𝜏

+ (1 − 𝛽) ∫𝑡
0

∫1
0

(𝜃𝛼𝑡 )2 𝑑𝑥 𝑑𝜏 + 𝛼 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥𝑡)2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫1
0

(𝜃𝛼𝑥𝑡)2 𝑑𝑥 𝑑𝜏 = (𝑘 + 𝜇) 𝛼 ∫𝑡
0

∫1
0

𝜓𝛼𝑥𝑡𝜃𝛼𝑡 𝑑𝑥 𝑑𝜏

+ 2 ∫𝑡
0

∫1
0

𝜓𝛼𝑡 𝜃𝛼𝑥𝜃𝛼𝑡 𝑑𝑥 𝑑𝜏 − ∫𝑡
0

∫1
0

𝜓𝛼𝑥 (𝜃𝛼𝑡 )2 𝑑𝑥 𝑑𝜏

= 1
2 ∫1
0

[(𝜓𝛼𝑡 )2 + (𝜃𝛼𝑡 )2]𝑡=0 𝑑𝑥 +
3

∑
𝑖=1

𝐽𝑖.

(31)

We estimate every term as follows:

𝐽1 ≤ 𝑝1 ∫
𝑡

0
∫1
0

(𝜓2𝑥𝑡) 𝑑𝑥 𝑑𝜏

+ (𝑘 + 𝜇)2 𝛼2
4𝑝1 ∫𝑡

0
∫1
0

(𝜃𝛼𝑡 )2 𝑑𝑥 𝑑𝜏.
(32)
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Here 𝐽2, 𝐽3, and 𝐽4 are estimated as follows:

𝐽2 ≤ 𝐶𝜀1 ∫
𝑡

0
∫1
0

(𝜓𝛼𝑡 )2 + (𝜃𝛼𝑡 )2 𝑑𝑥 𝑑𝜏,

𝐽3 ≤ 𝐶𝜀1 ∫
𝑡

0
∫1
0

(𝜃𝛼𝑡 )2 𝑑𝑥 𝑑𝜏.
(33)

Here we have used Cauchy-Schwarz inequality and Sobolev
inequality.

Substituting (32) and (33) into (34), we have from (18) and
Lemma 6

∫1
0

[(𝜓𝛼𝑡 )2 + (𝜃𝛼𝑡 )2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝜓𝛼𝑡 )2 + (𝜃𝛼𝑡 )2 + (𝜓𝛼𝑥𝑡)2 + 𝛽 (𝜃𝛼𝑥𝑡)2] 𝑑𝑥 𝑑𝜏
≤ 𝐶.

(34)

By the similar method, it is easy to obtain

∫1
0

[(𝜓𝛼𝑥𝑥)2 + 𝛽 (𝜃𝛼𝑥𝑥)2] 𝑑𝑥 𝑑𝜏 ≤ 𝐶. (35)

Lemma 8. Assume that the conditions in Theorem 2 hold.
Then there exists a positive constant 𝐶 independent of 𝛼, such
that

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 + ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥𝑥) 𝑑𝑥 𝑑𝜏 ≤ 𝐶.
(36)

Proof. Differentiating the second equation of (1) with respect
to 𝑥, we get

𝜃𝛼𝑥𝑡 = − (1 − 𝛽) 𝜃𝛼𝑥 + 𝜇𝛼𝜓𝛼𝑥𝑥 + 2 (𝜓𝛼𝜃𝛼𝑥)𝑥 + 𝛽𝜃𝛼𝑥𝑥𝑥. (37)

Multiplying the equation (37) by −𝜃𝛼𝑥𝑥𝑥,
∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 + ∫𝑡
0

∫1
0

(1 − 𝛽) (𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥𝑥) 𝑑𝑥 𝑑𝜏 = ∫1
0

(𝜃0𝑥𝑥)2 𝑑𝑥

− 𝜇 ∫𝑡
0

∫1
0

[𝜓𝛼𝑡 + (𝑘 − 1) 𝛼𝜓𝛼 + 𝑘𝛼𝜃𝛼𝑥] 𝜃𝛼𝑥𝑥𝑥𝑑𝑥 𝑑𝜏

− 2 ∫𝑡
0

∫1
0

𝜓𝛼𝑥𝜃𝛼𝑥𝜃𝛼𝑥𝑥𝑥𝑑𝑥 𝑑𝜏

− 2 ∫𝑡
0

∫1
0

𝜓𝛼𝜃𝛼𝑥𝑥𝜃𝛼𝑥𝑥𝑥𝑑𝑥 𝑑𝜏 = ∫1
0

(𝜃0𝑥𝑥)2 𝑑𝑥

+ 𝜇𝑘𝛼 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏

+ ∫𝑡
0

∫1
0

𝜇 [𝜓𝛼𝑥𝑡 + (𝑘 − 1) 𝛼𝜓𝛼𝑥] 𝜃𝛼𝑥𝑥𝑑𝑥 𝑑𝜏

+ 2 ∫𝑡
0

∫1
0

𝜓𝛼𝑥𝑥𝜃𝛼𝑥𝜃𝛼𝑥𝑥𝑑𝑥 𝑑𝜏

+ 3 ∫𝑡
0

∫1
0

𝜓𝛼 (𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏 = ∫1
0

(𝜃0𝑥𝑥)2 𝑑𝑥

+ 𝜇𝑘𝛼 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏 +
6

∑
𝑖=4

𝐽𝑖.
(38)

We estimate every term as follows:

𝐽4 ≤ 𝐶 ∫𝑡
0

∫1
0

[(𝜓𝛼𝑥𝑡)2 + (𝜓𝛼𝑥)2] 𝑑𝑥 𝑑𝜏

+ 𝑝1 ∫
𝑡

0
∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏,

𝐽5 ≤ 𝐶𝜀1 ∫
𝑡

0
∫1
0

(𝜓𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝐶𝜀1 ∫
𝑡

0
∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏,

𝐽6 ≤ 𝐶𝜀1 ∫
𝑡

0
∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏.

(39)

Substituting (39) into (45), we have

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 + ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥𝑥) 𝑑𝑥 𝑑𝜏 ≤ 𝐶.
(40)

Now we notice that the priori assumption (18) can be
closed. Since, under this priori assumption (18), we deduced
that (19), (24), (29), and (36) hold provided that 𝜀1 is
sufficiently small. Therefore, assumption (18) is always true
provided that ‖𝜓0, 𝜃0‖2𝐿2 is sufficiently small.

Lemma 9. Assume that the conditions in Theorem 2 hold.
Then a positive constant 𝐶 exists independent of 𝛼, such that

1
2 ∫1
0

[(𝜓𝛼𝑥𝑡)2 𝑑𝑥 + (𝜃𝛼𝑥𝑡)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝜓𝛼𝑥𝑡)2 + (𝜃𝛼𝑥𝑡)2] 𝑑𝑥 𝑑𝜏

+ 𝛼 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥𝑥𝑡)2 𝑑𝑥 𝑑𝜏 + 𝛽 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥𝑡)2 𝑑𝑥 𝑑𝜏
≤ 𝐶.

(41)

Proof. Multiplying the first and the second equations of
(30) by −𝜓𝛼𝑥𝑥𝑡 and −𝜃𝛼𝑥𝑥𝑡, respectively, then integrating the
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resulting equations over (0, 1), using integration by parts and
the boundary conditions (3), and then adding them, we have

1
2 ∫1
0

[(𝜓𝛼𝑥𝑡)2 𝑑𝑥 + (𝜃𝛼𝑥𝑡)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝑘 − 1) 𝛼 (𝜓𝛼𝑥𝑡)2 + (1 − 𝛽) (𝜃𝛼𝑥𝑡)2] 𝑑𝑥 𝑑𝜏

+ 𝛼 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥𝑥𝑡) 𝑑𝑥 𝑑𝜏 + 𝛽 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥𝑡) 𝑑𝑥 𝑑𝜏

= 1
2 ∫1
0

[(𝜓𝛼𝑥𝑡)2 𝑑𝑥 + (𝜃𝛼𝑥𝑡)2]𝑡=0 𝑑𝑥

+ 𝑘𝛼 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥𝑥𝑡) 𝜃𝛼𝑥𝑡𝑑𝑥 𝑑𝜏

+ 𝜇𝛼 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥𝑥𝑡) 𝜃𝛼𝑥𝑡𝑑𝑥 𝑑𝜏

+ 2 ∫𝑡
0

∫1
0

(𝜓𝛼𝜃𝛼𝑥)𝑡 (−𝜃𝛼𝑥𝑥𝑡) 𝑑𝑥 𝑑𝜏

= 1
2 ∫1
0

[(𝜓𝛼𝑥𝑡)2 𝑑𝑥 + (𝜃𝛼𝑥𝑡)2]𝑡=0 𝑑𝑥

+ (𝑘 + 𝜇) 𝛼 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥𝑥𝑡) 𝜃𝛼𝑥𝑡𝑑𝑥 𝑑𝜏

− 2 ∫𝑡
0

∫1
0

𝜓𝛼𝑡 𝜃𝛼𝑥𝜃𝛼𝑥𝑥𝑡𝑑𝑥 𝑑𝜏

− 2 ∫𝑡
0

∫1
0

𝜓𝛼𝜃𝛼𝑥𝑡𝜃𝛼𝑥𝑥𝑡𝑑𝑥 𝑑𝜏 = 𝑀

+ 2 ∫𝑡
0

∫1
0

𝜓𝛼𝑥𝑡𝜃𝛼𝑥𝜃𝛼𝑥𝑡𝑑𝑥 𝑑𝜏 + 2 ∫𝑡
0

∫1
0

𝜓𝛼𝑡 𝜃𝛼𝑥𝑥𝜃𝛼𝑥𝑡𝑑𝑥

+ ∫𝑡
0

∫1
0

𝜓𝛼𝑥 (𝜃𝛼𝑥𝑡)2 𝑑𝑥 𝑑𝜏 = 𝑀 +
10

∑
𝑖=7

𝐽𝑖.

(42)

We estimate every term as follows:

𝐽7 ≤ 𝑝1 ∫
𝑡

0
∫1
0

(𝜓𝛼𝑥𝑥𝑡)2 𝑑𝑥 𝑑𝜏

+ [(𝑘 + 𝜇) 𝛼]2
4𝑝1 ∫𝑡

0
∫1
0

(𝜃𝑥𝑡)2 𝑑𝑥 𝑑𝜏,

𝐽8 ≤ 𝐶𝜀1 ∫
𝑡

0
∫1
0

(𝜓𝛼𝑥𝑡)2 𝑑𝑥 𝑑𝜏

+ 𝐶𝜀1 ∫
𝑡

0
∫1
0

(𝜃𝛼𝑥𝑡)2 𝑑𝑥 𝑑𝜏,

𝐽9 ≤ 2 ∫𝑡
0

∫1
0

(𝜓𝛼𝑡 𝜃𝛼𝑥𝑡)2 𝑑𝑥 𝑑𝜏 + 1
2 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏

≤ 𝐶 ∫𝑡
0

∫1
0

[(𝜓𝛼𝑡 )2 + (𝜓𝛼𝑥𝑡)2] 𝑑𝑥 ∫1
0

(𝜃𝛼𝑥𝑡)2 𝑑𝑥 𝑑𝜏

+ 1
2 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏,

𝐽10 ≤ 𝐶𝜀1 ∫
𝑡

0
∫1
0

(𝜃𝛼𝑥𝑡)2 𝑑𝑥 𝑑𝜏.
(43)

Substituting (43) into (45), we obtain

1
2 ∫1
0

[(𝜓𝛼𝑥𝑡)2 𝑑𝑥 + (𝜃𝛼𝑥𝑡)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝜓𝛼𝑥𝑡)2 + (𝜃𝛼𝑥𝑡)2] 𝑑𝑥 𝑑𝜏

+ 𝛼 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥𝑥𝑡)2 𝑑𝑥 𝑑𝜏 + 𝛽 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥𝑡)2 𝑑𝑥 𝑑𝜏
≤ 𝑀.

(44)

By the similar method, we have

∫1
0

[(𝜓𝛼𝑥𝑥𝑥)2 𝑑𝑥 + (𝜃𝛼𝑥𝑥𝑥)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝜓𝛼𝑥𝑥𝑥)2 + 𝛽 (𝜃𝛼𝑥𝑥𝑥)2] 𝑑𝑥 𝑑𝜏 ≤ 𝑀.
(45)

This completes the proof of Lemma 9.

Combination of Lemmas 5–9 and a well-known result
on the local existence of the solutions, we can get the global
existence of the solutions; this proves Theorem 2.

2.2. Proof of Theorem 3. Suppose a priori assumption:

𝐴2 (𝑇) = sup
0<𝑡<𝑇

󵄩󵄩󵄩󵄩(𝜓0, 𝜃0) (𝑡)󵄩󵄩󵄩󵄩23 ≤ 𝜀2, (46)

where 0 < 𝜀2 ≪ 1. We obtain the following energy estimates.

Lemma 10. Suppose that the initial data satisfy the conditions:
𝜙1 ∈ 𝐻2, 𝜙2 ∈ 𝐻2, 𝜙2(0) = 𝜙2(1) = 0, and ‖𝜙1‖𝐿2 +
‖𝜙1‖𝐿2 ≤ 𝜀, and 𝜀 is sufficiently small.Then there exists a unique
solution (𝜓0, 𝜃0) to the initial-boundary value problem (5)–(7)
satisfying

1
2 ∫1
0

(𝜃0)2 𝑑𝑥 + ∫𝑡
0

∫1
0

[(𝜃0)2 + (𝜃0𝑥)2] 𝑑𝑥 𝑑𝜏
≤ 𝐶 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩2 ,

(47)

∫1
0

(𝜃0𝑥)2 𝑑𝑥 + ∫𝑡
0

∫1
0

(𝜃0𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫𝑡
0

∫1
0

(𝜃0𝑥𝑥)2 𝑑𝑥 𝑑𝜏 ≤ 𝐶 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩21 ,
(48)

∫1
0

[(𝜃0𝑡 )2 + (𝜃0𝑥𝑥)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[(𝜃0𝑡 )2 + (𝜃0𝑥𝑡)2] 𝑑𝑥 𝑑𝜏
≤ 𝐶 (󵄩󵄩󵄩󵄩𝜙1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩22) .

(49)
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Proof. Multiplying the second equation of (5) by 𝜃0, integrat-
ing the resulting equation over (0, 𝑡)×(0, 1), using integration
by part and the boundary conditions (7), and then adding
them, we arrive at

1
2 ∫1
0

(𝜃0)2 𝑑𝑥 + (1 − 𝛽) ∫𝑡
0

∫1
0

(𝜃0)2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫𝑡
0

∫1
0

(𝜃0𝑥)2 𝑑𝑥 𝑑𝜏 = 1
2 ∫1
0

𝜙22𝑑𝑥

+ 2 ∫𝑡
0

∫1
0

𝜓0𝜃0𝑥𝜃2𝑑𝑥 𝑑𝜏 = 𝐶 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩2

+ 2 󵄩󵄩󵄩󵄩󵄩𝜓0󵄩󵄩󵄩󵄩󵄩𝐿∞ ∫𝑡
0

∫1
0

󵄨󵄨󵄨󵄨󵄨𝜃0𝜃0𝑥󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝜏 = 𝐶 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩2

+ 2𝜀2 ∫
𝑡

0
∫1
0

(𝜃0)2 𝑑𝑥 𝑑𝜏 + 𝐶𝜀 ∫𝑡
0

∫1
0

(𝜃0𝑥)2 𝑑𝑥 𝑑𝜏.

(50)

Then we have

1
2 ∫1
0

(𝜃0)2 𝑑𝑥 + ∫𝑡
0

∫1
0

[(𝜃0)2 + (𝜃0𝑥)2] 𝑑𝑥 𝑑𝜏
≤ 𝐶 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩2 .

(51)

Differentiating the second equation of (5) with respect to 𝑥,
we get

𝜃0𝑥𝑡 = − (1 − 𝛽) 𝜃0𝑥 + 2 (𝜓0𝜃0𝑥)𝑥 + 𝛽𝜃0𝑥𝑥𝑥. (52)

Multiplying (52) by 𝜃0𝑥, using integration by part and the
boundary conditions, we obtain

1
2 ∫1
0

(𝜃0𝑥)2 𝑑𝑥 + (1 − 𝛽) ∫t

0
∫1
0

(𝜃0𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏 = 1
2 ∫1
0

(𝜃0𝑥)2󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 𝑑𝑥

+ 2 ∫𝑡
0

∫1
0

𝜓0𝑥 (𝜃0𝑥)2 𝑑𝑥 𝑑𝜏

+ 2 ∫𝑡
0

∫1
0

(𝜓0𝜃0𝑥𝑥) 𝜃0𝑥𝑑𝑥 𝑑𝜏 ≤ 1
2 ∫1
0

(𝜙2𝑥 (𝑥)) 𝑑𝑥

+ 2 󵄩󵄩󵄩󵄩󵄩𝜓0𝑥󵄩󵄩󵄩󵄩󵄩𝐿∞ ∫𝑡
0

∫1
0

(𝜃0𝑥)2 𝑑𝑥 𝑑𝜏 + 2 󵄩󵄩󵄩󵄩󵄩𝜓0󵄩󵄩󵄩󵄩󵄩𝐿∞

⋅ (∫𝑡
0

∫1
0

(𝜃0𝑥𝑥)2 𝑑𝑥 𝑑𝜏 + ∫𝑡
0

∫1
0

(𝜃0𝑥)2 𝑑𝑥 𝑑𝜏)
≤ 𝐶 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩21 .

(53)

Therefore, we have

∫1
0

(𝜃0𝑥)2 𝑑𝑥 + ∫𝑡
0

∫1
0

(𝜃0𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫𝑡
0

∫1
0

(𝜃0𝑥𝑥)2 𝑑𝑥 𝑑𝜏 ≤ 𝐶 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩21 .
(54)

Moreover, if we differentiate the second equation of (5) with
respect to 𝑡, we have

𝜃0𝑡𝑡 = − (1 − 𝛽) 𝜃0𝑡 + 2 (𝜓0𝜃0𝑥)𝑡 + 𝛽 (𝜃0𝑥𝑥)𝑡 , (55)

and then multiplying (55) by 𝜃0𝑡 and integrating the resulting
equation over (0, 𝑡) × (0, 1), using integration by part and the
boundary conditions (7), we obtain

1
2 ∫1
0

(𝜃0𝑡 )2 𝑑𝑥 + (1 − 𝛽) ∫𝑡
0

∫1
0

(𝜃0𝑡 )2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫𝑡
0

∫1
0

(𝜃0𝑥𝑡)2 𝑑𝑥 𝑑𝜏 = 1
2 ∫1
0

𝜃0𝑡𝑑𝑥

+ 2 ∫𝑡
0

∫1
0

(𝜓0𝜃0𝑥)𝑡 𝜃0𝑡 ≤ 1
2

󵄩󵄩󵄩󵄩𝜙2𝑡󵄩󵄩󵄩󵄩2

+ 2 ∫𝑡
0

∫1
0

(𝜓0𝑡 𝜃0𝑥 + 𝜓0𝜃0𝑥𝑡) 𝑑𝑥 𝑑𝜏 = 1
2 𝐶

+ 2 󵄩󵄩󵄩󵄩󵄩𝜓0𝑡 󵄩󵄩󵄩󵄩󵄩𝐿∞ ∫𝑡
0

∫1
0

(𝜃0𝑥)2 𝑑𝑥 𝑑𝜏

+ 2 󵄩󵄩󵄩󵄩󵄩𝜓0󵄩󵄩󵄩󵄩󵄩𝐿∞ ∫𝑡
0

∫1
0

(𝜃0𝑥𝑡)2 𝑑𝑥 𝑑𝜏;

(56)

then we have

∫1
0

(𝜃0𝑡 )2 𝑑𝑥 ≤ 𝐶. (57)

Utilizing the above estimates and the similar produces, by the
assumption of 𝜀, we have

1
2 ∫1
0

(𝜃0𝑡 )2 𝑑𝑥 + (1 − 𝛽) ∫𝑡
0

∫1
0

(𝜃0𝑡 )2 𝑑𝑥 𝑑𝜏

+ 𝛽 ∫𝑡
0

∫1
0

(𝜃0𝑥𝑡)2 𝑑𝑥 𝑑𝜏 ≤ 𝐶 (󵄩󵄩󵄩󵄩𝜙1󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩22) .
(58)

Therefore,

∫1
0

(𝜃0𝑥𝑥)2 𝑑𝑥 ≤ 𝐶 ∫1
0

[(𝜃0𝑡 )2 + (𝜃0)2 + (𝜓0𝜃0𝑥)2] 𝑑𝑥

≤ 𝐶 ∫1
0

[(𝜃0𝑡 )2 + (𝜃0)2 + (𝜓0)2 + (𝜃0𝑥)2] 𝑑𝑥
≤ 𝐶 (󵄩󵄩󵄩󵄩𝜙1󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩𝜙2󵄩󵄩󵄩󵄩22) .

(59)

Here we have used (47), (48), (58), and (59). The proof of
Lemma 10 is finished.

Finally, based on Lemma 10, we can proveTheorem 3.

3. Convergence Rates and BL-Thickness

In this section, we turn another interesting problem, which
is concerned with 𝐿2 convergence rates of the vanishing
diffusion viscosity parameter 𝛼 → 0+ and the BL-thickness.
That is, we will give the proof of Theorem 4, and it suffices to
show the following two lemmas.
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Lemma 11. Assume that the conditions in Theorem 4 hold.
Then we have

∫1
0

[(𝜓𝛼 − 𝜓0)2 + (𝜃𝛼 − 𝜃0)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[𝛼 (𝜓𝛼 − 𝜓0)2 + (𝜃𝛼 − 𝜃0)2

+ (𝜃𝛼 − 𝜃0)2
𝑥
] 𝑑𝑥 𝑑𝜏 ≤ 𝐶𝛼,

∫1
0

(𝜃𝛼 − 𝜃0)2
𝑥

𝑑𝑥 + ∫𝑡
0

∫1
0

(𝜃𝛼 − 𝜃0)2
𝑡

𝑑𝑥 𝑑𝜏 ≤ 𝐶𝛼,

(60)

where 𝐶 is a positive constant, independent of 𝛼.
Proof. Set 𝑢𝛼 = 𝜓𝛼 − 𝜓0, V𝛼 = 𝜃𝛼 − 𝜃0; then we have

𝑢𝛼𝑡 = − (𝑘 − 1) 𝛼𝑢𝛼 − (𝑘 − 1) 𝛼𝜓0 − 𝑘𝛼𝜃𝛼𝑥 + 𝛼𝜓𝛼𝑥𝑥,
V𝛼𝑡 = − (1 − 𝛽) V𝛼 + 𝜇𝛼𝜓𝛼𝑥 + 2𝜓𝛼V𝛼𝑥 + 2𝑢𝛼𝜃0𝑥 + 𝛽V𝛼𝑥𝑥

(61)

with initial data
(𝑢𝛼, V𝛼) (𝑥, 0) = (𝜓0 (𝑥) − 𝜙1 (𝑥) , 𝜃0 (𝑥) − 𝜙2 (𝑥)) ,

0 ≤ 𝑥 ≤ 1, (62)

and boundary condition

V𝛼 (0, 𝑡) = V𝛼 (1, 𝑡) = 0, (63)

which implies that

V𝛼𝑡 (0, 𝑡) = V𝛼𝑡 (1, 𝑡) = 0, 𝑡 ≥ 0. (64)

Multiplying the first equation of (61) by 𝑢𝛼 and the second
equation of (61) by V𝛼, respectively, and then adding them,
we have

1
2 ∫1
0

[(𝑢𝛼)2 + (V𝛼)2] 𝑑𝑥 + ∫𝑡
0

∫1
0

[(𝑘 − 1) 𝛼 (𝑢𝛼)2

+ (1 − 𝛽) (V𝛼)2 + 𝛽 (V𝛼𝑥)2] 𝑑𝑥 𝑑𝜏 = 1
2

⋅ ∫1
0

[(𝑢𝛼)2 + (V𝛼)2]
𝑡=0

𝑑𝑥 − (𝑘 − 1)

⋅ 𝛼 ∫𝑡
0

∫1
0

(𝑢𝛼) 𝜓0𝑑𝑥 𝑑𝜏 − 𝑘𝛼 ∫𝑡
0

∫1
0

𝜃𝛼𝑥𝑢𝛼𝑑𝑥 𝑑𝜏

+ 𝜇𝛼 ∫𝑡
0

∫1
0

𝜓𝛼𝑥V𝛼𝑑𝑥 𝑑𝜏 + 2 ∫𝑡
0

∫1
0

𝜓𝛼V𝛼𝑥V𝛼𝑑𝑥 𝑑𝜏

+ 2 ∫𝑡
0

∫1
0

𝑢𝛼𝜃0𝑥V𝛼𝑑𝑥 𝑑𝜏 + 𝛼 ∫𝑡
0

∫1
0

𝜓𝛼𝑥𝑥𝑢𝛼𝑑𝑥 𝑑𝜏 = 1
2

⋅ ∫1
0

[󵄨󵄨󵄨󵄨𝜓0 (𝑥) − 𝜙1 (𝑥)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜃0 (𝑥) − 𝜙2 (𝑥)󵄨󵄨󵄨󵄨2] 𝑑𝑥

− (𝑘 − 1) 𝛼 ∫𝑡
0

∫1
0

𝜓0𝑢𝛼𝑑𝑥 𝑑𝜏

− 𝑘𝛼 ∫𝑡
0

∫1
0

𝜃𝛼𝑥𝑢𝛼𝑑𝑥 𝑑𝜏 + 𝜇𝛼 ∫𝑡
0

∫1
0

𝜓𝛼𝑥V𝛼𝑑𝑥 𝑑𝜏

− ∫𝑡
0

∫1
0

𝜓𝛼𝑥 (V𝛼)2 𝑑𝑥 𝑑𝜏 = 1
2 ∫1
0

[󵄨󵄨󵄨󵄨𝜓0 (𝑥) − 𝜙1 (𝑥)󵄨󵄨󵄨󵄨2

+ 󵄨󵄨󵄨󵄨𝜃0 (𝑥) − 𝜙2 (𝑥)󵄨󵄨󵄨󵄨2] 𝑑𝑥 +
6

∑
𝑖=1

𝑀𝑖.
(65)

Then we estimate every term 𝑀1–𝑀6 as follows:

𝑀1 ≤ (𝑘 − 1) 𝛼
2 ∫𝑡

0
∫1
0

(𝜓0)2 𝑑𝑥 𝑑𝜏

+ (𝑘 − 1) 𝛼
2 ∫𝑡

0
∫1
0

(𝑢𝛼)2 𝑑𝑥 𝑑𝜏,

𝑀2 ≤ 𝑘 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥)2 𝑑𝑥 𝑑𝜏

+ (𝑘 − 1) 𝛼
2𝑘 ∫𝑡

0
∫1
0

(𝑢𝛼)2 𝑑𝑥 𝑑𝜏,

𝑀3 ≤ 𝜇2𝛼2
4𝜆 ∫𝑡
0

∫1
0

(𝜓𝛼𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝐶𝜆 ∫𝑡
0

∫1
0

(V𝛼)2 𝑑𝑥 𝑑𝜏,

𝑀4 + 𝑀5 = 2 ∫𝑡
0

∫1
0

𝜓V𝛼𝑥V𝛼𝑑𝑥 𝑑𝜏

+ 2 ∫𝑡
0

∫1
0

𝑢𝛼𝜃0𝑥V𝛼𝑑𝑥 𝑑𝜏

≤ 𝐶𝜀 ∫𝑡
0

∫1
0

(V𝛼𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝐶𝜀 ∫𝑡
0

∫1
0

(V𝛼)2 𝑑𝑥 𝑑𝜏

+ 𝐶𝛿 ∫𝑡
0

∫1
0

(𝑢𝛼)2 𝑑𝑥 𝑑𝜏

+ 𝐶𝛿 ∫𝑡
0

∫1
0

(V𝛼)2 𝑑𝑥 𝑑𝜏,

𝑀6 ≤ 𝛼2
4𝜆 ∫ (𝜓𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏

+ 𝜆 ∫𝑡
0

∫1
0

(𝑢𝛼)2 𝑑𝑥 𝑑𝜏.

(66)

Putting (66) into (65), we obtain

∫1
0

[(𝑢𝛼)2 + (V𝛼)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[𝛼 (𝑢𝛼)2 + (V𝛼)2 + (V𝛼𝑥)2] 𝑑𝑥 𝑑𝜏

≤ 𝐶𝛼 + (𝜆 + 𝐶𝛿) ∫𝑡
0

∫1
0

(𝑢𝛼)2 𝑑𝑥 𝑑𝜏.

(67)
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By Gronwall’s inequality, we have

∫1
0

[(𝑢𝛼)2 + (𝑢𝛼)2] 𝑑𝑥

+ ∫𝑡
0

∫1
0

[𝛼 (𝑢𝛼)2 + (V𝛼)2 + (V𝛼𝑥)2] 𝑑𝑥 𝑑𝜏 ≤ 𝐶𝛼.
(68)

Multiplying the second equation of (61) by V𝛼𝑡 , we have

1
2 (1 − 𝛽) ∫1

0
(V𝛼)2 𝑑𝑥 + 1

2 𝛽 ∫1
0

(V𝛼𝑥)2 𝑑𝑥

+ ∫𝑡
0

∫1
0

(V𝛼𝑡 )2 𝑑𝑥 𝑑𝜏

= 1
2 ∫1
0

[(1 − 𝛽) (V𝛼)2 + 𝛽 (V𝛼𝑥)2]𝑡=0 𝑑𝑥

+ ∫𝑡
0

∫1
0

𝜇𝛼𝜓𝛼𝑥V𝛼𝑡 𝑑𝑥 𝑑𝜏 + 2 ∫𝑡
0

∫1
0

𝜓𝛼V𝛼𝑥V𝛼𝑡 𝑑𝑥 𝑑𝜏

+ 2 ∫𝑡
0

∫1
0

𝑢𝛼𝜃0𝑥V𝛼𝑡 𝑑𝑥 𝑑𝜏 =
10

∑
𝑖=7

𝑀𝑖.

(69)

We estimate every term 𝑀7–𝑀10 as follows:

𝑀7 = 1
2 ∫1
0

[(1 − 𝛽) (𝜃0 (𝑥) − 𝜙2 (𝑥))2

+ 𝛽 (𝜃0 (𝑥) − 𝜙2 (𝑥))2𝑥] 𝑑𝑥 ≤ 𝐶 󵄩󵄩󵄩󵄩𝜃0
− 𝜙2 (𝑥)󵄩󵄩󵄩󵄩21 ≤ 𝐶𝛼,

(70)

𝑀8 ≤ 𝜇2𝛼2
2 ∫𝑡
0

∫1
0

[(𝜙𝛼𝑥)2 + 1
2 (V𝛼𝑡 )2] 𝑑𝑥 𝑑𝜏 ≤ 𝐶𝛼 + 1

2
⋅ ∫𝑡
0

∫1
0

(V𝛼𝑡 )2 𝑑𝑥 𝑑𝜏,
(71)

𝑀9 ≤ 𝐶𝜀 ∫𝑡
0

∫1
0

(V𝛼𝑥)2 𝑑𝑥 𝑑𝜏 + 𝐶𝜀 ∫𝑡
0

∫1
0

(V𝛼𝑡 )2 𝑑𝑥 𝑑𝜏, (72)

𝑀10 ≤ 𝐶𝛿 ∫𝑡
0

∫1
0

(𝑢𝛼)2 𝑑𝑥 𝑑𝜏 + 𝐶𝛿 (V𝛼𝑡 )2 𝑑𝑥 𝑑𝜏

≤ 𝐶𝛿𝛼 + 𝐶𝛿 ∫𝑡
0

∫1
0

(V𝛼𝑡 )2 𝑑𝑥 𝑑𝜏.
(73)

Collecting (70)–(73) and putting into (69), we have

1
2 ∫1
0

[(V𝛼)2 + (V𝛼𝑥)2] 𝑑𝑥 + ∫𝑡
0

∫1
0

(V𝛼𝑡 )2 𝑑𝑥 𝑑𝜏 ≤ 𝐶𝛼. (74)

Utilizing the similar step, multiplying the second equa-
tion of (61) by V𝛼𝑡 , then integrating the resulting equation over(0, 𝑡)×(0, 1), and then estimating every term, finally we obtain

∫1
0

[(V𝛼)2 + (V𝛼𝑥)2] 𝑑𝑥 + ∫𝑡
0

∫1
0

(V𝛼𝑡 )2 𝑑𝑥 𝑑𝜏 ≤ 𝐶𝛼. (75)

The following lemma will be devoted to the boundary layer
thickness.

Lemma 12. Assume that the conditions in Theorem 2 hold.
Then we have

𝛿 ∫1−𝛿
𝛿

󵄨󵄨󵄨󵄨󵄨𝜓𝛼𝑥 − 𝜓0𝑥󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶𝛼. (76)

Proof. Differentiating (62) with respect to 𝑥, we get
𝑢𝛼𝑥𝑡 = − (𝑘 − 1) 𝛼𝑢𝛼𝑥 − (𝑘 − 1) 𝛼𝜓0𝑥 − 𝑘𝛼𝜃𝛼𝑥𝑥 + 𝛼𝜓𝛼𝑥𝑥𝑥. (77)

Let 𝑢𝛼𝑥 = 𝜔; then we have

𝜔𝑡 = − (𝑘 − 1) 𝛼𝜔 − (𝑘 − 1) 𝛼𝜓0𝑥 − 𝑘𝛼𝜃𝛼𝑥𝑥 + 𝛼𝜓𝛼𝑥𝑥𝑥. (78)

To construct a cut-off function as in [12], we define 𝜑𝜂, for𝜂 ∈ (0, 1), and 𝜉𝛿 for 𝛿 ∈ (0, 1/2), by

𝜑𝜂 (𝑠) = √𝑠2 + 𝜂2,

𝜉𝛿 =
{{{{
{{{{{

𝑥, 0 ≤ 𝑥 ≤ 𝛿,
𝛿, 𝛿 ≤ 𝑥 ≤ 1 − 𝛿,
1 − 𝑥, 1 − 𝛿 ≤ 𝑥 ≤ 1.

(79)

It is easy to check that 𝜑𝜂 satisfies

|𝑠| ≤ 󵄨󵄨󵄨󵄨󵄨𝜑𝜂 (𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ |𝑠| + 1,
󵄨󵄨󵄨󵄨󵄨𝜑󸀠𝜂 (𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ 1,

0 ≤ 𝑠𝜑󸀠𝜂 (𝑠) ≤ 𝜑𝜂 (𝑠) ,
𝜑󸀠󸀠𝜂 (𝑠) ≥ 0,

𝑠2𝜑󸀠󸀠𝜂 (𝑠) ≥ 0.

(80)

𝜉𝛿 satisfies 0 ≤ 𝜉𝛿 ≤ 𝛿, 𝜉𝛿(1) = 𝜉𝛿(0) = 0, multiplying (78) by
𝜑󸀠𝜂(𝜔)𝜉𝛿 and then integrating over

∫𝑡
0

∫1
0

𝜑󸀠𝜂 (𝜔) 𝜉𝛿𝑑𝑥 − 𝜀 ∫1
0

𝜉𝛿𝑑𝑥

= − (𝑘 − 1) 𝛼 ∫𝑡
0

∫1
0

𝜔𝜑󸀠𝜂 (𝜔) 𝜉𝛿𝑑𝑥 𝑑𝜏

− (𝑘 − 1) 𝛼 ∫𝑡
0

∫1
0

𝜓0𝑥𝜑󸀠𝜂 (𝜔) 𝜉𝛿𝑑𝑥 𝑑𝜏

− 𝑘𝛼 ∫𝑡
0

∫1
0

𝜃𝛼𝑥𝑥𝜑󸀠𝜂 (𝜔) 𝜉𝛿𝑑𝑥 𝑑𝜏

+ 𝛼 ∫𝑡
0

∫1
0

𝜓𝛼𝑥𝑥𝑥𝜑󸀠𝜀 (𝜔) 𝜉𝛿𝑑𝑥 𝑑𝜏 =
4

∑
𝑖=1

𝑀𝑖.

(81)



10 Discrete Dynamics in Nature and Society

By the fact that 0 ≤ 𝑠𝜑󸀠𝜂(𝑠) ≤ 𝜑𝜂(𝑠), we have

𝑀1 ≤ ∫𝑡
0

∫1
0

𝜑𝜀 (𝜔) 𝜉𝛿𝑑𝑥 𝑑𝜏. (82)

By 𝜑󸀠𝜂(𝜔) ≤ 1, 0 ≤ 𝜉𝛿 ≤ 𝛿, we obtain

𝑀2 ≤ 𝐶𝛿 [∫𝑡
0

∫1
0

(𝜑0𝑥)2 𝑑𝑥 𝑑𝜏]
1/2

≤ 𝐶𝛿𝛼,

𝑀3 ≤ 𝐶𝛼𝛿 [∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥)2 𝑑𝑥 𝑑𝜏]
1/2

≤ 𝐶𝛿𝛼,

𝑀4 ≤ 𝐶𝛼𝛿 ∫𝑡
0

∫1
0

(𝜃𝛼𝑥𝑥𝑥)2 𝑑𝑥 𝑑𝜏 ≤ 𝐶𝛼.

(83)

Combining (82) and (83), we notice that

𝜀 ∫1
0

𝜉𝛿𝑑𝑥 ≤ 𝜀𝛿,

∫𝑡
0

∫1
0

𝜑󸀠𝜂 (𝜔) 𝜉𝛿𝑑𝑥 𝑑𝜏 ≤ 𝐶 ∫𝑡
0

∫1
0

𝜑𝜂 (𝜔) 𝜉𝛿𝑑𝑥 𝑑𝜏

+ 𝐶𝛼𝛿 + 𝜖𝛿.

(84)

By Gronwall’s inequality, we have

∫1
0

𝜑𝜂 (𝜔) 𝜉𝛿𝑑𝑥 ≤ 𝐶 (𝜀𝛿 + 𝛼𝛿) . (85)

By the definition of 𝜉𝛿, |𝑧| ≤ 𝜑𝜂(𝜔), we have

∫1−𝛿
𝛿

|𝜔| 𝑑𝑥 ≤ 𝐶 (𝜀𝛿 + 𝛼𝛿) < 𝐶 (𝜀 + 𝛼) . (86)

Letting 𝜀 → 0,

∫1−𝛿
𝛿

|𝜔| 𝑑𝑥 ≤ 𝐶𝛼. (87)

Because 𝑊1,1([𝛿, 1 − 𝛿]) 󳨅→ 𝐿∞([𝛿, 1 − 𝛿]), it follows that
󵄩󵄩󵄩󵄩󵄩𝜓𝛼 − 𝜓0󵄩󵄩󵄩󵄩󵄩𝐿∞([𝛿,1−𝛿]) ≤ ∫1

0

󵄨󵄨󵄨󵄨󵄨𝜓𝛼 − 𝜓0󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

+ ∫1−𝛿
𝛿

󵄨󵄨󵄨󵄨󵄨𝜓𝛼𝑥 − 𝜓0𝑥󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶𝛼.
(88)

As in [5, 6, 13], we observe that inequality (11) holds. This
completes the proof of Theorem 4.
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