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To reduce the inventory cost and ensure product quality while meeting the diverse demands of customers, manufacturers yield
products in batches.However, the rawmaterials required for manufacturing need to be obtained from suppliers in advance, making
it necessary to understand beforehand how to best structure the pickup routes so as to reduce the cost of picking up and stocking
while also ensuring the supply of raw materials required for each batch of production. To reduce the transportation and inventory
costs, therefore, this paper establishes a mixed integer programming model for the joint optimization of multibatch production
and vehicle routing problems involving a pickup. Following this, a two-stage hybrid heuristic algorithm is proposed to solve this
model. In the first stage, an integrated algorithm, combining the Clarke-Wright (CW) algorithm and the Record to Record (RTR)
travel algorithm, was used to solve vehicle routing problem. In the second stage, the Particle Swarm Optimization (PSO) algorithm
was used to allocate vehicles to each production batch.Multiple sets of numerical experiments were then performed to validate the
effectiveness of the proposed model and the performance efficiency of the two-stage hybrid heuristic algorithm.

1. Introduction

The “truck dispatching problem” was first introduced by
Dantzig and Ramser [1]. Then Clarke and Wright [2] gen-
eralized the “vehicle routing problem” (VRP) to the domain
of logistics and transport; that is, to how to serve a set
of customers who are geographically dispersed around the
central depot, using a fleet of trucks with varying capacities.
Taking into account real-life complexities, this paper expands
the traditional VRP by combining VRP with production,
in order to consider the vehicle routing problem with raw
material pickup under multibatch production (VRPPMP).
The problem at hand is defined as follows. The manufacturer
divides the production in each cycle intomultiple batches and
uses vehicles to undertake the pickup from their suppliers,
in order to ensure sufficient raw materials prior to the pro-
duction of each batch. Since the inseparable pickup demands
of dispersed suppliers must be met, the manufacturer thus
needs to design both the vehicle pickup routes and the batch
allocation of the routes in such a way that they satisfy the
demand for the raw materials needed for production, while
also minimizing the total inventory and transportation costs.

By designing the vehicle pickup routes in the context of
multibatch production, the manufacturer can reduce trans-
portation and inventory costs in the production process and
ensure product quality. In the automobile assembly industry,
for example, automobile producers need to retrieve the parts
needed from the auto parts manufacturer, separately. If the
producers retrieve all the parts needed for production during
each period, this not only will greatly increase the inventory
cost, but also cannot guarantee the quality of the parts.
Therefore, multibatch production is needed for automobile
assembly production, with the VRPPMP of automobile
assembly production being investigated in order to plan the
vehicle pickup path for each batch, so as to ensure the quality
of the raw material and the products and reduce the costs of
inventory and transportation.

Prior to initiating periodic production, the manufacturer
must pick up raw materials from geographically dispersed
locations (suppliers), with the raw materials being picked up
periodically at production batches. In single-cycle produc-
tion planning, there are often multiple batches of production
operations. Before each batch of production and processing
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begins, the manufacturer needs sufficient raw materials in
order to complete the set production volume. If the purchase
quantity of raw materials is too large, it will lead to a certain
degree of inventory accumulation. This will, in turn, generate
the problems of a high inventory management cost and
the low quality of raw materials. Thus, according to the
production demands of each batch, the problem lies in there
being a reasonable arrangement of vehicle pickup routes,
and also in matching these routes with production batches
in order to minimize the total costs of transportation and
inventory.

In line with the above description, this paper proposes
an optimization of vehicle routing involving pickup based on
multibatch production.The contributions of this paper are as
follows:(1) Combining production with the vehicle pickup rout-
ing problem, this paper studies the optimization of vehi-
cle routing involving pickup in the context of multibatch
production. We design vehicle pickup routes based on the
raw material demands of each batch in such a way as to
minimize transportation costs and inventory costs while
meeting production demands.(2)Weput forward a two-stage hybrid heuristic algorithm
to solve the proposed model. In the first stage of the
algorithm, the Clarke-Wright (CW) algorithm is proposed to
generate the initial vehicle routes, followingwhich the Record
to Record (RTR) travel algorithm is used to further optimize
the generated routes. In the second stage, a Particle Swarm
Optimization (PSO) algorithm is developed to allocate the
vehicles to each production batch.

The remainder of this paper is organized as follows.
Section 2 reviews the related literature. Section 3 details the
vehicle routing involving pickup based on multibatch pro-
duction and develops themixed integer programmingmodel.
Section 4 introduces a two-stage hybrid heuristic algorithm
to solve this model. In Section 5, multiple sets of numerical
experiments are performed to validate the effectiveness of
the proposed model and the performance efficiency of the
two-stage hybrid, heuristic algorithm. Section 6 presents the
conclusions of this study and recommendations for future
work.

2. Literature Review

The vehicle path problem (VRP) is a key aspect of logistics
and transportation research. Selecting the appropriate vehicle
pathmethod can speed up the response to customer demands
and reduce operation costs. Since first being proposed by
Dantzig and Ramser [1], research on VRP has extended into
numerous avenues after decades of exploration and research,
such as the capacitated vehicle routing problem (CVRP) [3],
the vehicle routing problem with time windows (VRPTW)
[4], and vehicle routing problems with pickup and delivery
(VRPPD) [5, 6], among others. This paper focuses on the
angle of VRP with pickup and vehicle capacity limitation.

Many scholars have conducted in-depth research on the
issues of VRPPD. Savelsbergh and Sol [7] discussed several
characteristics distinguishing the latter from standard VRP
and presented a survey of the problem types and solution

methods. A VRPPDwith multiple time windows and vehicle
types was considered by Xu et al. [8], where computational
results showed that the computational times required by the
proposed column-generation-based solution were accept-
able. Gábor Nagya [9] proposed a heuristic algorithm that
takes the pickup and delivery stages as awhole, andwhichwas
used to solve the VRPPD in the context of single andmultiple
car parks. Kalina andVokrinek [10] presented a parallel solver
for VRPTW and the pickup and delivery problem with time
windows, which was based on the parallel competition of
particular solvers solving the given problem.

The problem of combining VRPPD with production,
which is a type of VRPPD, has been studied extensively. Such
problems involve coordinating production, inventory, and
delivery operations to meet customer needs and minimize
costs. Zheng et al. [11] investigated the vendor-managed,
cyclic inventory routing problem under constant customer
demand rates. To minimize inventory costs without causing
any lack of stock at the customers, a heuristic solution
approach was proposed. The latter proved well capable of
finding the appropriate cost trade-off under varying circum-
stances. Shiguemoto andArmentano [12] addressed the prob-
lem of optimally coordinating a production-distribution sys-
tem with a fleet of homogeneous vehicles over a multiperiod
finite horizon, proposing a Tabu search procedure for solving
the problem. Adulyasak et al. [13] introduced multivehicle
production routing problem and inventory routing problem
formulations, with and without a vehicle index, to solve these
problems under both the maximum level and the order-up-
to level inventory replenishment policies. To minimize the
total distribution cost, Sainathuni et al. [14] introduced the
warehouse inventory transportation problem of determining
an optimal distribution plan from vendors to customers via
one or more warehouses.

Although the research on combining VRPPD with pro-
duction has made some progress, there is still some room for
development. To date, existing studies that have considered
combining multibatch production with vehicle pickup rout-
ing issues have been rather limited. To enrich the research in
this area, based on this combination, the current paper con-
siders two aspects from the perspective of the manufacturer:
(i) VRP – the vehicle routing problem from an upstream
supplier to the manufacturer's procurement link and (ii)
production and processing problems, considering the single-
cycle and multibatch production and processing problems of
a single manufacturer, how the allocation of vehicles can best
be undertaken so as to correspond to the production batches.
Under the premise of completing each batch of production
and processing operations, the inventory cost should be as
low as possible.

3. Problem Description and Modeling

3.1. Problem Description. The VRPPMP can be defined as
follows. Let𝐺 = (𝑆, 𝐸) be a complete oriented graphwith a set
of vertices 𝑆󸀠 = {0, 1, . . . , |𝑆󸀠|}, where the vertex 0 represents
the manufacturer and the remaining ones represent the
suppliers. Each edge {𝑖, 𝑗} ∈ 𝐸 for 𝑖, 𝑗 ∈ 𝑆󸀠, has a nonnegative
cost, 𝐶𝑖𝑗, and each supplier 𝑖 ∈ 𝑆 = 𝑆󸀠 − {0} has known
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Figure 1: A schematic diagram of the VRPPMP.

nonnegative demands, 𝑝𝑖, with regard to the pickup. Let 𝑇 =(1, . . . , 𝑡, . . . |𝑇|) be a set of production batches. 𝐷 represents
the manufacturer’s fixed output for each production batch.
Let 𝑉 = {1, . . . , 𝑚, . . . , |𝑉|} be a set of homogeneous vehicles
with capacity 𝑄. The VRPPMP is depicted in Figure 1. The
vehicles visit the corresponding suppliers for each production
batch and then return to the manufacturer. The retrieved raw
material is put into production. If there is any unfinished raw
material, this will be used as raw material inventory for the
next batch of production. For each batch of access routes, the
VRPPMP consists of constructing a structure for the routes
in such a way that (i) every route starts and ends at the
manufacturer; (ii) all pickup demands are met; (iii) a supplier
is visited only by a single vehicle; and (iv) the sumof inventory
costs and vehicle transportation costs is minimized.

In addition, this paper makes the following assumptions
underlying the VRPPMP:(1) The manufacturer conducts multiple batches of pro-
duction and processing operations, with the total amount of
materials supplied by the suppliers equaling the total amount
acquired for production.(2) The remaining raw material inventory of each batch
can be used for the next batch of production tasks; the
inventory capacity of the manufacturer is not considered.(3) The raw materials for each batch can be delivered to
the manufacturer in time for the batch to be produced.(4)The problem considers vehicle capacity limitations.

In the model, we also assumed that each vehicle can only
perform one trip for each production batch. It should be

noted that a vehicle’s multiple trips for a production batch
(the multitrip vehicle routing problem, VRPMT), and the
consistency of a vehicle in terms of pickup from material
suppliers for different batches (the consistent vehicle routing
problem, CVRP), are not considered. In real production
activities, the production plan is often based on a day, a week,
or a longer time interval, while the vehicles can complete
a trip within a relatively shorter time span. Therefore, if a
vehicle performs more than one trip for different batches, it
can be considered several dummy vehicles.

3.2. Mathematical Model

Parameters
S: Set of suppliers, 𝑆 = {1, 2, . . . , 𝑖, . . . , |𝑆|}𝑆+: 0 represents trucks departing from the manufac-
turer, 𝑆+ = 𝑆 ∪ {0}𝑆−: |𝑆|+1 represents vehicles arriving to the manufac-
turer, 𝑆− = 𝑆 ∪ {|𝑆| + 1}
T: Set of production batches, 𝑇 = {1, 2, . . . , 𝑡, . . . , |𝑇|}
V: Set of vehicles, 𝑉 = {1, 2, . . . , 𝑚, . . . , |𝑉|}𝑝𝑖: The amount of raw material for pickup from
supplier i𝑐𝑖𝑗: The cost of transportation from supplier i to
supplier j𝑐𝑢𝑛𝑝𝑟𝑜:The inventory cost for each unit of unprocessed
raw material during unit production batch
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Q: The capacity of homogeneous vehicles
D:The amount of planned product in each production
batch
M: A sufficient large positive number.

Decision Variables

𝑥𝑖𝑚: 1 if vehicle m provides supplier i with pickup
service; 0 otherwise
𝑧𝑚𝑡: 1 if vehicle m is assigned to the production batch
t; 0 otherwise
𝑦𝑖𝑗𝑚: 1 if suppliers i and j are successively serviced by
vehicle m; 0 otherwise
𝑔𝑚𝑡: The amount of raw material transported by
vehicle m for production batch t
𝑞𝑖𝑚: The total amount of raw material transported by
vehicle m after servicing supplier i
𝜑𝑡:The remaining inventory of the rawmaterials after
the tth production batch

Based on the above definition, the VRPPMP is established as
follows:

min (∑
𝑖∈𝑆+

∑
𝑗∈𝑆−

∑
𝑚∈𝑉

𝑐𝑖𝑗 ⋅ 𝑦𝑖𝑗𝑚 + 𝑐𝑢𝑛𝑝𝑟𝑜 ⋅ ∑
𝑡∈𝑇

𝜑𝑡) (1)

𝑠.𝑡. 𝑥0𝑚 = 1 ∀𝑚 ∈ 𝑉 (2)

∑
𝑚∈𝑉

𝑥𝑖𝑚 = 1 ∀𝑖 ∈ 𝑆 (3)

∑
𝑖∈𝑆+,𝑖 ̸=ℎ

𝑦𝑖ℎ𝑚 = ∑
𝑗∈𝑆−,𝑗 ̸=ℎ

𝑦ℎ𝑗𝑚 = 𝑥ℎ𝑚
∀ℎ ∈ 𝑆, ∀𝑚 ∈ 𝑉

(4)

∑
𝑗∈𝑆

𝑦0𝑗𝑚 − ∑
𝑡∈𝑇

𝑧𝑚𝑡 = 0 ∀𝑚 ∈ 𝑉 (5)

∑
𝑡∈𝑇

𝑧𝑚𝑡 ≤ 1 ∀𝑚 ∈ 𝑉 (6)

𝑔𝑚𝑡 ≤ 𝑄 ⋅ 𝑧𝑚𝑡 ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑉 (7)

𝑔𝑚𝑡 ≤ ∑
𝑗∈𝑆

𝑝𝑗 ⋅ 𝑥𝑗𝑚 + 𝑄 ⋅ (1 − 𝑧𝑚𝑡)
∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑉

(8)

𝑔𝑚𝑡 ≥ ∑
𝑗∈𝑆

𝑝𝑗 ⋅ 𝑥𝑗𝑚 − 𝑄 ⋅ (1 − 𝑧𝑚𝑡)
∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑉

(9)

∑
𝑚∈𝑉

𝑔𝑚𝑡 ≥ 𝐷 𝑡 = 1 (10)

∑
𝑚∈𝑉

𝑔𝑚𝑡 + 𝜑𝑡−1 ≥ 𝐷 ∀𝑡 ∈ 𝑇/ {1} (11)

𝑞𝑗𝑚 ≥ 𝑝𝑗 − 𝑄 ⋅ (1 − 𝑦0𝑗𝑚) ∀𝑗 ∈ 𝑆, ∀𝑚 ∈ 𝑉 (12)

𝑞𝑗𝑚 ≤ 𝑝𝑗 + 𝑄 ⋅ (1 − 𝑦0𝑗𝑚) ∀𝑗 ∈ 𝑆, ∀𝑚 ∈ 𝑉 (13)

𝑞𝑗𝑚 ≥ 𝑞𝑖𝑚 + 𝑝𝑗 − 𝑄 ⋅ (1 − 𝑦𝑖𝑗𝑚)
∀𝑖 ∈ 𝑆, ∀𝑗 ∈ 𝑆−, 𝑖 ̸= 𝑗, ∀𝑚 ∈ 𝑉 (14)

𝑞𝑗𝑚 ≤ 𝑞𝑖𝑚 + 𝑝𝑗 + 𝑄 ⋅ (1 − 𝑦𝑖𝑗𝑚)
∀𝑖 ∈ 𝑆, ∀𝑗 ∈ 𝑆−, 𝑖 ̸= 𝑗, ∀𝑚 ∈ 𝑉 (15)

𝜑𝑡 = ∑
𝑚∈𝑉

𝑔𝑚𝑡 − 𝐷 𝑡 = 1 (16)

𝜑𝑡 = 𝜑𝑡−1 + ∑
𝑚∈𝑉

𝑔𝑚𝑡 − 𝐷 ∀𝑡 ∈ 𝑇/ {1} (17)

Objective function (1) maximizes the total costs of the
manufacturer, which are equal to the sum of the inventory
costs and shipping costs incurred. Constraints (2) state that
each vehicle starts at the manufacturer and ends at the man-
ufacturer. Constraints (3) ensure that each supplier will be
accessed once. Flow conservation is ensured by Constraints
(4). Constraints (5) indicate that each vehicle that provides
suppliers with a pickup service must serve in exactly one
production batch. Constraints (6) state that each vehicle can,
at most, serve at most one production batch. Constraints
(7) ensure that the raw material transported by each vehicle
does not exceed the capacity of vehicle. Constraints (8) and
(9) represent the total amount of raw material delivery by
each vehicle in each production batch. Constraints (10) and
(11) indicate the constraint of amount of raw materials that
can be put into production in each batch. Constraints (12)
to (15) state the relationship between the vehicle load and
the quantity supplied. Constraints (16) and (17) represent the
raw material inventory after each batch of production and
processing.

4. Solution Algorithm

The above model can be directly solved by using commercial
optimization packages, such as CPLEX, when the scale is
small. However, when the scale increases by a certain extent,
using CPLEX is time consuming or unable to complete the
solution. Therefore, the algorithm needs to be added to solve
large-scale problems.

Taking the two aspects into account when making a
decision, that is, vehicle routing as well as the matching
between the vehicle and the production batch, the VRPMP
mentioned above cannot be solved directly. In light of this,
the VRPPMP was divided into two stages. In the first stage,
the problem of vehicle routing in the process of picking
up cargoes was solved using the Clarke-Wright and the
Record-to-Record travel algorithms. In the second stage, we
used the PSO algorithm to allocate each vehicle that needs
to be picking up to a certain production batch so as to
satisfy the demands of the manufacturer in each production
batch.
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4.1. Routes Initialization (CW). For the purposes of this
paper, the CW algorithm was used to generate the initial
vehicle path for the first stage problem. The algorithm was
first proposed by Clarke and Wright [2] and is applicable to
CVRP. It forms a route in the following ways. First, it yields
the shortest route between every two suppliers in the system.
The desired aim here is to allocate loads to vehicles in such a
manner that all the raw materials are assigned and the total
mileage covered is at a minimum.

Consider a general savings value, S, given by linking two
suppliers i and j as shown in Figure 2:

𝑠𝑖𝑗 = 𝑑0𝑖 + 𝑑0𝑗 − 𝜆𝑑𝑖𝑗 (18)

Where𝑠= savings value;𝑑0𝑖= distance from supplier i to the manufacturer;𝑑𝑖𝑗= distance between points i and j;𝜆= route shape parameter. Special cases: 𝜆 = 1, the
savings approach, and 𝜆 = 2, Gaskell’s𝜋 method [15]. With
an increase in 𝜆, greater emphasis is placed on the distance
between the suppliers, rather than on the position relative to
the manufacturer in selecting an addition to a route.

In line with the savings value S between every two
suppliers, the algorithm yields the CW table. In the case of
satisfying the on-vehicle capacity, the manufacturer prefer-
entially links a pair of suppliers with a larger S-value and uses
one vehicle to provide pickup services for these suppliers.
Following the linking method until all the suppliers are
serviced, the manufacturer then obtains the initial solution
for the pickup vehicle routes. The procedure given is simple
but effective in producing a near-optimal solution and has
been programmed for several digital computers.

4.2. Routes Improvement (RTR). After the initial vehicle
route was generated, we further optimized it using the RTR
travel method, which was first proposed by Dueck [16]. We
improved the solutions using the operations specified by Li
et al. ([17], namely, a one-point move and two-point move. In
the one-point move, we attempted to move each supplier in
the existing solution to a newposition on the same route or on
a different route. In the two-point move, we tried to exchange
the positions of two suppliers. These improvement moves are
shown in Figure 3.

The routes were improved by repeatedly applying these
two local search operators in two phases: diversification and
improvement. In the diversification phase, we attempted to
explore new areas in the solution space by accepting both
improving and deteriorating moves. In the improvement

phase, we attempted to improve the current solution as much
as possible by accepting only improving moves until we
reached a local minimum.

By combining the CW algorithm and RTR travel method,
we were able to obtain a better pickup vehicle routing
solution. Based on the routes, we then solved the decision
making problems pertaining to vehicle allocation in each
production batch by using the PSO algorithm, in order to
satisfy the manufacturer’s demands in each production batch
and lower the inventory cost as far as possible.

4.3. Batch Allocation (PSO). The first stage enabled us to
obtain all the routes that the vehicles needed to cover, then
making it necessary to assign the routes to each production
batch in the second stage. Consequently, the PSO algorithm
developed by Eberhart and Kennedy [18] was employed to
solve the route allocation problem and can be seen as an
efficient stochastic global optimization technique.

In the PSO algorithm, the position of each particle
represents a feasible solution in the search domain, and each
particle changes its position and velocity depending on its
flying experience. The decision variables 𝑥𝑖𝑚, 𝑦𝑖𝑗𝑚, and 𝑞𝑖𝑚,
which are related to the pickup service were determined in
the first stage. 𝑔𝑚𝑡 and 𝜑𝑡 could be calculated according to
constraints (16) and (17) as long as 𝑧𝑚𝑡 was determined in
the second stage. The core variable 𝑧𝑚𝑡, which determines
whether the raw material transported by vehicle m was
assigned to production batch t, 𝑚 ∈ 𝑉, 𝑡 ∈ 𝑇, was coded as
follows. All the utilized vehicles were grouped in set 𝑉󸀠, 𝑉󸀠 ∈𝑉. Each particle with |𝑉󸀠| dimensions was represented by𝐹 ={𝑓1, 𝑓2, . . . , 𝑓𝑚, . . . , 𝑓|𝑉󸀠|}. Each dimension 𝑓𝑚 was coded as a
positive number. After the vehicle sequence was reordered
according to the nondescending order of the 𝑓𝑚, vehicles
were assigned to the production batches. The main idea
behind the distribution rule is as follows: vehicles at the front
of the sorted sequence have priority in terms of assignation
to the previous production batch.

For instance, if the amount of materials acquired by a
production batch is {10, 10, 10}, the utilized vehicles would
be {1, 2, 3, 4, 5}, and the quantity of materials corresponding
to the vehicles would be {4, 6, 8, 7, 5}. If the sorted vehicle
sequence is {2, 3, 1, 5, 4}, the amount of materials would be{6, 8, 5, 4, 7}, accordingly. Vehicle {2} was first assigned to
production batch {1}, given that the amount of material
acquired in this batch was 10, which is greater than the
amount that vehicle {2} carried.The next vehicle in the sorted
sequence, that is, vehicle {3},was assigned to batch {1}, thus
giving the storage material of production batch {1} a value of
4. Accordingly, vehicles {4 and 5} were assigned to batch {2}
with the storage value of 3, and vehicle {7} was assigned to
batch {3} with no storage material in the last.

In applying the PSO algorithm, we assumed that a swarm
has k particles. 𝑉𝑛𝑘 = {V𝑛𝑘𝑚𝑡} was the velocity of particle k at
iteration n, and𝑃𝑛𝑘 = {𝑝𝑛𝑘𝑚𝑡} the position of particle k at itera-
tion n. Each particle had its personal best position,𝑃𝐿𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡 ,
at iteration n on dimensions m and t. 𝑃𝐺𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡 is the global
best positon of the entire swarm on dimensions m and t,
up until iteration n. The swarm flies through hyperspace
according to the experience of its neighbors. The ordinary
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(a) One-point move (b) Two-point move

Figure 3: Improvement operators used in VRPPMP.

updating formulates used to calculate speed and position
were as follows:

V𝑛+1𝑘𝑚𝑡 = 𝑤 ⋅ V𝑛𝑘𝑚𝑡 + 𝑐1𝑟1 (𝑃𝐿𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡 − 𝑝𝑛𝑘𝑚𝑡)
+ 𝑐2𝑟2 (𝑃𝐺𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡 − 𝑝𝑛𝑘𝑚𝑡) (19)

𝑝𝑛+1𝑘𝑚𝑡 = 𝑝𝑛𝑘𝑚𝑡 + V𝑛+1𝑘𝑚𝑡 (20)

Where w is an inertia weight parameter, which affects the
convergence procedure of the optimal solution; 𝑐1and 𝑐2 are
the cognitive and social learning parameters, respectively; 𝑟1
and 𝑟2 are random numbers generated between [0, 1].

Based on the above description, we now present the PSO
algorithm process for solving the route allocation problem.

Step 1. Set the iteration number n = 1. Initialize k particles
whose positions and velocities are randomly generated. The
particles’ positions represent the result of the route allocation
and determine their qualities.

Step 2. Evaluate the fitness value of each particle using the
commercial software CPLEX. More specifically, we used the
route allocation result obtained by the particles to fix the
variables 𝑧𝑚𝑡 and then used CPLEX to solve the original
model.

Step 3. For each particle, compare its fitness value and
the global best optimal solution𝑃𝐺𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡; if 𝑃𝐿𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡 >𝑃𝐺𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡, replace the value of 𝑃𝐺𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡 using the value of𝑃𝐿𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡.
Step 4. According to formulas (19) and (20), update the
particle velocity and positon.

Step 5. If n reaches the preset maximum iteration or𝑃𝐺𝐵𝑒𝑠𝑡𝑛𝑘𝑚𝑡 has not been improved during a preset number
of iterations, end the procedure; otherwise, set 𝑛 = 𝑛 + 1and
then go on to Step 2.

5. Numerical Experiments

To validate the performance of the proposed two-stage
heuristic, numerical experiments were carried out on the
VRPPMP. For the PSO algorithm, the maximum number of
iterations was set to 100, while the population size was 30.
According to the previous tests, we set 𝑐1 = 𝑐2 = 1. From
preliminary testing of 𝑤 = 0, 0.5, 1, 1.5, and 2, it emerged
that 𝑤 = 1 performed the best; thus, we adopted 𝑤 = 1 for

the next experiments. Based on the same decision obtained
in the first stage, another nature inspired algorithm, the Tabu
search (TS) algorithm, was applied for comparison purposes.
We listed the optimal solutions obtained by CPLEX in small-
scale instances.

All the experiments were performed on a computer with
3.60 gigahertz Intel (R) Core (TM) i7-4790 CPU and 3.60
gigabyte RAM. The model and solution methods, including
the CW algorithm, RTR travel algorithm, and the PSO
algorithm, were implemented using CPLEX 12.6, with C#
(VS2015) concert technology.

5.1. Generation of Test Instance. In this section, we demon-
strate the implementation of numerical experiments to val-
idate the effectiveness of the proposed model and the effi-
ciency of the proposed algorithm. For small-scale instances,
the results of the proposed two-stage heuristic algorithmwere
compared with the optimal solutions obtained byCPLEX and
the solutions obtained using the TS algorithm. Based on the
same decision obtained in the first stage, the results obtained
using the PSO heuristic were compared with those of the TS
algorithm in medium- and large-scale instances, given that
CPLEX would have been time consuming or unable to solve
the problem.

For the numerical experiments on the VRPPMP, in-
stances were randomly generated in the three scales. We
simulated the cases of 10 suppliers and two production
batches, and 15 suppliers and three production batches for
the small-scale; 30 suppliers and six production batches, and
50 suppliers and 10 production batches for the medium scale;
70 suppliers and 14 production batches, 90 suppliers and 18
production batches, 100 suppliers and 18 production batches
for the large scale. Information pertaining to the coordinate
positions and pickup demands of the 10 suppliers of the
first small-scale instance (i.e., 10-2-1) are shown in Table 1.
The coordinate position of the manufacturer was (5, 5), and
the cost of unit distance traveled by vehicle was $2. The
manufacturer had sufficient pickup vehicles with the capacity
of 10 tons to provide a service to suppliers.The volume of raw
materials required for each production batch was 10 tons, and
the unit inventory cost of unprocessed raw materials in each
batch was $20.

5.2. Analysis of Calculation Results. We tested examples at
different scales and used CPLEX, the PSO algorithm, and
the TS algorithm, respectively, to solve the VRPPMP. Table 2
yields the following conclusions. In the small-scale examples
(10-2), the exact solutions (73.45, 173.17, and 184.65) were
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Table 1: Pickup demands (tons) and coordinate positions (km) of instances 10-2-1.

Supplier Pickup demands Coordinate axis X Coordinate axis Y
1 1.5577 6.2804 8.3439
2 1.4597 5.6732 5.9806
3 2.2747 2.0603 5.5888
4 1.9595 9.0603 4.4218
5 1.5754 9.7755 2.7370
6 2.5402 2.9191 4.6731
7 2.0115 6.3266 4.6951
8 1.5807 9.8215 0.3037
9 2.3763 8.6237 9.9535
10 2.7253 6.7718 3.1459

Table 2: Computational results of small-scale instances.

Instance ID
CPLEX PSO algorithm TS algorithm

Result
($)

Time
(sec)

Result
($)

Time
(sec)

Gap
(%)

Result
($)

Time
(sec)

Gap
(%)

10-2-1 73. 45 5.45 73.45 4.47 0 73.45 7.55 0
10-2-2 173.17 3.66 176.57 3.07 1.96 176.57 7.08 1.96
10-2-3 184.65 5.10 189.19 3.55 2.46 189.19 7.60 2.46
15-3-1 - >12hours 248.54 14.24 - 248.54 17.30 -
15-3-2 - >12hours 435.27 13.69 - 435.27 17.47 -
15-3-3 - >12hours 236.67 13.73 - 236.67 17.39 -

Table 3: Computational results of medium-scale instances.

Instance ID
PSO algorithm TS algorithm Relative deviation

(TS - PSO)/PSO
Result Time Result Time Result Time
($) (sec) ($) (sec) (%) (%)

30-6-1 572.88 83.46 572.88 510.69 0 511.90
30-6-2 567.30 134.09 551.66 519.58 -2.76 287.49
30-6-3 672.89 37.92 672.89 593.52 0 1465.19
50-10-1 1243.89 237.73 1198.75 2246.67 -3.63 845.05
50-10-2 1642.45 611.63 1577.61 2291.87 -3.95 274.72
50-10-3 2501.16 252.34 2420.29 2295.83 -3.23 809.82

obtained byCPLEX, and the accuracy of themodel is verified.
Compared with the TS algorithm, the PSO algorithm can
obtain the approximate solutions (73.45, 176.57, and 189.19)
in a shorter time. In the small-scale examples (15-3), CPLEX
had difficultly in getting the results, but the PSO algorithm
and TS algorithm can still obtain the results in a short
time.

However, after the scale of the study increases, as shown
in Tables 3 and 4, the PSO algorithm can take less time
to get a relatively appropriate solution than TS algorithm.
In the medium-scale examples, the relative value deviations
between the PSO algorithm and the TS algorithm are within
4%. However, the relative time deviations between the PSO
algorithmand theTS algorithm reach 699%on average. In the
large-scale examples, although the relative value deviations
between the PSO algorithm and the TS algorithm reached

nearly 7%, the PSO calculation results are still acceptable
and it holds great advantages in terms of computing time.
This proves that the two-stage heuristic algorithm can help
us solve such problems well.

6. Conclusion

This paper discusses a novel and practical research issue
arising in the manufacturing industry; namely, the prob-
lem of vehicle routing involving pickup in the context of
multibatch production. In order to reduce transportation
costs and inventory costs in the production process, a mixed
integer programming model was developed. Following this,
a two-stage hybrid, heuristic algorithm was put forward to
solve this model. In the first stage, the CW algorithm was
proposed in order to generate the initial vehicle routes. The
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Table 4: Computational results of large-scale instances.

Instance ID
PSO algorithm TS algorithm Relative deviation

(TS - PSO)/PSO
Result Time Result Time Result Time
($) (sec) ($) (sec) (%) (%)

70-14-1 2266.15 1122.67 2109.41 7069.80 -6.92 529.73
70-14-2 3721.10 561.83 3563.46 6017.07 -4.24 970.98
70-14-3 4534.08 949.29 4314.32 6278.70 -4.85 561.41
90-18-1 4221.80 4564.09 4014.15 21226.73 -4.92 365.08
90-18-2 4274.58 1648.82 4016.14 13713.70 -6.05 731.73
90-18-3 7772.56 3691.00 7405.27 19607.38 -4.73 431.22
100-18-1 5164.45 6982.74 4935.79 28613.04 -4.43 309.77
100-18-2 8047.58 7233.14 7762.98 28562.40 -3.54 294.88
100-18-3 11321.39 6922.66 10866.73 28682.46 -4.02 314.33

RTR travel algorithm was then used further to optimize the
generated routes. In the second stage of the algorithm, the
PSO algorithm was developed so as to allocate the vehicles
to each production batch. This process ensured that the
manufacturer first assigned each supplier to the appropri-
ate route and then assigned each route to the appropriate
batch.

By testing examples at different scales, we were able to
validate the effectiveness of the proposed model and the
performance efficiency of the two-stage hybrid, heuristic
algorithm. First, in the small-scale examples, the exact solu-
tion was obtained using CPLEX, and the accuracy of the
model was verified. Second, after the scale was expanded,
it was found that CPLEX had difficulty in solving this
over a short period of time and that the PSO algorithm
took less time to obtain a relatively appropriate result
than the TS algorithm. This proves that the two-stage
heuristic algorithm is well placed to help us solve such
problems.

There are certain limitations to the current study. First, we
assumed that the amount of the single raw material required
for each production batch would be the same; in practice,
however, the amount of multiple rawmaterials varies for each
production batch. Second, this paper only considered the
combination of the pickup stage and the production stage,
without considering product delivery. The joint optimization
of multibatch production and the vehicle routing problem
with pickup and delivery, considering inventory, will thus be
addressed in future studies.
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