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Memory in finance is the foundation of a well-established forecasting model, and new financial theory research shows that the
stochastic memory model depends on different time windows. To accurately identify the multivariate long memory model in the
financial market, this paper proposes the concept of a moving 𝑉-statistic on the basis of a modified 𝑅/𝑆 method to determine
whether the time series has a long-range dependence and subsequently to apply wavelet-basedmultiresolution analysis to study the
multifractality of the financial time series to determine the initial data windows. Finally, we check the moving𝑉-statistic estimation
in wavelet analysis in the same condition; the paper selects the volatilities of the gold foreign exchange rates to evaluate the moving
𝑉-statistic. According to the results, the method of testing memory established in this paper can identify the breakpoint of the
memories effectively. Furthermore, this method can provide support for forecasting returns in the financial market.

1. Introduction

The empirical analysis of long-term memory originated in
the natural sciences. Since the 1980s, econometrists have
introduced the long-term memory model in the financial
field and considered that the cornerstones of the long-term
memory of the finance market include the theories of noise
trading [1], behavioral financial theory [2], and the fractal
market hypothesis [3]. As the basis of an established forecast-
ing model, many scholars have conducted extensive and in-
depth research and have formed the Hurst index technology
based on time domain analysis [4–6] and the fractional order
difference parameter technique based on frequency domain
analysis [7–9]. There is substantial literature improving the
ability of the accurate judgment for the long-term memory
by optimizing parameter algorithms [10–12].

With the continuous improvement of traditionalmethods
of estimation and inspection, scholars have applied the long-
term memory model in the field of gold foreign exchange
market. Bentes analyzes the robustness and consistency of

long memory volatility of gold price returns during differ-
ent crisis periods by FIGARCH model [13]. Ali Habibnia
establishes the model for the world gold price with Logistic
Smooth Transition Autoregressive (STAR)model concerning
long memory effect and compared it with other models [14].
Yang Na explores the long memory property on gold price
volatility by calculating the Hurst index and establishes a
family of long memory forecasting models based on fractal
analysis. It shows the inherent volatility quality of gold
price sequences and it has strong predictive capabilities [15].
Maurice Omane-Adjepong examines the presence of long-
range dependence in the world’s gold market returns and
volatility by using sampled historical daily gold market data
to be less risky for hedging and portfolio diversification
[16].

Mandelbrot (1997) introduced multifractal models to
address the shortcomings of traditionalmodels, which are not
compatible with the stylized facts of time series, such as long-
termmemory and fat-tails in volatilities. Long-termmemory
models using wavelet-based multiresolution and Hurst index

Hindawi
Discrete Dynamics in Nature and Society
Volume 2018, Article ID 3051632, 7 pages
https://doi.org/10.1155/2018/3051632

http://orcid.org/0000-0002-7467-2331
https://doi.org/10.1155/2018/3051632


2 Discrete Dynamics in Nature and Society

are widely researched from the perspective of multifractal in
financial time series. As a comparatively new and powerful
mathematical tool for time series analysis, multiresolution
decomposition (MRD) is one of the basic tools of wavelet
theory. Wavelet analysis is a time-frequency analysis method
regarding signal in the time and frequency domain which
has the ability of denoting partial signal characteristics. In
1989, Mallat and Meyer proposed the multiresolution anal-
ysis (MRA) theory and provided a numerical algorithm of
discrete wavelet, namely, the Mallat tower algorithm (MTA)
[17]. Wavelet-based multiresolution has a very wide range of
applications in the financial sector, from descriptive analysis
on different time scales to parameter estimation of multi-
fractal properties and revelation of multifractality in cross-
correlativity. For example, the correlation function of the
wave logarithm in different time scales is analyzed to reveal
causal information from low frequencies to high frequencies
[18]. Schmitt shows the multifractal characteristics of foreign
exchange earnings and estimates parameters expressing the
small and medium strength fluctuation characteristics under
the general multiface structure by means of multifractal
analysis regarding the five daily foreign exchange rates [19].
The multifractal property is proved to exist in the cross-
correlativity on the basis of an RMB/dollar exchange rate
and daily price data of the Shanghai Composite Index
[20].

The abovementioned literature studies the characteristics
of memory by wavelet-based multiresolution analysis from
the perspective of multifractal property depending on the
fixed financial time series. Financial time series exhibit
high degrees of nonlinear variability and multivariate long-
term memory originates because of multiplicative inter-
actions in different time windows; the multifractality of
times series determines the multivariate long-term memory
model.

To identify the breakpoint of memory in financial time
series at a certain time scale and specific style of the mul-
tifractal form, this paper will estimate the dynamic value
based on the specific branch level memory of the multifractal
properties perspective. The remainder of the paper is orga-
nized as follows: after Section 1 outlines the development and
application of long-term memory in financial time series,
Section 2 introduces the concept of the moving 𝑉𝑛(𝑡, 𝑠)-
statistic after reviewing the modified 𝑅/𝑆 theory and reviews
wavelet-based multiresolution analysis, and Section 3 applies
the model to evaluate the memory by selecting the high-
frequency data of the gold price. The study’s conclusions are
presented in Section 4.

2. The Moving 𝑉𝑛(𝑡,𝑠)-Statistic and
Wavelet-Based Multiresolution Analysis

2.1. Modified 𝑅/𝑆 Theory and 𝑉-Statistic. In 1991, Lo put
forward the modified 𝑅/𝑆 theory [22] based on the classic
𝑅/𝑆 theory to better distinguish between long- and short-
range dependence. For the time series {𝑥𝑘} (𝑘 = 1, 2, 3, ..., 𝑛),
given a sample of observation, 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛, the definition
of the modified rescaled range theory is as follows. 𝑄𝑛(𝑞) is

the square root of a consistent estimator of the partial sum’s
variance.

𝑄𝑛 (𝑞)

= 1
𝜎𝑛 (𝑞)

{
{
{
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𝑘

∑
𝑗=1

(𝑥𝑗 − 𝑥𝑛) − min
1≤𝑘≤𝑛

𝑘

∑
𝑗=1

(𝑥𝑗 − 𝑥𝑛)
}
}
}

(1)

where 𝑥𝑛 = (1/𝑛)∑𝑛𝑗=1 𝑥𝑗 and 𝑥𝑛 denotes the mean value
of the time series. 𝜎𝑛(𝑞) denotes the standard deviation of
the time series after modification. This deviation involves not
only sums of squared deviations of 𝑥𝑗, but also its weight of
autocovariances up to lag 𝑞.
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(2)

𝜔𝑗 (𝑞) = 1 −
𝑗

𝑞 + 1 , 𝑞 < 𝑛, (3)

where 𝑞 denotes the lag factor of the time series, according to
Andrews’ (1991) data-dependent rule as in Lo (1991).

𝑞 = [𝑞∗] (4)

where 𝑞∗ = (2𝑛/3)1/3 ⋅(𝜌/(1−𝜌2))2/3, [𝑞∗] denotes the greatest
integer less than or equal to 𝑞∗, and 𝜌 is the estimated first-
order autocorrelation coefficient of the data.

The normalized classical Hurst-Mandelbrot rescaled
range 𝑉𝑛(𝑞):

𝑉𝑛 (𝑞) =
𝑄𝑛 (𝑞)
√𝑛 (5)

Compared with the classical 𝑅/𝑆 analysis method, the
main advantage of the modified 𝑅/𝑆 analysis method is to
avoid computing the Hurst index. The standard deviation
is modified by introducing the lag factor to exclude the
short-term memory of the time series for testing long-term
memory, which makes long-term memory detection more
robust.

2.2. Definition of the Moving 𝑉𝑛(𝑡, 𝑠)-Statistic. The charac-
teristics of memory diversification are produced because
the value of 𝑉(𝑞) differs based on different time windows
selected under the multifractal properties of the financial
time series conditions. This eliminates interference of the
memory test from the initial time window, which contributes
to the multifractal property, to observe the dynamic change
process of memory in the financial time series. This paper
proposes the concept of a moving 𝑉𝑛(𝑡, 𝑠)-statistic based
on a nonfixed scale on the basis of the classical 𝑉(𝑞)
statistic.
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Definition 1. Given time series {𝑥𝑘} (𝑘 = 1, 2, 3, ..., 𝑛), where
k is the length of the time series:

𝑉𝑛 (𝑡, 𝑠) =
𝑄𝑡+𝑠 (𝑞𝑡+𝑠)
√𝑡 + 𝑠 𝑠 ≤ 𝑛 − 𝑡 (6)

where 𝑡 denotes length of time series in the initial time
windows, namely, in the time series {𝑥𝑘} (𝑘 = 1, 2, 3, ...𝑡, ..., 𝑛),
the initial data from the time series consist of 𝑥1, 𝑥2, 𝑥3,....𝑥𝑡. 𝑠
denotes the moving 𝑉𝑛(𝑡, 𝑠)-statistic progress step (𝑠 ≤ 𝑛 − 𝑡),
with implied calculation accuracy.

In the process of testing the memory of the nonfixed
scale by utilizing the moving 𝑉𝑛(𝑡, 𝑠)-statistic, suppose that
the starting data of time series for analysis will be written as
𝑥𝑚 (1 < 𝑚 < 𝑛), then the breakpoint of memory property
of the time series 𝑥𝑚, 𝑥𝑚+1, 𝑥𝑚+2,. . ., 𝑥𝑛 should be iden-
tified. The initial window data should satisfy the following
conditions:

(i) As to the initial time window data, 𝑥𝑚−𝑡, 𝑥𝑚−𝑡+1,
𝑥𝑚−𝑡+2,. . .,𝑥𝑚−1, under the condition of multilevel
fractal analysis, the fractal level of samples 𝑥𝑚−𝑡, 𝑥𝑚−𝑡+1,
𝑥𝑚−𝑡+2,. . .,𝑥𝑚−1 is at a lower fractal level than the time series
data 𝑥𝑚, 𝑥𝑚+1, 𝑥𝑚+2,. . ., 𝑥𝑛.

(ii) Under the condition of multilevel fractal analysis, the
level of the fractal of the sample data 𝑥𝑚−𝑡−𝑢, 𝑥𝑚−𝑡−𝑢+1,. . .,
𝑥𝑚−𝑡−1 (𝑢 = 2, 3, 4...) is the same as the level of the sample
data 𝑥𝑚−𝑡, 𝑥𝑚−𝑡+1, 𝑥𝑚−𝑡+2,. . .,𝑥𝑚−1.

The moving 𝑉𝑛(𝑡, 𝑠)-statistic can eliminate all short-term
memory within the target time windows, as well as the
initial time window data, and would not affect memory
independence in the target time window data.

2.3. Wavelet-Based Multiresolution Analysis. A multiresolu-
tion analysis (MRA) or multiscale approximation (MSA)
is the design method of most relevant to discrete wavelet
transforms (DWT) and the justification for the algorithm
of the fast wavelet transform (FWT). It was introduced in
the theory of differential equations (the ironing method)
and the pyramid methods of image processing by Stephane
Mallat and Yves Meyer in 1988/89. Multiresolution signal
decomposition and the reconstruction algorithm (and the
fast algorithm of orthogonal wavelet transform), generally
called the Mallat algorithm, include two key steps: decom-
position and reconstruction.

2.3.1. Decomposition

𝑆𝑑2𝑗𝑓𝑛 = ∑
𝑘

ℎ̃ (2𝑛 − 𝑘) ⋅ 𝑆𝑑2𝑗−1𝑓𝑘

𝐷2𝑗𝑓𝑛 = ∑
𝑘

𝑔 (2𝑛 − 𝑘) ⋅ 𝑆𝑑2𝑗−1𝑓𝑘
(7)

2.3.2. Reconstruction

𝑆𝑑2𝑗−1𝑓𝑛 = ∑
𝑘

ℎ (𝑛 − 2𝑘) ⋅ 𝑆𝑑2𝑗𝑓𝑘 +∑
𝑘

𝑔 (𝑛 − 2𝑘) ⋅ 𝐷2𝑗𝑓𝑘 (8)

Mallat’s algorithm is useful in representing the wavelet
transform as a pyramid [23]. The base of the pyramid
is the original data of high resolution, and the top is a
low-resolution approximation, and the size and resolution
will be reduced as the pyramid upper moves. Many stud-
ies establish a prediction model via multiresolution anal-
ysis method to forecast gold price volatility [24–26]. This
paper will use wavelet-based multiresolution analysis to
explore memory feature in gold price volatility in different
time scales. The four criteria as followed are considered
for selecting the mother wavelet adopted in this paper
[27].

(i) Vanishing moments: the wavelet function should have
a small enough vanishing moments to represent multifractal-
ity of the high-frequency data.

(ii) Cutoff frequencies: the wavelet should provide not
sharp cutoff frequencies to magnify the adjacent resolution
levels.

(iii) Orthonormal: the wavelet basis should be orthonor-
mal.

(iv) The similarity of wavelet coefficients: for applications
where the information lasts for a very short instant, wavelets
with less number of coefficients are better choices.

There are several well-known families of orthogonal
wavelets. An incomplete list includes Harr, Meyer family,
Daubechies family, Coiflet family, and Symmlet family [28].
Prior studies [29, 30] show that gold has nonlinear mul-
tiresolution characteristic in different time scales. Daubechies
wavelets are selected in this paper due to their outstanding
performance in detecting waveform discontinuities for eval-
uating the memorial breakpoint [31].

The hour returns of exchange rate between gold and
the US dollar are chosen as the target data for detecting
the memorial breakpoint of the high-frequency data from
the perspective of multifractality, rather than not smoothing
signal, while the larger the vanishing moment of wavelet
filter is, the shaper its cutoff frequency is. So filter banks of
Daubechies 3 (db3) are selected for determining the initial
data window and evaluation in comparison with Daubechies
5 (db5).

2.4. Analysis Process of the Moving 𝑉𝑛(𝑡, 𝑠)-Statistic. To
resolve multifractality of the time series, this paper utilizes
wavelet analysis to recognize and reconstruct financial time
series and later calculate the moving 𝑉𝑛(𝑡, 𝑠)-statistic to
determine the breakpoint of the memory.The results are then
subjected to wavelet analysis for evaluation and this process
is shown in Figure 1.

3. Model Application in Gold Price Returns

3.1. Data Sources and Descriptive Statistical Analysis. The
hourly returns of exchange rate between gold and the US
dollar (fromMT4) fromMay 10, 2016, to December 16, 2016,
create a total of 3630 observations. The exchange rate is
quoted as the price of a dollar in terms of gold.The descriptive
statistics are shown in Table 1, and returns for XAU/USD are
shown in Figure 2.
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Figure 1: Moving 𝑉𝑛(𝑡, 𝑠)-statistic analysis process.

Table 1: Descriptive statistic for volatilities of XAU/USD.

Time range Min Max Mean Std Skew Kurt
2016.5.10 00:00-
2016.12.16 00:00 1129.36 1375.04 1285.28 55.61 -0.62 2.48
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Figure 2: Return charts of XAU/USD.
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Figure 3: DB3 and DB5 wavelet analysis on Level 4/5.

3.2. The Initial Data Window Determination. The 622 obser-
vations, ranging from May 30, 2016, 15:00, to June 6, 2016,
19:00, are selected as the target window for calculating the
moving 𝑉𝑛(𝑡, 𝑠)-statistic. Before using the moving 𝑉𝑛(𝑡, 𝑠)-
statistic estimation to test the breakpoint of memory in the
target window, the initial data window should be deter-
mined by wavelet-based multiresolution analysis. The anal-
ysis results are shown in Figures 3 and 4.

The lower fractal signals are filtered with synchronization
after step-by-step analysis of the volatilities of XAU/USD,
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Figure 4: DB3 and DB5 wavelet analysis on Level 6/8.

ranging fromMay 16 toMay 30 and the target data level after
Level 4 and Level 5 analysis. As shown in Figure 3, after Level
6 analysis, the returns from May 16 to May 30 and the target
window data are synchronously filtered completely and are
the homogeneous fractal property after Level 8 resolution
analysis. Both the results of wavelet analysis by DB3 and
DB5 have the consistency in synchronous filter of the high
frequency, while the reconstruction of the DB3 is sharper
than DB5. This can be concluded as a result under the
DB3 wavelet analysis conditions. The fractal property of the
returns of XAU/USD from May 16 at 20:00 to May 30 at
15:00 is a lower fractal than the target window data, and it
is the same level fractal as the volatilities before May 16. This
finding meets the conditions that the returns can be treated
as the initial window data. The length of the volatilities of
XAU/USD is 225.

3.3. Estimation of the Moving 𝑉𝑛(𝑡, 𝑠)-Statistic. To precisely
evaluate the moving 𝑉𝑛(𝑡, 𝑠)-statistic value for hourly returns,
step 1 is used as the account step to analyze the data, 𝑡 =
225, 𝑠 = 1.The estimation ofmoving𝑉𝑛(𝑡, 𝑠)-statistic is shown
in Figure 5.

Under the null hypothesis of short-range dependence
conditions, the moving 𝑉𝑛(𝑡, 𝑠)-statistic gradually distributes
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Table 2: Moving 𝑉𝑛(𝑡, 𝑠)-statistic under different level of the critical value [21].

𝑃(𝑉 < 𝑥) 0.005 0.025 0.050 0.100 0.200 0.300 0.400 0.500
𝑥 0.721 0.809 0.861 0.927 1.018 1.090 1.157 1.223
𝑃(𝑉 < 𝑥) 0.600 0.700 0.800 0.900 0.950 0.975 0.990 0.995
𝑥 1.294 1.374 1.473 1.620 1.747 1.862 2.001 2.098
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Figure 5: Moving 𝑉𝑛(𝑡, 𝑠)-statistic evaluated for the volatilities of
XAU/USD.

as the first-order brown bridge, and moving 𝑉𝑛(𝑡, 𝑠)-statistic
distributes as shown in Table 2.

The fluctuation of the moving 𝑉𝑛(𝑡, 𝑠)-statistic is evalu-
ated as shown in Figure 5; the moving 𝑉𝑛(𝑡, 𝑠)-statistic value
is greater than 1.747 for the first time until the target window
data approach June 4 at 23:00.This finding suggests that with
the 95% confidence level, the gold price index from May 30
at 15:00 to June 6 at 19:00 has the memory property at the
first time based on the fractal level of the target window
data. As time goes by, the peak value reaches 2.15, which
is merged around June 20. This finding indicates that the
memory is most robust at the span of the target window data,
which is when the volatilities of XAU/USD are near the peak
value.The consistency of change between themoving𝑉𝑛 (𝑡, 𝑠)-
statistic estimation and the returns is shown in Figure 5.
When time approaches September 16 at 9:00, the moving
𝑉𝑛(𝑡, 𝑠)-statistic drops to less than 1.747. Under the condition
of 95% confidence level, this indicates that the target window
datamemory disappears, which is the breakpoint on the same
level of fractal memory.

3.4. Wavelet Analysis for Evaluation. To verify that there is a
breakpoint in the memory properties in the target window
data under the same condition, DB3 wavelet basis is also
used as a wavelet base for wavelet analysis in order to eval-
uate breakpoint effectiveness. Wavelet-based multiresolution
analysis is shown in Figure 6.

From Figure 6 through Levels 7 and 8 of multifractal
analysis by DB3 and DB5, the volatilities of XAU/USD from
June 6 at 19:00 to September 16 at 9:00 form a higher fractal
level than the target window after the volatilities of XAU/USD
reduce on September 16. This finding indicates that memory
has turned, and the memory breakpoint in reconstructed
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Figure 6: Moving 𝑉𝑛(𝑡, 𝑠)-statistic checked out by wavelet analysis.

signal of the DB3 on Level 7 is more obvious and precious
compared with DB5. The results based on wavelet-based
multiresolution analysis and the calculation results of the
moving 𝑉𝑛(𝑡, 𝑠)-statistic remain the same.

4. Conclusions

There are important theoretical and practical implications
of memory research in financial markets. The existence of
memory under multifractal financial time series conditions
and the interaction mechanism help to elucidate the multiple
microstructure of the market, price behavior, and the man-
agement of financial markets.

This paper first reviews the principle of the memory
test for the modified 𝑅/𝑆 and subsequently proposes the
definition of moving 𝑉𝑛(𝑡, 𝑠)-statistic, which is the memory
research index of specific hierarchical fractal after multifrac-
tal analysis. Finally, we have an example verification after
wavelet-based multiresolution analysis together with hour
high-frequency returns of XAU/USD from MT4. The vali-
dated results show that the moving 𝑉𝑛(𝑡, 𝑠)-statistic based on
wavelet-based multiresolution analysis effectively identifies
the breakpoint of thememory of the specificmultifractal level
after decomposing it through wavelet analysis. The moving
𝑉𝑛(𝑡, 𝑠)-statistic method can eliminate multivariate memory
from the different window selected. This method makes the
study of memory more specific, as well as providing the
basic principle of the data window selected for building a
forecasting model to eliminate effects from the memory from
the selected window and to improve the model.

This paper utilizes wavelet-based multiresolution analysis
to examine the multifractality of financial markets and to
decompose and reconstruct with DB3 wavelet basis and
DB5 wavelet basis. Actual result shows that DB3 wavelet
basis is more appropriate than DB5. But the actual financial
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time series data are specific, complex, and multiply self-
similar; Empirical Mode Decomposition (EMD), which has
self-adaptability with target data, may be utilized to more
accurately analyze the breakpoint of the memory for specific
frequency signal.
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