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The problem of strategic stability of cooperative solutions for multistage games is studied. The sufficient conditions related to
discount factors are presented, which guarantee the existence of Nash or strong Nash equilibria in such games and therefore
guarantee the strategic stability of cooperative solutions. The deviating payoffs of players are given directly, which are related closely
to these conditions and avoid the loss of super-additivity of a class of general characteristic functions. As an illustration, Nash and
strong Nash equilibria are found for the repeated infinite stage Prisoner’s dilemma game.

1. Introduction

Strategic stability of cooperative solutions in a game means
that the outcome of cooperation must be attained in some
Nash equilibrium, which is an effective mechanism to guar-
antee the sustainability of a cooperative agreement. It seeks to
make the cooperative solution guaranteed by an equilibrium
in an associated noncooperative game. See, for example, [1–
4].

How can a cooperative agreement made at the start be
sustained over time is an important issue in human behavior.
Besides strategic stability, time consistency and irrational-
behavior-proof condition are also effective aspects to sustain
cooperation.

Time consistency may be described informally as follows:
to sustain cooperation over time, each player’s cooperative
payoff should belong to the same optimal principle at any
time along the cooperative path. The concept of time con-
sistency and its implement ingredient imputation distribution
procedure (IDP) were initially proposed in [5, 6] and further
developed in [7–9].

Irrational-behavior-proof condition requires that the
partners involved in the cooperation must be sure that even
in the worst scenario they will not lose compared with the

noncooperative behavior. In [10], the irrational-behavior-
proof condition is proposed. A further investigation could be
found in [11].

In their seminal paper [12], Grauer and Petrosyan studied
the strategic stability of cooperative solutions in an infinite
stage game (ISG).They introduced a new (general) character-
istic function in such a game, which plays a role of computing
the cooperative solutions and describing the deviating payoffs
of players. This characteristic function plays an essential role
to construct Nash or strong Nash equilibria in the ISG.
However, the general characteristic function has a drawback:
it could not be super-additive, which would lead to the
nonexistence of cooperative solutions, e.g., the core.

Motivated by the above observations, in this paper, we
shall focus on the problem of strategic stability of cooperative
solutions in ISGs and present sufficient conditions in terms
of discount factors and prove that Nash or strong Nash
equilibria exist in such games.The deviation payoffs are given
directly, which are related closely to the sufficient condition
of strategic stability and avoid the loss of super-additivity
of the general characteristic functions. Then we study the
repeated infinite stage game (RISG). As an illustration, Nash
and strong Nash equilibria are found for the repeated infinite
stage Prisoner’s dilemma game.
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The proof technique is the trigger (penalty) strategy
combined with the appropriate construction of the time-
consistent IDP. When some player (coalition) deviates from
the cooperative trajectory in some stage, other players (coali-
tions) would use the trigger strategies from the next stage.
But this does not include the case, in which the trigger
strategies could be used after several stages, perhaps because
the information is delayed or the players in one coalition need
time to coordinate their actions (see [13–16]).While in a finite
stage game, to construct Nash or strong Nash equilibria, we
need more strict conditions, which is the case with perfect
information (see [17]).

The theory we developed could be applied to analyzing
the dynamic cooperative behavior in society. A typical exam-
ple is the global pollution control problem, which requires a
joint effort ofmany countries for a long time. See, for example,
[18–20].

The paper is organized as follows. In Section 2, the basic
model about the ISG is introduced. In Section 3, the sufficient
conditions are given and the existence of Nash and strong
Nash equilibria are proved in ISGs. In Sections 4 and 5, the
RISG and the repeated infinite stage Prisoner’s dilemma game
are studied. In Section 6, some concluding discussions are
provided.

2. Formal Definitions and Terminology

In this section we introduce the basic model of ISGs (see also
[12] for more details).

An infinite game tree is an infinite oriented treelike graph𝐾 = (𝑍, 𝐹) with the root 𝑧0, where 𝑍 is the set of vertices
and 𝐹𝑧 is the set of vertices following after 𝑧 and 𝐹 : 𝑍 󳨀→2𝑍, 𝐹(𝑧) = 𝐹𝑧 ⊂ 𝑍, 𝑧 ∈ 𝑍.

A single stage game is a simultaneous 𝑛-player gameΓ(𝑧) = ⟨𝑁;𝑈𝑧1 , . . . , 𝑈𝑧𝑛 ; 𝐻𝑧1 , . . . , 𝐻𝑧𝑛⟩ corresponding to each
vertex 𝑧 ∈ 𝑍 in the tree 𝐾 = (𝑍, 𝐹), where 𝑁 = {1, 2, . . . , 𝑛}
is the set of players, 𝑈𝑧𝑖 is the set of strategies of player 𝑖 and𝐻𝑧𝑖 (𝑢𝑧1, . . . , 𝑢𝑧𝑛) is the payoff of player 𝑖.

A transition function is defined as 𝑇(𝑧; 𝑢𝑧1, . . . , 𝑢𝑧𝑛) =𝑇(𝑧; 𝑢𝑧) = 𝑧󸀠 ∈ 𝐹𝑧 for each 𝑧 ∈ 𝑍. For each game Γ(𝑧), the
function 𝑇 determines the following stage game Γ(𝑧󸀠).

An infinite stage game 𝐺(𝑧0) in the tree 𝐾 = (𝑍; 𝐹)
is determined by the simultaneous games Γ(𝑧) and the
transition function 𝑇.

Denote a sequence of situations 𝑢𝑧0 , 𝑢𝑧1 , . . . , 𝑢𝑧𝑘 , . . . by an𝑛-tuple of strategies 𝑢(⋅) = (𝑢1(⋅), . . . , 𝑢𝑛(⋅)), where 𝑢𝑖(⋅) =(𝑢𝑧0𝑖 , 𝑢𝑧1𝑖 , . . . , 𝑢𝑧𝑘𝑖 , . . .), 𝑖 ∈ 𝑁. Define the corresponding
sequence of vertices 𝑧0, 𝑧1, . . . , 𝑧𝑘, . . . as a trajectory ( path) in
the graph 𝐾, denoted by (𝑧0, 𝑧1, . . . , 𝑧𝑘, . . .).

Define

𝐻𝑖 (𝑧0; 𝑢1 (⋅) , 𝑢2 (⋅) , . . . , 𝑢𝑛 (⋅)) = ∞∑
𝑘=0

𝐻𝑧𝑘𝑖 (𝑢𝑧𝑘) 𝛿𝑘,
𝛿 ∈ (0, 1)

(1)

as the payoff of player 𝑖 in the game𝐺(𝑧0). All the payoffs in the
single stage games are uniformly bounded, which guarantees
the existence of sum (1).

In game 𝐺(𝑧0), the players possess complete information,
which means they know the simultaneous game Γ(𝑧) and
remember all the strategies in the game history.

Suppose that players in 𝑁 are playing cooperatively with
objective

max
𝑢𝑧0 ,𝑢𝑧1 ,...,𝑢𝑧𝑘 ,...

𝑛∑
𝑖=1

∞∑
𝑘=0

𝐻𝑧𝑘𝑖 (𝑢𝑧𝑘) 𝛿𝑘. (2)

Suppose there exist an 𝑛-tuple of strategies 𝑢(⋅) =(𝑢1(⋅), . . . , 𝑢𝑛(⋅)) and a trajectory 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑘, . . .)
satisfying (2). Define 𝑧 as an optimal cooperative trajectory of𝐺(𝑧0).

The subgame 𝐺(𝑧) of the game 𝐺(𝑧0) is played in the
subgraph𝐾(𝑧) = (𝑍𝑧, 𝐹), where𝑍𝑧 is the set of vertices of the
subgraph 𝐾(𝑧). The payoff of player 𝑖 in the subgame 𝐺(𝑧) is
denoted by𝐻𝑖(𝑧; 𝑢1(⋅), 𝑢2(⋅), . . . , 𝑢𝑛(⋅)) = ∑∞𝑙=𝑘𝐻𝑧𝑙𝑖 (𝑢𝑧𝑙)𝛿𝑙−𝑘.

The characteristic function 𝑉(𝑧; 𝑆), 𝑆 ⊂ 𝑁 in the subgame𝐺(𝑧) is defined in a classical way: 𝑉(𝑧; 𝑆) = 𝑉𝑎𝑙𝐺𝑆,𝑁\𝑆(𝑧),
where 𝑉𝑎𝑙𝐺𝑆,𝑁\𝑆(𝑧) is a value of zero-sum game played
between coalition 𝑆 acting as player 1 and coalition 𝑁 \ 𝑆
acting as player 2, with the payoff of coalition 𝑆 equal to∑𝑖∈𝑆𝐻𝑖(𝑧; 𝑢1(⋅), . . . , 𝑢𝑛(⋅)). It is additionally assumed that the
values 𝑉(𝑧; 𝑆) exist for every 𝑧 ∈ 𝑍 and 𝑆 ⊂ 𝑁. Specially,

𝑉(𝑧;𝑁) = max
𝑢𝑧𝑘 ,𝑢𝑧𝑘+1 ,...

𝑛∑
𝑖=1

∞∑
𝑙=𝑘

𝐻𝑧𝑙𝑖 (𝑢𝑧𝑙) 𝛿𝑙−𝑘

= 𝑛∑
𝑖=1

∞∑
𝑙=𝑘

𝐻𝑧𝑙𝑖 (𝑢𝑧𝑙) 𝛿𝑙−𝑘.
(3)

Denote the pair of optimal strategies in the game𝐺𝑆,𝑁\𝑆(𝑧) by (𝑢̃𝑆(⋅), 𝑢̃𝑁\𝑆(⋅)), where 𝑢̃𝑆(⋅) = {𝑢̃𝑖(⋅), 𝑖 ∈ 𝑆},𝑢̃𝑁\𝑆(⋅) = {𝑢̃𝑖(⋅), 𝑖 ∈ 𝑁 \ 𝑆}.
Consider a sequence of subgames 𝐺(𝑧𝑘) along an optimal

cooperative trajectory 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑘, . . .). In each
subgame 𝐺(𝑧𝑘), one can obtain the imputation set 𝐿(𝑧𝑘) and
the core 𝐶(𝑧𝑘):

𝐿 (𝑧𝑘) = {𝛼 = (𝛼1, . . . , 𝛼𝑛) : 𝛼𝑖 ≥ 𝑉 (𝑧𝑘; {𝑖}) , ∀𝑖
∈ 𝑁, ∑

𝑖∈𝑁

𝛼𝑖 = 𝑉 (𝑧𝑘; 𝑁)} ,
(4)

𝐶 (𝑧𝑘) = {𝛼 = (𝛼1, . . . , 𝛼𝑛) : ∑
𝑖∈𝑆

𝛼𝑖 ≥ 𝑉 (𝑧𝑘; 𝑆) , ∀𝑆
⊂ 𝑁, ∑

𝑖∈𝑁

𝛼𝑖 = 𝑉 (𝑧𝑘; 𝑁)} .
(5)

Suppose the imputation 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ 𝐿(𝑧0). Define
an imputation distribution procedure (IDP) as a function𝛽(𝑘) = (𝛽1(𝑘), 𝛽2(𝑘), . . . , 𝛽𝑛(𝑘)), 𝑘 = 0, 1, . . ., such that

𝛼𝑖 = ∞∑
𝑘=0

𝛽𝑖 (𝑘) 𝛿𝑘. (6)
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For every 𝛼 ∈ 𝐿(𝑧0), define the noncooperative infinite
stage game 𝐺𝛼(𝑧0), which differs from the game 𝐺(𝑧0) only
in the payoffs along the optimal cooperative trajectory 𝑧.
Suppose under the situation 𝑢(⋅) = (𝑢1(⋅), . . . , 𝑢𝑛(⋅)) the
path (𝑧0, 𝑧1, . . . , 𝑧𝑘, . . .) is realized. Denote the payoff in game𝐺𝛼(𝑧0) by

𝐻𝛼𝑖 (𝑧0; 𝑢1 (⋅) , . . . , 𝑢𝑛 (⋅))
= 𝑠−1∑
𝑘=0

𝛽𝑖 (𝑘) 𝛿𝑘 + ∞∑
𝑘=𝑠

𝐻𝑧𝑘𝑖 (𝑢𝑧𝑘) 𝛿𝑘−𝑠, (7)

where 𝑠 = inf{𝑘 : 𝑧𝑘 ̸= 𝑧𝑘, 𝑘 = 0, 1, . . .}. In a special case when𝑧𝑘 = 𝑧𝑘, 𝑘 = 0, 1, . . ., we have
𝐻𝛼𝑖 (𝑧0; 𝑢1 (⋅) , . . . , 𝑢𝑛 (⋅)) = ∞∑

𝑘=0

𝛽𝑖 (𝑘) 𝛿𝑘 = 𝛼𝑖. (8)

Let 𝛼(𝑘) ∈ 𝐿(𝑧𝑘). Game 𝐺𝛼(𝑧0) is called a regularized
game of 𝐺(𝑧0) if IDP 𝛽 is defined in such a way that

𝛽𝑖 (𝑘) = 𝛼𝑖 (𝑘) − 𝛿𝛼𝑖 (𝑘 + 1) , 𝑘 = 0, 1, . . . (9)

In particular, if𝛼(𝑘) ∈ 𝐶(𝑧𝑘), 𝑘 = 0, 1, . . .,𝐺𝛼(𝑧0) is called
a strictly regularized game of 𝐺(𝑧0).

From (9) we get

𝛼𝑖 = 𝑘−1∑
𝑙=0

𝛽𝑖 (𝑙) 𝛿𝑙 + 𝛼𝑖 (𝑘) . (10)

Now suppose that 𝑀(𝑧0) ⊂ 𝐿(𝑧0) is some optimality
principle in the cooperative game 𝐺(𝑧0), and 𝑀(𝑧𝑘) ⊂ 𝐿(𝑧𝑘)
is the same optimality principle defined in the subgame𝐺(𝑧𝑘) with initial conditions on the cooperative trajectory.𝑀 can be the Shapley value, the core, the nucleolus, etc. If𝛼(𝑘) ∈ 𝑀(𝑧𝑘), 𝑘 = 0, 1, . . ., condition (10) gives us the time
consistency of the chosen imputation 𝛼 (or the IDP𝛽) in game𝐺(𝑧0).

An 𝑛-tuple 𝑢∗(⋅) = (𝑢∗1 (⋅), . . . , 𝑢∗𝑛 (⋅)) is a Nash equilibrium
of game 𝐺𝛼(𝑧0) if and only if

𝐻𝛼𝑖 (𝑧0; 𝑢∗ (⋅)) ≥ 𝐻𝛼𝑖 (𝑧0; 𝑢∗ (⋅) ‖ 𝑢𝑖 (⋅)) (11)

for all 𝑖 ∈ 𝑁 and all 𝑢𝑖.
An 𝑛-tuple 𝑢∗(⋅) = (𝑢∗1 (⋅), . . . , 𝑢∗𝑛 (⋅)) is a strong Nash

equilibrium of game 𝐺𝛼(𝑧0) if and only if

∑
𝑖∈𝑆

𝐻𝛼𝑖 (𝑧0; 𝑢∗ (⋅)) ≥ ∑
𝑖∈𝑆

𝐻𝛼𝑖 (𝑧0; 𝑢∗ (⋅) ‖ 𝑢𝑆 (⋅)) (12)

for all 𝑆 ⊂ 𝑁 and all 𝑢𝑆 = {𝑢𝑖, 𝑖 ∈ 𝑆}.
3. Existence of Nash and
Strong Nash Equilibria

Consider the following inequality with respect to 𝛿:
𝛼𝑖 (𝑠) ≥ 𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢̃𝑖) + 𝛿𝑉(𝑇 (𝑧𝑠; 𝑢𝑧𝑠 ‖ 𝑢̃𝑖) ; {𝑖}) ,

𝑠 = 0, 1, 2, . . . (13)

where 𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢̃𝑖) = max𝑢𝑖{𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢𝑖)} is the stage
payoff to player 𝑖 if deviating from her cooperative strategy
and playing the best response to opponents’ cooperative
strategies. The above inequality is reduced to the following:

𝛿 ≤ min
𝑖

inf
𝑠

𝛼𝑖 (𝑠) − 𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢̃𝑖)𝑉 (𝑇 (𝑧𝑠; 𝑢𝑧𝑠 ‖ 𝑢̃𝑖) ; {𝑖}) . (14)

Let the value in the right-hand side in (14) be reached. Let

𝛿 = min
𝑖

inf
𝑠

𝛼𝑖 (𝑠) − 𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢̃𝑖)𝑉 (𝑇 (𝑧𝑠; 𝑢𝑧𝑠 ‖ 𝑢̃𝑖) ; {𝑖}) . (15)

We can get the following.

Theorem 1. In the regularized game 𝐺𝛼(𝑧0), for any 𝛿 satisfy-
ing 𝛿 ≤ 𝛿, the situation (𝑢∗1 (⋅), . . . , 𝑢∗𝑛 (⋅)) with players’ payoffs
as (𝛼1, 𝛼2, . . . , 𝛼𝑛) guaranteed by the time-consistent IDP 𝛽 is a
Nash equilibrium.

Now suppose 𝑆 ⊂ 𝑁 and consider another inequality with
respect to 𝛿:
∑
𝑖∈𝑆

𝛼𝑖 (𝑠) ≥ ∑
𝑖∈𝑆

𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢̃𝑆)
+ 𝛿𝑉 (𝑇 (𝑧𝑠; 𝑢𝑧𝑠 ‖ 𝑢̃𝑆) ; 𝑆) ,

𝑢̃𝑆 = {𝑢̃𝑖, 𝑖 ∈ 𝑆} , 𝑠 = 0, 1, 2, . . . ,
(16)

where ∑𝑖∈𝑆𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢̃𝑆) = max𝑢𝑆{∑𝑖∈𝑆𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢𝑆)} is the
stage payoff to coalition 𝑆 if deviating from the cooperative
strategy and playing the best response to others’ cooperative
strategies. The above inequality is reduced to the following:

𝛿 ≤ min
𝑆

inf
𝑠

∑𝑖∈𝑆 𝛼𝑖 (𝑠) − ∑𝑖∈𝑆𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢̃𝑆)𝑉 (𝑇 (𝑧𝑠; 𝑢𝑧𝑠 ‖ 𝑢̃𝑆) ; 𝑆) . (17)

Let the value in the right-hand side in (17) be reached. Let

𝛿 = min
𝑆

inf
𝑠

∑𝑖∈𝑆 𝛼𝑖 (𝑠) − ∑𝑖∈𝑆𝐻𝑧𝑠𝑖 (𝑢𝑧𝑠 ‖ 𝑢̃𝑆)𝑉 (𝑇 (𝑧𝑠; 𝑢𝑧𝑠 ‖ 𝑢̃𝑆) ; 𝑆) . (18)

We can also get the following.

Theorem 2. In the strictly regularized game 𝐺𝛼(𝑧0), for any 𝛿
satisfying 𝛿 ≤ 𝛿, the situation (𝑢∗1 (⋅), . . . , 𝑢∗𝑛 (⋅)) with players’
payoffs as (𝛼1, 𝛼2, . . . , 𝛼𝑛) guaranteed by the time-consistent
IDP 𝛽 is a strong Nash equilibrium.

Theorem 1 implies the cooperative solution (any impu-
tation) can be strategically supported by a specially con-
structed Nash equilibrium in a regularized game 𝐺𝛼(𝑧0).
Theorem 2 implies the cooperative solution (any core) can
be strategically supported by a specially constructed strong
Nash equilibrium in a strictly regularized game 𝐺𝛼(𝑧0). Since
a strong Nash equilibrium is also a Nash equilibrium in the
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strictly regularized game𝐺𝛼(𝑧0), the existence of strong Nash
equilibrium implies the existence of Nash equilibrium. We
need only to prove Theorem 2 and the proof of Theorem 1
is similar.

Proof of Theorem 2. Consider the situation 𝑢∗(⋅) = (𝑢∗1 (⋅),. . . , 𝑢∗𝑛 (⋅)) in the strictly regularized game 𝐺𝛼(𝑧0) and define
the strategies of player 𝑝 ∈ 𝑁 as follows:

𝑢∗𝑝 (⋅) =
{{{{{{{{{

𝑢𝑧𝑘𝑝 , for 𝑧 = 𝑧𝑘;
𝑢̃𝑧𝑝, for 𝑧 ∈ 𝑍𝑧𝑠 ;
𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦, for the other positions

(19)

where 𝑧𝑠 is the first vertex along the cooperative trajectory𝑧 = (𝑧0, 𝑧1, 𝑧2, . . .), on which player 𝑞 ∈ 𝑆 ⊂ 𝑁 deviates from𝑢𝑧𝑠𝑞 and 𝑢̃𝑝(⋅) is the 𝑝-th component of strategy 𝑢̃𝑁\𝑆(⋅) in the
zero-sum game 𝐺𝑆,𝑁\𝑆(𝑧𝑠).

To prove the situation 𝑢∗(⋅) = (𝑢∗1 (⋅), . . . , 𝑢∗𝑛 (⋅)) is a strong
Nash equilibrium in the game 𝐺𝛼(𝑧0), we have to show that

∑
𝑞∈𝑆

𝐻𝛼𝑞 (𝑧0; 𝑢∗ (⋅)) ≥ ∑
𝑞∈𝑆

𝐻𝛼𝑞 (𝑧0; 𝑢∗ (⋅) ‖ 𝑢𝑆 (⋅)) (20)

for all 𝑆 ⊂ 𝑁 and all 𝑢𝑆 = {𝑢𝑞, 𝑞 ∈ 𝑆}.
It is easy to see when the 𝑛-tuple 𝑢∗(⋅) is played the

game develops along the cooperative trajectory 𝑧. If under
the situation 𝑢∗(⋅) ‖ 𝑢𝑆(⋅) the trajectory 𝑧 is also realized, then
(20) will be true.

Suppose the strategy 𝑢𝑆(⋅) differs from the strategy 𝑢∗𝑆 (⋅)
in one of the single stage games Γ(𝑧𝑘), 𝑘 = 0, 1, . . .. Denote the
first vertex of path 𝑧 by 𝑧𝑠, on which 𝑢𝑧𝑠𝑞 ̸= 𝑢𝑧𝑠𝑞 , 𝑞 ∈ 𝑆. In the
situation 𝑢∗(⋅) ‖ 𝑢𝑆(⋅), the deviating coalition 𝑆 cannot obtain
more than

𝛿𝑠∑
𝑞∈𝑆

𝐻𝑧𝑠𝑞 (𝑢𝑧𝑠 ‖ 𝑢𝑆) + 𝛿𝑠+1𝑉(𝑇 (𝑧𝑠; 𝑢𝑧𝑠 ‖ 𝑢𝑆) ; 𝑆) ,
𝑢𝑆 = {𝑢𝑞, 𝑞 ∈ 𝑆} ,

(21)

since, after deviating from 𝑢𝑧𝑠𝑞 , 𝑞 ∈ 𝑆, coalition𝑁\𝑆will play
against coalition 𝑆 in the zero-sum game 𝐺𝑆,𝑁\𝑆(𝑧󸀠), where𝑧󸀠 = 𝑇(𝑧𝑠; 𝑢𝑧𝑠 ‖ 𝑢𝑆).

From the time consistency of IDP 𝛽 and condition (17),
we then obtain

∑
𝑞∈𝑆

𝐻𝛼𝑞 (𝑧0; 𝑢∗ (⋅)) = ∑
𝑞∈𝑆

𝑠−1∑
𝑘=0

𝛽𝑞 (𝑘) 𝛿𝑘 + 𝛿𝑠∑
𝑞∈𝑆

𝛼𝑞 (𝑠)

≥ ∑
𝑞∈𝑆

𝑠−1∑
𝑘=0

𝛽𝑞 (𝑘) 𝛿𝑘 + 𝛿𝑠(∑
𝑞∈𝑆

𝐻𝑧𝑠𝑞 (𝑢𝑧𝑠 ‖ 𝑢̃𝑆)

+ 𝛿𝑉(𝑇 (𝑧𝑠; 𝑢𝑧𝑠 ‖ 𝑢̃𝑆) ; 𝑆))
≥ ∑
𝑞∈S

𝐻𝛼𝑞 (𝑧0; 𝑢∗ (⋅) ‖ 𝑢𝑆 (⋅)) .

(22)

This completes the proof of Theorem 2.

4. The Case of Repeated Infinite Stage Game

In this part, we shall consider the case when 𝐺(𝑧0) is a
repeated infinite stage game (RISG), in which a normal-form
game appears infinite periods.

In each single stage game Γ, the characteristic function𝑉(𝑆), 𝑆 ⊂ 𝑁 is defined by𝑉(𝑆) = 𝑉𝑎𝑙Γ𝑆,𝑁\𝑆, where𝑉𝑎𝑙Γ𝑆,𝑁\𝑆 is
a value of zero-sum game played between coalition 𝑆 acting
as player 1 and coalition𝑁\𝑆 acting as player 2. In each gameΓ, one can construct the imputation set 𝐿 and the core 𝐶 using
the characteristic function 𝑉(𝑆).

Consider a sequence of subgames 𝐺(𝑧𝑘) along the coop-
erative trajectory 𝑧 = (𝑧0, 𝑧1, . . . , 𝑧𝑘, . . .). Put 𝐻𝑧𝑘𝑖 = 𝐻𝑖, 𝑢𝑧𝑘 =𝑢, 𝑘 = 0, 1, . . .. The value of game 𝐺𝑆,𝑁\𝑆(𝑧𝑘) will be equal to

𝑉(𝑧𝑘; 𝑆) = ∞∑
𝑙=𝑘

𝑉 (𝑆) 𝛿𝑙−𝑘 = 𝑉 (𝑆)1 − 𝛿 . (23)

For any imputation 𝛾 ∈ 𝐿 or 𝛾 ∈ 𝐶, define the time-
consistent IDP 𝛽 as 𝛽𝑖(𝑘) = 𝛾𝑖, 𝑘 = 0, 1, . . .. Then 𝛼𝑖(𝑘) =∑∞𝑙=𝑘 𝛾𝑖𝛿𝑙−𝑘 = 𝛾𝑖/(1 − 𝛿).

In the regularized game 𝐺𝛼(𝑧𝑘), the existence of IDP is
equivalent to the nonemptiness of the imputation set 𝐿(𝑧𝑘),
i.e., the existence of a solution of the following inequalities:

𝛼𝑖 (𝑘) ≥ 𝑉 (𝑧𝑘; {𝑖}) , ∀𝑖 ∈ 𝑁, ∑
𝑖∈𝑁

𝛼𝑖 (𝑘) = 𝑉 (𝑧𝑘; 𝑁) . (24)

It can be simplified as,

𝛾𝑖 ≥ 𝑉 ({𝑖}) , ∀𝑖 ∈ 𝑁, ∑
𝑖∈𝑁

𝛾𝑖 = 𝑉 (𝑁) . (25)

In the strictly regularized game 𝐺𝛼(𝑧𝑘), the existence of
IDP is equivalent to the nonemptiness of the core 𝐶(𝑧𝑘), i.e.,
the existence of a solution of the following inequalities:

∑
𝑖∈𝑆

𝛼𝑖 (𝑘) ≥ 𝑉 (𝑧𝑘; 𝑆) ,
𝑆 ⊂ 𝑁, ∑

𝑖∈𝑁

𝛼𝑖 (𝑘) = 𝑉 (𝑧𝑘; 𝑁) . (26)

It can be simplified as

∑
𝑖∈𝑆

𝛾𝑖 ≥ 𝑉 (𝑆) , 𝑆 ⊂ 𝑁, ∑
𝑖∈𝑁

𝛾𝑖 = 𝑉 (𝑁) . (27)

Under the cooperative agreement, players will choose
their cooperative strategies. But if some player 𝑖 ∈ 𝑁 deviates
from her cooperative strategy at some stage 𝑠, 𝑠 = 0, 1, 2, . . .,
she will play her best response to other players’ cooperative
strategies and get the payoff 𝐻𝑖(𝑢 ‖ 𝑢̃𝑖) = max𝑢𝑖{𝐻𝑖(𝑢 ‖ 𝑢𝑖)}
at this stage. Suppose other players will choose their trigger
strategies from the next stage until the end and the deviator’s
future payoff will be 𝛿𝑉({𝑖})/(1 − 𝛿). If 𝛼𝑖(𝑠) ≥ 𝐻𝑖(𝑢 ‖𝑢̃𝑖) + 𝛿𝑉({𝑖})/(1 − 𝛿), player 𝑖 will never deviate from her
cooperative strategy. The above inequality can be simplified
to 𝛿 ≥ 1 − (𝛾𝑖 − 𝑉({𝑖}))/(𝐻𝑖(𝑢 ‖ 𝑢̃𝑖) − 𝑉({𝑖})) when 𝐻𝑖(𝑢 ‖𝑢̃𝑖) ̸= 𝑉({𝑖}). When 𝐻𝑖(𝑢 ‖ 𝑢̃𝑖) = 𝑉({𝑖}), it will be 𝛾𝑖 ≥ 𝑉({𝑖}),
which always holds. Let

𝛿 = max
𝑖∈𝑁:𝐻𝑖(𝑢‖𝑢̃𝑖)>𝑉({𝑖})

{1 − 𝛾𝑖 − 𝑉 ({𝑖})𝐻𝑖 (𝑢 ‖ 𝑢̃𝑖) − 𝑉 ({𝑖})} . (28)
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The following theorem can be formulated.

Theorem3. If the imputation set𝐿 defined by (25) is not empty
and the discount factor satisfies 𝛿 ≥ 𝛿, then in the repeated
infinite stage game 𝐺𝛼(𝑧0), the situation (𝑢∗1 (⋅), . . . , 𝑢∗𝑛 (⋅)) with
payoffs (𝛼1, 𝛼2, . . . , 𝛼𝑛) guaranteed by the time-consistent IDP𝛽 is a Nash equilibrium.

We can consider the similar deviation for coalitions. If
some coalition 𝑆 ⊂ 𝑁 acts individually and deviates from
her cooperative strategy at some stage 𝑠, at the current stage
she will get the payoff ∑𝑖∈𝑆𝐻𝑖(𝑢 ‖ 𝑢̃𝑆) = max𝑢𝑆{∑𝑖∈𝑆𝐻𝑖(𝑢 ‖𝑢𝑖)}, 𝑢𝑆 = {𝑢𝑖, 𝑖 ∈ 𝑆}, 𝑠 = 0, 1, 2, . . .. From the next stage,
other players will form a coalition 𝑁 \ 𝑆 and choose the
trigger strategies. So the deviating coalition’s future payoff
will be 𝛿𝑉(𝑆)/(1 − 𝛿). Coalition 𝑆 will not deviate from
her cooperative strategy, if ∑𝑖∈𝑆 𝛼𝑖(𝑠) ≥ ∑𝑖∈𝑆𝐻𝑖(𝑢 ‖ 𝑢̃𝑆) +𝛿𝑉(𝑆)/(1 − 𝛿). It can be simplified to 𝛿 ≥ 1 − (∑𝑖∈𝑆 𝛾𝑖 −𝑉(𝑆))/(∑𝑖∈𝑆𝐻𝑖(𝑢 ‖ 𝑢̃𝑆) − 𝑉(𝑆)) when∑𝑖∈𝑆𝐻𝑖(𝑢 ‖ 𝑢̃𝑆) ̸= 𝑉(S).
When∑𝑖∈𝑆𝐻𝑖(𝑢 ‖ 𝑢̃𝑆) = 𝑉(𝑆), it will be∑𝑖∈𝑆 𝛾𝑖 ≥ 𝑉(𝑆), which
always holds. Let

̌𝛿 = max
𝑆⊂𝑁:∑𝑖∈𝑆𝐻𝑖(𝑢‖𝑢̃𝑆)>𝑉(𝑆)

{1
− ∑𝑖∈𝑆 𝛾𝑖 − 𝑉 (𝑆)∑𝑖∈𝑆𝐻𝑖 (𝑢 ‖ 𝑢̃𝑆) − 𝑉 (𝑆)} .

(29)

The following theorem can be formulated.

Theorem 4. If the core 𝐶 defined by (27) is not empty and the
discount factor satisfies 𝛿 ≥ ̌𝛿, then in the repeated infinite
stage game 𝐺𝛼(𝑧0), the situation (𝑢∗1 (⋅), . . . , 𝑢∗𝑛 (⋅)) with payoffs(𝛼1, 𝛼2, . . . , 𝛼𝑛) guaranteed by the time-consistent IDP 𝛽 is a
strong Nash equilibrium.

5. Example

To illustrate the theoretical result, we consider a repeated
infinite stage game 𝐺 in which the two-person Prisoner’s
dilemmagameΓ = ⟨𝑁;𝑈1, 𝑈2; 𝐻1,𝐻2⟩ is played at each stage.

For each player 𝑖, 𝑈𝑖 consists of two strategies 𝐶 and 𝐷.𝐻𝑖(𝑢1, 𝑢2) is the payoff of player 𝑖 defined by 𝐻𝑖(𝐶, 𝐶) =6, 𝐻𝑖(𝐶,𝐷) = 0, 𝐻𝑖(𝐷,𝐶) = 9, 𝐻𝑖(𝐷,𝐷) = 1, 𝑖 = 1, 2.
Since strategy 𝐷 dominates strategy 𝐶 for each 𝑖, situation(𝐷,𝐷) is a Nash equilibrium in game Γ. But it is not Pareto
optimal since situation (𝐶, 𝐶) is better off for both players.

The following strategies describe the cooperative behav-
iors for two players: they choose 𝑢1 = 𝐶, 𝑢2 = 𝐶 at each stage
game. In Table 1, values of the characteristic function 𝑉(𝑆)
and the deviation payoffs in stage games are presented. Using
these values, we find the Shapley value 𝛾𝑖 as the cooperative
solution in each stage game, the imputation 𝛼𝑖(𝑘) from stage𝑘, and the time-consistent IDP 𝛽𝑖(𝑘), 𝑘 = 0, 1, 2, . . . (see
Table 2).

From (28) and (29), we get 𝛿 = ̌𝛿 = 3/8. Therefore,
following Theorem 3, for all 𝛿 ∈ [3/8, 1), the strategy
profile (𝐶, 𝐶) with players payoffs (6/(1 − 𝛿), 6/(1 − 𝛿)) is a
Nash equilibrium in the class of trigger strategies. It can be

Table 1: Characteristic function and deviating payoff.

𝑆 {1, 2} {1} {2} 0𝑉(𝑆) 12 1 1 0∑
𝑖∈𝑆

𝐻𝑖(𝑢 ‖ 𝑢̃𝑆) 12 9 9 0
Table 2: Shapley value and IDP.

Player 𝑖 Player 1 Player 2𝛾𝑖 6 6
𝛼𝑖(𝑘) 61 − 𝛿 61 − 𝛿𝛽𝑖(𝑘) 6 6
checked that condition (27) holds for the Shapley value in
each stage game, which implies the Shapley value is in the
core of each stage game. This is also true for the repeated
infinite stage game 𝐺. Therefore, following Theorem 4, for all𝛿 ∈ [3/8, 1), the strategy profile (𝐶, 𝐶) with players payoffs(6/(1 − 𝛿), 6/(1 − 𝛿)) is also a strong Nash equilibrium.

6. Conclusions

In this paper, the sufficient conditions are presented to
guarantee the existence of Nash or strong Nash equilibria in
multistage games, which guarantee the strategic stability of
cooperative solutions. They are related closely to the discount
factors and are simplified in the repeated infinite stage games.
These conditions avoid the loss of super-additivity of a class
of general characteristic functions. Furthermore, if random
influences are taken into account, the considered problem is
quite involved and this is one of our future research works.
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