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Drivers consecutively direct their gaze to various areas to select relevant information from the traffic environment. The rate of
crash risk increases with different off-road glance durations in different driving scenarios. This paper proposed an approach to
identify current driving scenarios and predict driver’s eyes-off-road durations using Hidden Markov Model (HMM). A moving
base driving simulator study with 26 participants driving in three driving scenarios (urban, rural, and motorway) was conducted.
Three different fixed occlusion durations (0-s, 1-s, and 2-s) were applied to quantify eyes-off-road durations. Participants could
initiate each occlusion for certain duration by pressing a microswitch on a finger. They were instructed to occlude their vision as
often as possible while still driving safely. Drivers’ visual behavior and occlusion behavior were captured and analyzed based on
manually frame by frame coding. Visual behaviors in terms of glance duration and glance location in time series were used as input
to train HMMs. The results showed that current driving scenarios could be identified ideally using glance location sequences, the
accuracy achieving up to 89.3%. And motorway was relatively distinguishable easily with over 90% accuracy. Moreover, HMM-
based algorithms that fed up with both glance duration and glance location sequences resulted in a highest accuracy of 92.7% in
driver’s eyes-off-road durations prediction. And higher accuracy achieved in longer eyes-off-road durations prediction. It indicates
that time series of glance allocations could be used to predict driving behavior and indentify driving environment. The developed
models in this study could contribute to the development of scenario sensitive visual inattention prewarning system.

1. Introduction

There is compelling evidence demonstrating that drivers
gradually become less aware of the driving situation over time
with the eyes-off-road duration increasing [1]. Particularly,
the longer eyes-off-road duration is associated with lower
driving performance and higher risk of safety-critical inci-
dents [2]. Specifically, longer off-road glance results in larger
lane deviation and slower response to leading vehicle braking
[3] and increases standard deviation of lane position [4].
The results of the 100-Car Naturalistic Driving Study show
that crash risk and near-crashes increase by approximately 2
times when the driver’s off-road glance duration exceeded 2
s during safety-critical events [5]. It is regarded that drivers’
uncertainty accumulates over time with their visual attention
away from the road.With the increased presence of in-vehicle

information systems (IVIS), it becomes more common that
drivers divert visual attention away from the road.

Due to the increasing threat to driving safety, several
approaches have been developed to estimate visual inat-
tention [6]. Glance duration has long been recognized to
influence driving performance significantly and is expected
as a sensitive indicator of driving state. Some researchers
set the threshold of distraction depending on the relation-
ship between distraction severity and driver’s eyes-off-road
duration. When driver’s eyes-off-road duration reaches the
threshold, he/she is considered to be distracted [7]. However,
such methods rarely distinguish the glanced targets related
to driving or not. It may not really reflect driving state only
based on driver’s off-road glance. The National Highway
Traffic Safety Administration (NHTSA) set 2-seconds off-
road glance as one of the limiting criteria for guidelines of
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acceptable visual-manual in-vehicle information system [8].
Nevertheless, glancing away from the road just for 1 second
may endanger driving safety in some conditions.

Glance location also has an impact on crash risks. Intu-
itively, it may yield additional benefits to use both temporal
and spatial dimensions of visual behavior. Some studies
focused on glance location as an indicator to recognize visual
inattention. Therefore, 1.5th power of glance duration and
a penalty for glance location have been used as principal
characteristics of visual patterns to model driving behavior
[9]. However, it only used visual angle to the road center
as the penalty for glance location, not defining the actual
glance targets. AttenD algorithm with a time buffer of 2 s
was developed by Kircher et al. to detect visual distraction
[10, 11]. And the glance location was defined into three areas:
forward road, driving-related areas, and other areas. The
initial buffer decreases when the driver looks away from
the road and increases when his/her gaze returns back to
the road and driving-related areas. If the buffer runs empty,
the driver is classified as distracted. However, the promising
approach did not take the current driving scenarios into
consideration. One study shows that drivers spend more
time looking at the road and have a lower proportion of
long off-road glances in complicated driving context [12]. In
other words, the severity of eyes-off-road also depends on
the demanding of the driving context [13]. In addition, most
of the proposed algorithms tried to identify the “distracted”
driving state when driver conducting additional tasks or off-
road glance duration reaching the predefined threshold. It
means the warning systems usually react to the degraded
driving performance induced by inattention passively [14].
Few studies have been conducted to predict visual inattention
in advance.

Driving has been recognized as a set of dynamic and
complex interactions with the environment [15]. Attentive
Drivers should look at targets relevant to driving frequently
to maintain good situational awareness. When and where
to look was not only determined by drivers’ subgoal but
also depends much on stimulus properties of an object in
driving scenarios [16]. For instance, driving in urban road
requires drivers to update his or her information about
parked cars, intersections, pedestrians, cyclist, traffic lights,
and other surrounding traffic, while drivers only need to
monitor driving speed, lane position, and surrounding cars
on motorway. How often and how long they need to look is
related to innate characteristics of the contextual factors, such
as information decay speed. Meanwhile, different contextual
targets require different amount of attention. That is, driving
scenario has a significant impact on drivers’ visual behavior.
Thus, drivers may show different glance strategies driving
in different scenarios, which could be used to distinguish
driving scenarios in turn. Fridman demonstrated that visual
behavior could be used to predict driving environment using
HMM from just 6 seconds with the 100-car naturalistic
driving data [17].

Driver behavior is a continuous process, and the current
state relies on the last state. Each state has a probability
distribution which could be represented as the Markov
process. Hidden Markov Model (HMM) is a probabilistic

sequence classifier which could give a probabilistic prediction
of driving state over future based on past driving behavior.
It was extensively used to recognize driver’s intention and
predict driving behavior. Mauricio et al. tried to distinguish
glance patterns in manual radio tuning, voice-based radio
tuning and none-radio tuning driving with the application of
HMM. It suggested that the differences in glance allocation
strategies serve as an effective predictor of driving state
[18]. Khaisongkram et al. described steering behaviors as a
dynamic sequence model with the application of the HMM
to recognize and predict steering behaviors [19]. Beyond that,
HMM was also used to predict driver’s future road segments
[20]. In addition, John employed a discrete Markov chain
representation to predict a vehicle’s near-term future route
based on its near-term past route and trained the model
with vehicle’s long-term trip history from GPS data. It was
reported that the next road segment could be predicted with
an accuracy of 90% [21].

Visual behavior was demonstrated directly associated
with driving state and could be used to predict driving state
and driving scenario within a short time period.Therefore, it
is quite plausible to expect that drivers’ eyes-off-road duration
could be predicted using visual behavior characters in differ-
ent driving scenario with the application of HMM. Instead
of merely detecting the distracted driving state, this study
proposed a proactive approach to predict the forthcoming
off-road glance duration in advance of critical events occurs.
It takes driving scenarios into account, which may improve
the context sensitivity of visual inattention warning system.

2. Materials and Methods

2.1. Participants and Apparatuses. A total of 26 participants
between the ages of 22 and 45 years (M = 31.4; SD = 5.7
years) with a driving experience of 6–13 years (M = 8.4; SD =
2.5) were recruited from a database of interested participants.
Limitation of participants was done based on valid driver’s
licenses, none motion sickness, and normal or corrected-to-
normal vision. All the participants were compensated with
200 RMB for their efforts.

The experiment was conducted in a high-fidelity motion
base driving simulatorwith 6-degree of freedom (Figure 1(a)).
The visual systemwas a high definition ring screen projection
providing a 180 × 30∘ (horizontally × vertically) visual
field. The cabin is modified by original car Besturn B50
with high-precision vehicle dynamic simulation model. The
driving simulator was equipped with an automatic gearbox.
Participants only needed to operate gas pedal, steering wheel,
and brake pedal. And the CAN bus communication and
electrical system from the original car were connected to the
driving simulator.

The participants’ eyes-off-road duration was manipu-
lated by semi-self-paced vision occlusion method. PLATO
(portable liquid-crystal apparatus for tachistoscopic occlu-
sion) goggle was used to achieve occlusion (Figure 1(b)).
The default state of the google was open. Participants could
occlude themselves for a predefined certain duration by
pressing a button attached to their finger. And they would be
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(a) Driving simulator (b) PLATO goggle (c) Dikablis eye-tracker

Figure 1: Experiment apparatuses.

told the oncoming occlusion duration by the experimenter
during the neutral phase.

Eye glance data were recorded through a head-mounted
eye tracker (Dikablis eye-tracking system V3.0, Ergoneers
GmbH,Germany) (Figure 1(c)).The eye trackermeasures eye
movements with 60 Hz and displays them superimposed on
a scene view video recorded by a camera on the front of the
eye tracker.

2.2. Experiment Design and Driving Task. The experiment
followed a 3 (scenario) × 3 (occlusion duration) within-
subjects design. Urban road, rural road, and motorway were
chosen as the three tested scenarios. The limited speed
for each type of road was 60km/h, 90km/h, and 120km/h,
respectively. There were intersections, pedestrians, parked
cars, dense oncoming vehicles, and bus stops in the urban
road. In contrast, no other interacting traffic presented in the
motorway except discrete oncoming vehicles in the opposite
lanes and curves, while moderate oncoming vehicles, traffic
signs, and sharp curves existed in the rural road. Thus,
urban road was regarded as the most demanding followed
by rural road, and motorway was the least demanding.
The three predefined different occlusion durations were 0
s, 1 s, and 2 s. Each participant completed 9 combinations,
henceforth called subtrails, whose orderwas counterbalanced
across participants to avoid learning effect. Each subtrial
was about 5 minutes long, which were connected with each
other by a 200 meters long neutral phase. During the neutral
phase, participants do not need to occlude themselves. But
countdown time ticker was displayed at the bottom of front
display during the neutral phase to notify the participants for
the start of next subtrail.

2.3. Procedure. On arriving at the simulator lab, each partici-
pant was given an instruction about the experiment, and then
he/she signed an informed consent document. After that,
the participant sat in the simulator and wore PLATO goggle
with microswitch for occlusion and eye tracker which was
calibrated for each participant. Then participant practiced
the operation of the driving simulator for approximately 5
minutes until he/she got used to occlusion durations in the
three scenarios. Following the practice driving, participants
conducted all the nine subtrials, which took approximately
one-hour long. During the whole experiment, participants

were instructed to follow the limit speed in each scenario.
Furthermore, they were told to close the goggle when they
felt they did not need information anymore, but safe driving
and obeying traffic regulations received priority.

2.4. Analysis. Vehicle movement status data and scenario
variable parameters were logged at 10 Hz directly from the
driving simulator and were time synchronized with eye-
movement data and occlusion behavior data. Data from three
participants were excluded from the analyses due to poor eye-
tracking quality and data logging problems.Thedatawas only
analyzed for each subtrial, and all the neutral phases were
excluded.

The visual behavior was only analyzed for the segment of
10 seconds before each occlusion. It was manually analyzed
frame by frame to encode all glances of each sub-trail based
on the recorded video stream. During the encoding process,
one occlusion case and five areas of interest (AOIs) were
defined: “Occlusion,” “Forward,” “Oncoming” (oncoming
vehicles), “Speedometer,” “Mirror,” and “Others.” Appre-
antly there was no occlusion in baseline. “Others” refers as
intersections, pedestrians, parked cars, traffic signs, curves,
bus stops, and other areas not related to current driving.
The value of each AOIs was set individually per participant
depending on visual inspection of the gaze video in order to
eliminate logging inaccuracy. Eye movements were analyzed
in accordance with the ISO-metrics number of glances and
glance duration. A glance is defined as the maintaining of
the gaze within an AOIs; it lasts from when the gaze moves
towards an AOIs to the moment it moves away from the AOIs
[22].

Glance transition could be referred to as the driver’s
glance location transition and glance state transition. Glance
location transition referred to driver’s glance location shifted
from one AOIs to another AOIs in spatial domain [23]. It
only contains glance location change information without
information about glance duration. That is, it could be used
to model where participants looked but have no idea about
how long they looked in an individual glance. Glance state
transition was defined as glance state changed from one
moment to next moment in time series based on frame-
by-frame analysis. It was suitable for modeling both glance
location and glance duration. In the present research, the 10-
second observation sequences were discretized into 100 state
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samples (spaced 0.1 seconds apart) to model glance duration,
as the lowest-resolution sampling was 10 Hz in the video
software. So, glance state means where does driver look in 0.1-
second duration in the present study. Glance state transition
is glance location changes from time x to time x+0.1 s. As a
result, it involves large parts of self-transitions. Both glance
transition probability matrices in the study included 6× 6=36
elements, as 6 glance targets were defined here. They were
both computed tomodel characteristics of visual behavior for
scenario identification and eyes-off-road duration prediction.

3. Dataset and Modeling

The driver’s visual field was divided into 6 AOIs. It means
the gaze sequence of the 10-second observations could take
on 6 values. And each value in the observation sequence was
regarded as a discrete variable in the HMM. Both scenario
identification and eyes-off-road prediction were modeled as
ternary classifications problem as three driving scenarios and
three eyes-off-road durations were defined here.

For all occlusion cases, 10-s before each occlusion were
extracted as observation sequences in occlusion conditions.
Observation sequences in baseline were extracted based
on occlusion locations in occlusion 1-s and occlusion 2-
s conditions. To be specific, the locations of extracted
observation sequences in baseline were the same as the
other two occlusion conditions. A total of 3000, 2215, and
1425 observation sequences were extracted from baseline,
occlusion 1-s, and occlusion 2-s condition separately. As a
result, 6640 observation sequences were obtained in all. After
sorting out the 6640 observation sequences according to
driving scenarios, a total of 1587, 1725, and 2162 observation
sequences were extracted for urban road, rural road, and
motorway separately.

The final dataset was divided into training dataset and
verification dataset with a ratio of 9:1. So 90% of the final
dataset was randomly selected to train the model, and the
rest 10% of the final dataset was used to verify the recognition
performance of the models. Concretely, 90% of the observa-
tion sequences from baseline, occlusion 1 s, and occlusion 2 s
were separately selected as the training dataset for identifying
the current driving scenario. And 90% of the observation
sequences from urban road, rural road, and motorway were
separately chosen as the training dataset for predicting eyes-
off-road durations. Thus, the impact of other variables on
the accuracy of identification model and prediction model
caused by data randomly selected could be reduced.

Due to the unknown distribution of visual attention
transition probability in different driving conditions. It was
difficult to assume a priori temporal and spatial structure of
the driver's visual behavior under different driving condi-
tions. Therefore, HMM inference method was used here to
model driver’ visual behavior.That is, there was no restriction
on the participant's glance transition sequence in specific
driving conditions. On the contrary, the models were allowed
to learn any visual behavior patterns during training. In
the present research, one HMM was trained per condition.
That is, three HMMs were established for driving scenario

Table 1: Average number of occlusions per scenario and occlusion
duration.

Driving conditions Average number of occlusions
Urban Rural Motorway

Occlusion 1 s 26.5±7.2 30.2±10.3 41.4±16.3
Occlusion 2 s 16.3±4.8 18.9±6.9 27.6±9.7

identification and three HMMsmodels were trained for eyes-
off-road duration prediction separately. The detailed process
was shown in Figure 2.

The trained models for driving scenarios identification
and eyes-off-road durations prediction returned the maxi-
mum likelihood estimate by calculating the log-likelihood
estimates for the 10-s observation sequences. Each model
contained three HMM classifiers (one each for the driving
scenario, and one each for the eyes-off-road duration). When
a new observation sequence was added to the established
classifiers, the log-likelihood value of each classifier was cal-
culated, and the maximum log-likelihood probability gener-
ated in the HMM classifiers was returned. Thus, the updated
HMM classifiers could best interpret the new observation
sequence.

4. Results

Occlusion number and glance number to eachAOIswere first
analyzed to see the occlusion behavior and visual behavior
per scenario and occlusion duration. Two-way repeated-
measures analyses of variance identified significant main
effects for scenario (F(2, 44) =26.7, p<.05) and occlusion
duration (F(1, 22)=19.5, p<.05) on number of occlusions.
It could be seen from Table 1 that number of occlusions
decreasedwith the demanding of driving scenarios. And vari-
ations of occlusions were larger in less demanding scenarios.
In addition, number of occlusions was less in occlusion 2 s
condition than that in occlusion 1 s condition.

Histograms of total glance number to different AOIs,
divided by different driving conditions (baseline, occlusion
1 s, and occlusion 2 s) per scenario were displayed in Figure 3.
As expected, drivers looked at “Forward” more times in all
three driving scenarios. A repeated measures analysis was
conducted for the number of glances towards “Forward” with
the factor of driving scenario and occlusion duration. It was
found that participants glancedmore frequently to “Forward”
inmotorway (F(2, 44) =20.1; p< .05). Corresponding analyses
of variance were also conducted for the number of glances
to “Oncoming,” “Speedometer,” “Mirror,” and “Others.”
Participants directed their gaze to “Others” and “Oncoming”
more often in urban road and rural road, respectively. It
was notable that attention was shifted more frequently to
the “Speedometer” in occlusion conditions, which was even
more in occlusion 2 s condition (F(2, 44) =15.6; p < .05).
Also, “Speedometer” received more glances in scenarios with
higher speed (F(2, 44) =13.7; p < .05).

Glance transition probabilities between different gaze
targets involved in the defined 6 AOIs were presented in
Figure 4. It provided a visualization of the driving scenarios
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Figure 2: The framework of driving scenarios identification and eyes-off-road durations prediction.

Occlusion
Forward

Oncoming

Speedometer
Mirro

r
Others

0

1

2

3

4

5

U
rb

an
 ro

ad
N

um
be

r o
f g

la
nc

es

Occlusion
Forward

Oncoming

Speedometer
Mirro

r
Others

0

1

2

3

4

5

Ru
ra

l r
oa

d
N

um
be

r o
f g

la
nc

es

Occlusion
Forward

Oncoming

Speedometer
Mirro

r
Others

0

1

2

3

4

5

M
ot

or
w

ay
N

um
be

r o
f g

la
nc

es

Baseline
Occlusion 1s
Occlusion 2s

Figure 3: Number of glances towards different AOIs in three scenarios, divided by occlusion conditions.

and eyes-off-road durations classification problem.The three
subfigures in the top row illustrated the glance location
transition matrices for urban road, rural road, and motorway
separately. As expected, participants shifted their attention
from “Forward” and “Oncoming” to “Others” in urban road.
While, the spatial distribution of visual attention in rural
road illustrated that glance location changed from “For-
ward,” “Speedometer,” and “Others” to “Oncoming” more
frequently. And there was a high percentage of glance tran-
sitions from “Occlusion” and “Forward” to “Speedometer” in
motorway. The three subfigures in the bottom row described
the glance state transition matrices (including both glance
location and duration transition characteristics) for three
different eyes-off-road durations. It could be seen that partic-
ipants glanced “Forward” for longer time in baseline. Except
“Speedometer”, self-transition of all other AOIs increased
with the increasing duration of occlusion. These matrices
interpreted the aggregate differences in glance transitions
driving with different eyes-off-road durations in different
driving scenarios. And these discriminating characteristics
could be used to identify driving scenarios and predict eyes-
off-road durations.

The performance metrics of established models were
given in accuracy as the percentage of correctly classified
sequences. Table 2 showed classification results (average
accuracy) for driving scenario identification and eyes-off-
road duration prediction with the input of different visual
behavior features. Combination was short for combination
of glance location and glance duration features. As can be
seen in Table 2, the HMM showed high performance in both
distinguishing urban road, rural road, motorway, and pre-
dicting drivers’ eyes-off-road durations. As expected, when
using the combination of glance location and duration as the
input, the trained models resulted in the highest accuracy.
Over 90% accuracy was achieved in both distinguishing
driving scenarios and predicting eyes-off-road duration with
the input of combination features. This strongly supports the
idea that the driving scenarios and driving behavior modality
may be characterized by where the drivers direct their gaze
and how long they decide to allocate attention.

Furthermore, the HMM fed up with glance location
sequence also showed strong performance with accuracy of
more than 85%, which was better above that of a random
classifier. Particularly, themodel with input of glance location
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Figure 4: Glance transition matrices per driving scenarios and eyes-off-road durations. Note that the percentages in each matrix cell present
the transition probability, gray cells represent the differences among each condition, and the darker level indicates the higher probability.
Rows: (top) driving scenarios and (bottom) occlusion durations.

Table 2: Classification accuracies of driving scenario identification
and eyes-off-road duration prediction using visual features of glance
location and combination of glance location and duration.

Class Glance location (%) Combination (%)
Driving scenarios 89.3 90.2
Eyes-off-road duration 86.2 92.7

features almost showed similar performance with the features
of combination in driving scenario identification. It implies
that little performance improved when adding the glance
duration sequence. Therefore, sequences of glance location
were suitable to identify current driving scenario, whereas
the combination of glance location and glance duration
sequences was the best feature to predict driver’s eyes-off-
road duration.

In addition, confusion matrices of each classifier were
calculated during validation procedure to explore the ori-
gin of the misclassifications above. As shown in Figure 5,
motorway was the easiest to be recognized compared with
the other two driving scenarios. Moreover, urban road was
also clearly distinguishable from motorway, which suggested
that the visual behavior in urban road was obviously different
from that in motorway. However, there were still a few
cases that were difficult to identify between the two driving
scenarios. Clearly, the main difficulty of the driving scenario
classification stemmed from the rural road identificationwith

Urban road
86.2%

(n=137)

10.7%

(n=17)

3.1%

(n=5)

Rural road
18.6%

(n=32)

75.0%

(n=129)

6.4%

(n=11)

Motorway
1.4%

(n=3)

5.1%

(n=11)

93.5%

(n=200)

Urban road Rural road Motorway

Figure 5: Confusion matrices of driving scenarios identification
models using glance location sequence.

the other two scenarios. In short, rural road was confused
with the other two driving scenarios. Especially, there were
about 18.5% occasions that have been misclassified as urban
road.

Figure 6 illustrated the confusion matrices in eyes-off-
road durations prediction using combination of glance loca-
tion and duration sequences. It could be seen that baseline
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Figure 6: Confusion matrices of eyes-off-road durations predic-
tion models using combination of glance location and duration
sequence.

driving was clearly distinguishable among the three condi-
tions with an accuracy of over 90%. Also, occlusion 1 s and
occlusion 2 s could be predicted with an accuracy of 74.7%
and 88.2% from baseline driving, respectively. Noticeably,
when driving in baseline and driving with occlusion 2 s, there
were 7.7% and 9.7% cases that have been treated as occlusion 1
s, respectively. And there were 18.1% cases in occlusion 1 s that
were misclassified to be occlusion 2 s. Only 74.7% occlusion 1
s cases could be recognized accurately. This explains that the
main resource of eyes-off-roadmisprediction comes from the
prediction of two occlusion conditions. And HMM could be
used to predict driver’s eyes-off-road duration over 1 s.

5. Discussion

The current study explored to predict driver’s eye-off road
duration in different driving scenarios by building Hidden
MarkovModels (HMM) using driver’s visual behavior. It was
based on the assumption that driver adopts different visual
strategies in different scenarios [24].The experimental results
showed that occlusion behavior was well in line with Kujala et
al. findings [25]. AndHMMs could be used to predict driving
state with the input of drivers’ visual behavior sequences
[26]. Features of glance location sequence resulted in high
performance in driving scenario identification. This implies
that differences in glance location sequences are effective
in driving state recognition and could be used to identify
current driving scenario. As for predicting driver’s eye-off-
road duration, the trained models achieved ideal accuracy
by using combination of glance location and glance duration
sequence as in put of HMM. It may due to that drivers’ eyes-
off-road duration is related with both where and how long
drivers direct their gaze.

Confusion matrices of each classifier were calculated to
seek for the origin of the misclassifications [18]. It illustrated
that there were some misclassifications in rural road iden-
tification. It may because the contextual factors for visual
attention in rural road were similar to that in the other two
scenarios. As a result, participants employed similar glance

patterns. Concretely, participants usually shifted attention
to the forward road and oncoming vehicles after looking
other targets in rural road and urban road. Also, participants
allocated their attention to speedometer and forward road
in a similar way when driving on rural road and motorway.
In addition, occlusion 1 s was misclassified to occlusion 2 s
condition much. It may come from the fact that participants
allocated their attention to sample enough information to
prepare for the oncoming occlusions [27]. And the partici-
pants adopted similar visual search patternwhen drivingwith
occlusion 1 s and occlusion 2 s.

The findings of this study may potentially contribute to
the development of proactive distraction mitigation system
that recognizes the current driving scenarios and predicts
driving distraction. If it predicts the driver to shift his/her
attention away from road exceed the predefined threshold in
certain driving scenario, suitable warnings will be provided.

There are some limitations that needed to be considered
in this study. First, the experiment employed occlusion
method to simulate drivers’ eyes-off-road durations in a
driving simulator. So, the results may not be able to directly
compare to on-road driving with actual additional driving
tasks due to lack of any actual crash risk and peripheral vision
[28], which may interfere with drivers’ visual behavior. It is
well known that drivers’ glance behaviour differs strongly
between different situations [29]. Given the artificial sim-
ulated scenario and rather limited number of participants,
the validity of presented results in other situations should be
taken into account, and to what extent the trained HMMs
hold for larger naturalist data should be examined. Second,
the time window was set 10 s which was a bit long to identify
driving sate in real time. Efforts should be made to shorten
the time window in order to distinguish driving scenario and
predict drivers’ eyes-off-road duration timely. Alternatively,
sliding window-based algorithms could be employed to
integrate glance history with glance duration and location
to boost the classification performance. Third, HMM was
the only technique that used in this study, no comparison
with others was made. Higher performance may achieve
with alternative techniques. Future work should compare this
modeling technique with other machine learning algorithms
such as Recurrent Neural Networks (RNN), Random Forest,
Dynamic Bayes Classifiers, and Decision Trees. In the future,
this system can be extended by using GPS and vehicle
sensor data, which may promote scenario identification
performance.

6. Conclusions

The present study applied Hidden Markov Model-based
framework to identify driving scenarios and predict drivers’
eyes-off-road durations using sequences of glance location
and duration in a driving simulator. Themodels developed in
this study generated promising performance with the input of
glance location sequences in driving scenarios identification.
And using both sequences of glance location and glance
duration as the input of HMM achieved the highest accuracy
in predicting driver’s eyes-off-road durations. Furthermore,
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the motorway was the easiest to be distinguished from
the other two driving scenarios. However, urban road and
rural road shared over 10% similarity. Also, driver’s eyes-
off-road durations over 1 s could be predicted from baseline
driving accurately, whereas 18.1% cases of occlusion 1 s were
misrecognized as occlusion 2 s. This study suggests that
both glance duration and glance location could be used to
reflect driving states, and HMM seems to be useful in driving
behavior prediction. The findings, therefore, have practical
implications for developing proactive driving distraction
warning system and may contribute to improving driving
safety.
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distraction warnings - Effects on drivers’ visual behavior and
acceptance,” International Journal of Human-Computer Studies,
vol. 90, pp. 39–52, 2016.

[14] B.Donmez, L.N. Boyle, and J. D. Lee, “The impact of distraction
mitigation strategies on driving performance,” Human Factors:
The Journal of the Human Factors and Ergonomics Society, vol.
48, no. 4, pp. 785–804, 2006.

[15] J. A.Michon, “A critical view of driver behaviormodels: what do
we know, what should we do?” in Human Behavior and Traffic
Safety, pp. 485–524, 1985.

[16] W. J. Horrey, C. D. Wickens, and K. P. Consalus, “Model-
ing drivers’ visual attention allocation while interacting with
in-vehicle technologies,” Journal of Experimental Psychology:
Applied, vol. 12, no. 2, pp. 67–78, 2006.

[17] L. Fridman, H. Toyoda, S. Seaman et al., “What can be predicted
from six seconds of driver glances?” in Proceedings of the 2017
ACM SIGCHI Conference on Human Factors in Computing
Systems, CHI 2017, pp. 2805–2813, USA, May 2017.
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