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This paper discusses the dynamics of the mean-field stochastic predator-prey system. We prove the existence and pathwise
uniqueness of the solution for stochastic predator-prey systems in the mean-field limit. Then we show that the solution of the
mean-field equation is a periodic measure. Finally, we study the fluctuations of the periodic in distribution processes when the

white noise converges to zero.

1. Introduction

The predator-prey equations is one of the most famous
population models

sl 2o
0
t
70 =30 (255 -p),

where x(t) denotes the prey population density and y(t)
denotes the predator population density. The parameters
r,K,a,u, and D are positive real numbers. By the results
in Ruan and Xiao [1], they discuss all kinds of bifurcation
phenomena. Recently, system (1) was studied extensively
that it exhibits complex dynamical phenomena, including
bifurcation, stability, and attractive [2-8].

However, population systems in the real world are very
often subject to environmental noise [9-15]. According to the
Markov jump approach, a classical stochastic predator-prey
model can be described by

_ﬂ_ y(t) )dt

dx(t)=x(t)r(1 X Tar2®)

+ g, (x(£))dW (1),

px (t)

a+x2(t) —D>dt+g2(y(f))dW(t),

2)

where W, is independent Brownian motions. Biologic i in
population satisfies the following equation, predator-prey
model:

dxi,N ()
x; N () yin (0)
= x. _ b - > d
XiN (t)r<1 % r(“”f,N (t))> t
+ g, (x5 (1) AW (1)

1 N
+D, ( T > xin (B -xy (t)) dt,
(3)

Jj=1j#i
dy; N (£) (t)
= i B (a“ iy (0 D)

+x2 (1) -
+ g, (i (£)) dW; ()

N
+D, (ﬁ . Z Yin(®) = yin (t)> dt,

j=1j#i

dy (9) =y<t>(

where x; 5y and y, 5y denote the population density of x and y
in the ith out of N population, D, and D, are nonnegative real


http://orcid.org/0000-0003-2586-094X
http://orcid.org/0000-0002-5783-5549
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/3584354

number modelling the diffusion between the prey population
density and the predator population density, and W; (i =
1,2,...,n) are independent Brownian motions.

Under regularity conditions, for any fixed k, ((x) x> ¥; 5)s
(X385 Ya.NDs - - -» (XN Vien)) converge inlaw when N — oo,
and then system (3) becomes

dx (t)

_ x@®  y@®
_x(t)r(l K 7r(a+x2(t))> t

+g, (x () dW (t) + D, (Ex (t) - x (t)) dt,
dy (t) (4)

px (t)

P D) dt + g, (y(t)dW (t)

=ym<

+D, (Ey (t) - y (1)) dt,

2(x(0),y(0)) = p.

where g,(x(t)) and g,(x(t)) are Noise intensity functions
and D, and D, are real number. According to the math-
ematical approach [16-20], these systems can appear very
standardized. However, many real world problems process
the nature of mixing randomness and periodicity, e.g., due to
change of temperatures on earth, harvesting seasons, seasonal
economic data, individual lifecycle, and seasonal effects of
weather [15]. Biological populations are very often subject to
random perturbations that come in a more-or-less periodic
way. A number of random periodic results have been studied
in the literature [15, 16, 21-24], but none of them covers (4).
And my method can also be extended to other noise, for
example, the telephone noise, Markovian switching, and Lévy
jumps [25-27].

In the paper, we investigate the dynamics of mean-field
stochastic predator-prey system. First, based on martingale
approach and Vlassov-Limits, we prove the existence and
uniqueness of the solution for mean-field stochastic predator-
prey systems, then, by Tihonov’s fixed point theorem and
martingale techniques, we prove that the solution of the
stochastic predator-prey systems in the mean-field limit is
a strictly periodic law under some suitable assumptions.
Finally, we study the fluctuations of the periodic in distribu-
tion processes when the white noise converges to zero.

2. Preliminaries

Throughout this paper, let (Q, #, {#,},50, P) be a complete
probability space. Suppose that 7, K, a, 4, and D are positive
constants, g, and g, satisfy a Lipschitz condition with
constant L, and g, and g, are bounded,

gl (0) = 0)
9,(0) =0, )
D,,D, > 0.
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Definition 1 (see [28]). Let T > 0 be fixed. A random H-
valued process {x(t) : t € R} is called a d-periodic (in distri-
bution) with period 7 if

vneN, V{t,ty....t,} € R,

and V{B,,B,,...,B,} € #(H),

p( - {wk:x(w,tk+r)eBk}> (6)
k=1

:P(ﬁ{wk:x(w,tk) EBk}>,

k=1
where B(H) is the Borel a-algebra in H.

Letw = {w(t) : t € R} be an H-valued Wiener process
with P{w(0) = 0} = 1. Note that, for any {z;,2,} € H and
0<s<t,

E((w®),2),(),2)) = (2, Wz,) @)
with a nuclear operator W and

E|w(t) - w(s)||2 =|t—s|trW, {t, s} € R, (8)

where 7, : o(w(v) —w(u) :u<v<t), teR.

Theorem 2 (see [1]). If /42 > (16/3)aD? and (u +
\Ju? —4aD?)/2D > K > (2u —\|y? — 4aD?)/2D, then system
(1) has three equilibria: two hyperbolic saddles (0, 0) and (K, 0)
and an unstable focus (or node) (u — \/u* — 4aD?)/2D, r(1 -
(u— |y — 4aD?)/2KD)(a+ ((u— |y — 4aD?)/2D)?)) in the
interior of the first quadrant. Moreover, system (1) has a unique
limit cycle, which is stable.

3. Existence and Uniqueness

In the section, under some suitable assumptions, we prove
the existence and uniqueness of the solution for mean-field
stochastic predator-prey systems.

Theorem 3. For every N > 2, N € N, let v denote a
probability measure on [0, 00) X [0, 00) such that

” y*dv(x, y) < 00

and ” exp (yxz) dv(x,y) <o ©)

for some y > 0.

(i) Then there exists a unique global strong solution of
system (3).

(ii) Then there exists a unique nonnegative solution of
system (3) satisfying 2(x(0), y(0)) = p, v < L,u < 1, and

IOt(Ex(s) + Ey(s))ds < co forall t > 0.
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Proof. (i) To show that this solution is global, we prove that it
does not explode in finite time.
Let

ZiN = XNt YiN- (10)
From (3), we have

xn@® i@ > gt
K r (a + X7y (t))

+ g1 (x5 () AW, (1)
zN (t)> dt

< Z x]N(t)

dz; n = x; v (1) r<1 -

1,j#i
10 a
1N( )
+y;n () () ( )
’ (D)
+ 9, (yin () dW; (1)
+D2<N 1 Z yin () - J’zN(f)>
j=lj#i
For m € N, define Hrlr;z ‘R — [0, co0) by
H,, (x,y)
Xy 2 .
_ a+x2+rx if |x|,|y|§m
Lipschitz, bounded, nonnegative otherwise
(12)
H,, (x,7)
puxy .
I vow if |x|,[y| <m
Lipschitz, bounded, nonnegative otherwise

and g;,,, (i=1,2) by

g; (x) if0<x<m
gi,m (X) = (13)

Lipschitz, bounded, otherwise.

Applying It6’s formula, we have

d (zl(’;\',) (t)) <2z leN (t) rdt

+220 9, (X% (1) AW (¢)

1S
m
7 2 NN

j=1,j#i
2
+4 (xf’z'\’,) (t)) dt

+22 g, (i () dW; (1)

+2D,2% (t)dt

N
+2Dzz£ N1 Y Wt

j=1,j#i

+ g5 (v ) dt
<2r( ) dt

+220 g, (X () AW (t)

N
+2D1N . Z )z (t) dt

j=1,j#i

<

+ gf (xf’l'\’,) (t)) dtr

+ 2Zz NgZ (yin @) dW; (1)

N

1
Y 2 () dt
N - 1] 1]#11

+ 95 (y, m (t))dt

+2D,

(14)
Then, we get
E(Z% ) <E(Z2 ) +2r L: E(27 () ds
B (R ©)

1
N-1

2 (0N (9))) ds
(15)

+2(D, + D,)

t N
) L | Z 'E [z%} (s) zf’ﬁ,) (5)] ds.

j=L.j#i

Since the law of (xg"N)(t), yl.(”;\’,)(t)) is symmetric (i = 1,2,

., N), we get
E(zy (t))
< E (2 (0)) +2r Lt (27 (s))
2L Lt E (2 (5)) ds
+2(D, +D,) Lt (2% (s))

(16)

(zl N (0))

+2(r+L+D1+D2)Jt (le(s))



Applying the Bellman inequality, we have

2 2
E (zif") (t)) <E (zif") (0)) X <1
, (17)
+2(r+L+D, +D,) J ez(”L*Dl*Dz)(t_s)ds) .
0

Due to E(z/(0))* = E(z,5(0))* and from [29], then

(x(lf';\),(t),yif'lg(t)) converge weakly to (x; n(), y; n(£)) when
m — 00; by Fatou’s lemma, we obtain that

sup sup E (z, 5 (1)’ < 0o forall T > 0. (18)
N2 0<t<T

Then we have
P{x;x>0, y;y=0forallt>0}=1. (19)

Therefore, we prove the first assertion of the theorem.

(ii) Next, we will prove that there exists a unique nonneg-
ative solution of system (3).

Let JOT Ex(s) + Ey(s)ds < oo for all T > 0; (x(t), y(t))
denotes nonnegative real solution of (4). Set a(t) = Ex(t), b(t)
= Ey(t), and h,(g, (x(t))) where

if |[x]<a, xeR

h (x) = {x (20)

o if |x] >a, x € R.

Then (x,(t), y,(t)) denote the real solution of (4) with

h,(g,(x(t))) instead of g, (x(t)).
Let

z(t)=x()+y(H)
and z, () = x, (t) + v, ().

(21)

Applying Itd’s formula, we get

2, (1)

=2, (0)

! X, (5) Ve (5)
+an(s)r<1— i r(a+xi(s))>ds

+ L hy (g, (x (1)) dW (s)

+ D, Jt (a(s) = x4 (s))ds (22)
0
+D, JO (b(s) =y, (s))ds
[ o220 p)as
07" a+x2(s)

t[ 60w
0
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and

t

Ez, (t) < Ez, (0) + D, J

a(s)ds+D, Jt b(s)ds. (23)
0 0

Then, we get

sup sup Ez, (t) < 0o (24)

a>00<t<T

and

Ez, (t)+(D; - 1) r Ex, (s)ds + D, r Ey, (s)ds
) . (25)
< Ez,(0) + D, J a(s)d5+D2J b(s)ds.
0 0

When &« — 00, then (x4(), y,(-)) converge in law to
(x(), ¥(-)) in C([0, +00), ER%F); by dominated convergence, we
have Ez(t) < Ez(0).

To prove the uniqueness of solution, it will prove that
there are some ¢ > 0 and some > 0 such that

sup E exp (8x2) <00
0<t<1
(26)
and sup Ez* (1) < 0
0<t<1

By iteration method, next, we prove the pathwise uniqueness
on [0, 00).

Firstly. Applying It6’s formula to x, we get
X" (t)

=x"(0)

o x(s) y ()
+Lnrx (S)(l—?—m)ds

+ L: nx""' (s) g, (x (s)) AW (s) @7
+nD, Jt X" () (Ex (s) — x (s)) ds
0
POD [T (9 g e (9 ds
0
Lett, = inf{t >0: z(t) > a}, B:= supxzog; (x), and
X)) =x"(tAT,). (28)

Then, we have

tAT,
Ex™" (t) < ExX"(0) + E J nrx" (s)ds

0

' @ E LW“ X2 (s)ds (29)

tAT,
+ nDlEJ X" (s) Ez (0) ds.
0
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Forall1 < k < n-1,by supOStglExk < oo and Fatou’s
theorem, when &« — 00, we have sup_,_., Ex" < 00, and

t
Ex™ (t) < Ex*(0) + 2nr J X (s)ds
0

+n(2n-1)B Jt Ex™"2 (s)ds (30)
0

t
+2nD;, J x¥1 (s) Ez (0) ds.
0
Since x*! < x*" + 1, it shows that (for n > 1)
Ex™ (t) < Ex* (0) + 2nD,z (0) T

+2n(r + D;Ez (0)) Jt Ex™ (s)ds (1)
0

t
+n(2n-1)B J Ex*% (s)ds.
0
Let r > 0 so that
2 n 2n
E (xo + r) > Ex™ (0) + 2nD,z (0) T. (32)
Then from (31), we obtain that
ExX"(t)<E (xé + r)n

+2n(r + D,Ez(0)) Jt Ex™ (s)ds (33)
0

+n(2n-1)B J: Ex*"%(s)ds.
Now, we consider the equation
dX = (r + D,Ez (0)) Xdt + B"*dw,. (34)
By the It6 formula, we have
EX™ ()= E(Xg +1)"

+2n(r + D,Ez (0)) Jt EX* (s)ds (35)
0

t
+n(2n-1)B J EX*"2 (s) ds.
0
By (34) and (35), as n = 1, we infer that

Ex*(t) <E (xg + r)n + Bt

t (36)

+2(r + D,Ez (0)) J Ex” (s) ds.
0

EX*(t) <E(Xg+r) +Bt

¢ (37)

+2(r+ D,Ez (0)) J EX? (s)ds.
0

5
By Gronwall’s inequality, we get
Ex*(t) <E(xg+7) +Bt+2(r + D,Ez(0))
¢ n
. J A DE(O) (=) (E (xg + r) + Bs) ds (38)
0
= EX*(1).
From (33) and (35), by Gronwall’s inequality, we get
Ex"<EX}", n>1,0<t<T. (39)

2 2 2
Hence, if for some 8 > 0, Ee®Xt < 0o, then Ee®* < Ee®Xi <
0. ,
Note that if Ee* < oo for some ¢, then we have

Ee™ = ¢ Ee™ < oo, (40)
and therefore there exists § = 8(T) > 0 such that

2
sup EeX < co. (41)
0<t<1

Secondly. To prove sup,.,.,Ez* < 0o, defining 7, = inf{t >
0:z(t) > a}, then, fori = 2,3,4and 0 <t < 1,

2 ()

=2 (0)

N x() ¥
+1Lz x(s)r<1 X r(a+x2(s)))ds

+i L 27 g, (x (1) AW (s)

+ Dji J: 27 (Ex (s) - x (s))ds (42)

+ D,i L 2 (Ey (s) — y(s))ds

+thzi_1y(s)<L(s) —D)ds
0

a+ x%(s)

[ ao@awe
0

#3161 [ 27 (1) + 63 (7)) s

and for z(®) = zi(t AT,)and forall k <i—1,let supOStSlEZk,
then we have

EZ*) (1)

= £z (0)

+4 Jt 2D () x (s) (r+(Dy + D,) Ez(0))ds
0

t o
+ 6L J 2% (s)ds
0



< Ez'*" (0)

+4 r 2D (5) (r+ (D, + D,) Ez(0))ds
0

t o
+6L° J 2D (5)ds
0

= £z (0)

t .
+ J 2o (s) (4r +6L+4 (D1 + Dz) Ez (0)) ds.
0

(43)

By Gronwall’s inequality and Fatou’s theorem, when &« — oo,
we get

sup Ez* < c0. (44)

0<t<1

Finally. Let (x(t), y(t)) and (X(t), y(¢)) denote two solutions
of (4) on the same space. Ones already showed that

sup (Ex' (t) + Ey* (t) + EX* (t) + EJ* (1)) < 00. (45

0<t<1
Set
c(s) = Ey(s)-Ey(s),
d(s) = Ex(s) - Ex(s),
xX(s)=x(s) - X(t), (46)
Y=y ) -y@),
Z(s)=z(s) -z ().

By truncation technique, we get

dx* (t) = 2% (1) dx (1) + (g, (x (1) — g, (X ()))* dt

2 =2
0 (a -0 z o Eg) +
Xy _ (47)
(a + 552 (f)) ) dt +2x (t) (gl (x (t))

— g, (X (1)) dW (t) + 2% (t) (D,d ()
~DE (1)) dt + (g, (x () - g, (R (1)) dt,
and

() y ) x ()
K (a+x%(t))

Ex” (t) < E2X (1) (r? (t) -

- +(a+f2(t))>dt+2D1JOd(s)ds (48)

t t
-2D, J Ex*(s)ds+ L* J Ex” (s)ds.
0 0

Discrete Dynamics in Nature and Society

Since
d* (s) < Ex* (t) (49)
then we have

rx (s) B rx? (s)
K

ExX*(t) < JtZEE (s)<
0

x(©)ys)  y®x(s) )ds+(L2
)

=2 - 2
(a+x2(s)) (a+x%(s) (50)

t 2
+ 2r) J Ex’ (s)ds < Jt 2EX (s) Ma(s) ds+ (L2
0 0

+2r) Lt Ex*(s)ds,
where M(s) = max{X(s), 7(s)}. Furthermore, we have
dz* (t) < 2rZ [ (s) + D,d () + Dyc (t) - DX (1)
- D,y (1)) dt +2Z (g, (x) - g, (X)) AW (1)
+22 (9, () - 9, (7)) AW (1)

+[(9: () - 9, @) + (9, () - 9, (7))"] .

Therefore, we have

(51)

t
EZ*(t) < (2r + 1+ 2D, + 2D, + K?) J EX* (s)ds
0
(52)

+(1+2D, +2D, +K?) L: Ey” (s) ds.
Let
H(s) = EX* (s) + E¥” (), (53)
we get
H(t) = E(Z(£) - X (1))* + EX* (5)

< 2EZ% (t) + 3EX* (s) (54)

<k, Lt H (s)ds + g Lt Ej (s) M2 (s) ds,

where
k, = 10r + 2 + 4D, + 4D, + 2K* + 3L*. (55)

Forn > 0, s < L,letq = 1 + I/nand p = n+ 1. Then
1/p + 1/q = 1. By Gronwall’s inequality, we have

EM? (s)X (s) = EM* () x@aV/a (s) %4 s)
< E(M* (9% ()" (Ex ()"

(56)
<E(M¥ ()" (2 (9) " (5 ()

< kzocp (EEZ (s))mp ,
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where

1/2p
a, = supE (M4P) >
0<s<1
(57)
k, = sup (Ex(s))"/7+1 < co.

0<s<1

By Gronwall’s inequality, for t € [0, 1], we showed that

k
H(t) <k J:H(S) ds + o Lt (H (s)""V ds. (58)

a

D(-) is continuous, and by Holder’s inequality, we get

n+l
0<H(@) < [(kﬁ%)L ]
a n+1 (59)

for0<t<e.
For some ¢; > ¢, > 0, it is easily seen that there is a sequence

(n)keny — 00(k — ©0) such that sup H(t) — 0 when
n, — oo uniformly in t € [0, &,] iff

6k
lim mf(k1 . ﬁ) ! i (60)
n—0o a n+1
and
. . 1 n 1/n
lim inf— sup (EM (s)) < 00. (61)

n—oo No<s<e,
By Chebychev’s inequality, we have, for s € [0, ¢,],

P{M(s) > o} < P{x(s) > o} + P{% (s) > 0}

. (62)
<kse 7,
where
ky = sup Eexp (6x2 (t)) + sup Eexp (656’2 (t))
s€[0,¢,] s€[0,¢,] (63)
< 00.
Hence, we have, for n € N,
1 2 1/n oo 2 1/n
= (EM™(5)) " = = <J P{M™ (s) 20}d0>
n 0
Sl 1/n 1/n
< 1 <k3j e do)
A (64)
1 [o'e) 1/71
= - <k3 J e_aunun_ldu>
n 0
1 —m1/n
= — (kyn!d .
n( snlé™")
Since n! < n" forn € N, we get
L (eme ()" < kline, (65)
n
In summary, we proved the theorem on [0, 00). O

Theorem 4. Suppose that Theorem 3 is satisfied. When N —
00, then

((xl,N’ )’1,N) > (XZ,N’ )’2,N) yeees (xk,N’ )/k,N)) (66)

converge to k independent copies of solutions of (4) in
C([0, 00), R*).

Proof. Let Py be the law of (1/N) Zfil Ex, voingy WhETE Y, S
the measure
1 acA
v, = (67)
0 otherwise.

Then {Py, N € N,N > 2} is relatively compact and (Py =
L(x1 5> Y1.N))N=2,3,.. is a tight family. So, we have

lim sup Py
€l0 N>2

-{0 sup |x(t>—x(s)|+|y(t)—y<s)|>p} (68)

=0.

Let

1N
Xn=—) x:~n (1),
v = g 2% O

1 ¢ (69)
In =520 (0
N N; N
andz(t) =x() + ¥y (t).
Next, we will prove that
t
200+ [ 2)ds (70)
0
is a submartingale. It is easy to see that
t
Z(H)<Z(0)+ j (% - Dy (9))ds
0
t 1 N
|l @awe oy
0 Vi
t 1 N
+] = ; dW (s).
J, 2 G @)W
By martingale theory, we get
t
Z(t)—E(O)—J (% Dy @)ds ()
0

is a martingale. Therefore, we have

t

E(t)+DJ zZn(s)ds =0 (73)
0



is a submartingale. By martingale inequality [29], we get

PN{supE(t) >a > 0]»

0<t<T

t

SPN{sup (E(t)+DJ EN(S))2a>O}

0<t<T 0

IN

éE <2 (T) + D LT Zn (s)>

1 - rK T

IN

Furthermore, we have that

Zin (1) =2z 5 (0) - JZ (% - Dy, n (s)) ds
1 N
+ D, <m;xw - xl,N>
1 N
+ D, <mlzyi,N - )’1,N>

i

is a martingale, then we get that

t

zn )+ D(1+Dy + D) J z) 5 (s)ds >0
0

is a submartingale. Furthermore, we have

Py { sup zy, (t) 2 oc}

0<t<T

< é ((TD(I +D, +Dy)+1)Z, 5 (0)

2
+%<T+T7+D(1+D1+Dl))>.

So, for every T > 0, it is easy to see that

and

Let

lim sup Py { sup z (t) = (x} =0

aloo N<2 0<t<T

lim sup Py, y supz, 5 () =t = 0.
aleo N<2 ost<sT

T,y =inf{t>0|Z(t) > aorz (1) > af

(74)

(75)

(76)

(77)

(78)

(79)

(80)
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and 7, 5y = oo if there does not exist such ¢. For any T >
0, p,>0, 0 >0and & > 0, it is easy to see that

ﬁN{ sup Ix(f)—x(s)|+|y(t)—y(s)l>P}

0<s<t<Tt—s<o

<Py{t,n<T}+Py { sup  |xyn (EATLN)
0<s<t<T,t—s<o (81)

—x1n (SA T+ [N (EATon) = 2w (5

/\T(X,N)l > P} .

Let f € EPXR%), p € N; it is easy to see that
91> 92> - --» g, are continuous bounded function from R? to

Randset0<s, <s, ; <...<s; <5<t Let

M, = {VGM: sup J(x(w,u)+y(w,u))dv(w)

0<u<t
< 00}

and for v € M,

(82)

F(v) = <%<f(x(f),y(t))—f(x(s),y(s))

—J J&if(x(-,u),y(-,u),x(w,u),y(w,u))v(dw)du) (83)

84
(o) ot A)d
G0+ La ) .
Defining
1
%0 =5 Y, @)
(85)

1 &
and y (u) = ﬁZyi,Nk ()
ki=1
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where (Nj)y_y,,,. are a sequence such that Py, P P .By  forall N > 2, we get

seee

(78), we have P (M,) = 1. Furthermore _ _
0 Ey, (3% (1) + 7 ()’ < oo,

(89)
N 2
|, Forapy 0)=Ey, (%Z (£ @5 0) i (6, 0+ 22 00) <0
Mo ki=1 then we have
~f (921 6) lim J F()dPy, (») = 0. (90)
¢ k—00 M,
- L SAIOBAORIORICY)) du) Next, we prove that
2
b N, -1 I d = 0.
: ng (x:(s;)» 3 (sj))> = Ey, ,.;\Ik koo JMF (1) dPy, (v) =0 (91)
! For « > 0, define h,, : [0, 00] — o0 by
Ni
'H((f(xi(t)’yi(t))_f(xi(s)ryi(s)) {x x<«
i=1 h, = (92)
, (86) a x>«
- L ASIOBAORICII) du) We will show that
2
b 1 (@ lim | F*(dPy (»)=0
' ng (i (55) (%))) A e jMo :
=
(b) lim sup J F; (v)dPy_(v) - J F? (v)dPy_(v)
a—00 M, )
“Ey, ((f (1 (), 31 @) = f(x1(5), 1 (9) o (93)
_ Jf A F (@), 31 ()5 @), 5 (0) du) (b) kliﬁrn00 JM Fi () dPy, (v) = JM Fi (»)dP,, (v)
» 2 ) a@mj F2(3)dP,, (%) = j F2 (v)dP,, (v).
SACACHS? (%))) : M M
=1 It is easy to see that we already proved (a). By the definition
of weak convergence, (c) is proven directly.
When k — 00, the last term is o(1). Then, for 1 < i < N, By Fatou’s theory, for v € M, then
we have that
_ N o). x
0, (1) = £ (x; (1), 3 (1) ~ f (3 (5), 7 9) fe = F <V<J [ 55 e xc
- LT A (x; W),y w),% W),y w)du - Dy (x (@, u) = hy, (x (@, 1))
. F ).
o[l . w) ) oy O o9
0 OX

1 N ‘Dz()/(a%u)—h“()/(w,u)))dv(w)du>
D, E(M)—Z\]k_lZ:xj(u)
=1

are Py, -martingales and (©,,®;) for j # i.

Using and it is easy to see that (d) is proved. By similar way, we can

prove (b).
Then (a)-(c) give

_ 1 & 1 _
x (u) - m;xj (u) = ﬁ (‘xl (u)-x (”)) ,  (88) ah_rpoo JM F02¢ ) dPoo () = 0. (95)
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So (d) implies
J F? (%) dP,, (v) = 0 (96)
M

and therefore F(v) = 0 P -a.s.

By the law of large numbers, we have proved that P_-a.s.
the projection of vat t = 0 is equal to y. By Lemma 3.1in [30],
we proved the assertion of the Theorem 4. O

4. Periodic Distribution

In the section, under some suitable assumptions, we prove
that the solution of mean-field stochastic predator-prey
systems possesses a strictly periodic distribution.

A 0<x<A-1

g(x): X x>A+1

Discrete Dynamics in Nature and Society

Lemma 5. Suppose that T > 0, b> 0, b > 0, &, > 0, k, >
0. Let

zZ(t)=g(y (1) +x(t) (97)
where
- 7
A=b+ RT +1 (98)
and
(99)
dg (x)

arbitrary  otherwise, but such that g € €*[0,00) and 0 < e < 1.
x

Then

A,= sup sup sup  sup sup EZ" (¢)

n
Ez(0)<b EZ"(0)<b D=0 x, D, +x, 2D, <0 0<t<T (100)

< 0.

foralln e N.
Proof. Applying It0’s formula to Z"(£), we get
dz" (t) = nz"" (t)
1
(ax®+ g Mdy+ 39" 0) g ©) k)
(101)
1 —n—2
+ En(n— DZ7 ()

(gt )+ g% (1) g5 (y 1)) dit.

Suppose that EZ"(0) < b and Ez"(0) < b.
Defining 7 = inf{t >0:Z > a} and

0 if supz(s) >«
1, () = 0<s<t (102)

1 otherwise
and

Z, ) =2z, (tAT,). (103)

Then, we have

El,()Z"(t) <Z"(t) = EZ"(0) +n Jt E1,(s)
0

—n-1 x(s) e
7 [mw(l—?-m>

+g (y)

px (s)
. <y(s) <m —D) + D, (Ey (s) —y(s))) (104)

+ Dy (Ex(s) — x(s)) + %g" (y (s))g§ (y (s))] ds

+ %n (n-1) Lt El, (97" () (g7 (x®)

+3%(y®) g5 (y (1)) ds.

Case1(D, > D,). Substituting D, (Ex(s) —x(s)) by —-D,z(s) +
D, g(y(s)) + D,Ex(s), we have

El,(t)Z"(t) = EZ" (0) — nD, Jt E1,(s)Z" (s)ds
t ’ (105)
+ J R(s)ds+ R, (t).
0

Solving the above equation, we have

El ()Z'(t) <e D™ (Ez (0) + jt PR (s) ds)
0

t
< EZ"(0) + J (b,D, +b,) e P94
0
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t
+n(n-1)L* J El, (t)Z" (s)e P9 ds
0

t
<b+ h+b2T+n(n—1)LZJ E1, (t)Z" (s)ds,
n 0
(106)

where b and b, are real number independent of D, D,, but
N possibly based on b, b and T, then we have

0>D,g (y(5)) (Ey (s) - y (5))

(107)
> D,g (y(5)) (By (s) - (),
since g'( y(s)) # 0, it implies
Ey(s)—y(0) <b+ —T—(A-1)=0,
4K (108)

for0<s<T.

Using Gronwall’s Inequality and Fatou’s theory, when « —
00, we obtain the result.

Case2 (D, > D, >0and D, < «,D, +k; > D,). By (104),

t
0=-nD, J El,(s)Z" (s)ds
0

. (109)
+nD, L El, (5)Z"7" (s) (x(s) + g (¥ (5))) ds.
Then we get
E1,(t)Z" (t) = EZ" (0) —nD, JtEla (5)Z" (s)ds
t ’ (110)
+ J R(s)ds+ R, (t).
0
As before, we have
El, ()Z" (t) < EZ" (0) + jt (0,0, +by) e " ds
0
(111)

+n(n-1)L* Jtm“ 1) 2" (s)ds,
0

where b, and b, are real numbers not relying on D, D,, and
N but possibly relying on b, b, n, T, x;, and k,, then we get

D, (Ex(s) —x(s)) < k,D, + 1,E (x(s)) — Dyx(s). (112)

Similarly the proofis as in Case 1, so we prove Case 2 directly.
O

Lemma 6. Suppose that the condition of Lemma 5 is satisfied.
Letn e N\ {1}, &, ; > 0, and N > L*(n-1). The following
conditions hold: i

(1) For all Dy, D, satisfying N < Dy < x,D, +#,, D, > N.

(2) There exists a constant Zn such that if co > EZ"(0) >
A, EZ"'(0) < a,_, and Ez(0) < .

Then EZ"(t) < EZ"(0) for all t € [0, T].

11

Proof. Let EZ"(0) < oo and EZ"'(0) < «,_,. By (105) and
(106), we can estimate R(s) and R(s) by

IR(s)| <n(n—1)L*El (s)Z"(s) + b,D, +b,  (113)
and
[Rs)| <n(n-1)L’E1, (9Z" () +b,D, +b,,  (114)

then, for any « > 0, we have

E1,(t)Z" (t) < EZ"(0) + Lt yD + A ws)
5

—n(D-L*(n-1))E1,(s)Z" (s)ds,

where D = min{D;,D,} > N and y > 0 and A > 0 are real
number independent of D, D, and EZ"(0) but possibly based
on «k;, Ky, I, n, and «,,_;. When o T 0o, we have

EZ" (1)
< EZ"(0) (116)

+Lty5+)t—n(B—L2(n—1))EZ”(s)ds.

Furthermore
EZ" (t)

< Bz () 117)

+Jty5+)t—n(5—L2(n—1))EE"(s)ds.

where0 <u<t<T.
Let

= _yﬁ+/\
n(N—LZ(n— 1))

(n _Lz(n—l))) y
_<A<1 N +n(N—LZ(n—l)) (118)

yD + A
“n(D-1*(n-1))

Fix EZ"(0) > A,, and if there are some t < T satisfying
EzZ"(0) < EZ"(t). Define u = sup{r < t : Ez"(0) > EZ"(7)}.
Since

EZ"(s+h)—EZ"(s) < (yD+A) h (19)

forall0 < s <s+h < T,thenu < t and Ez"(u) > EZ"(0); it
implies contradiction (117). O

Lemma 7. Suppose thatx, >0, x, >0, T > 0, andb > 0.
The following conditions hold:
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(i) There are constants o, > 0 such that, for any f;, 5,

and 8 = max{f;, .},

0< D, <x,D, +x,

o
and D Zmax{O,——D},
? 2B,

(120)
o
min 2r——} >D, >0.
tgl=>
(ii) For all initial conditions satisfying Ez*(0) < b,
E(Ex (0) - x(0))* < B,
(121)

(Ey (0) - y (0))* < B,.
Then there exist constants A > 0 such that
(Ex(t) - fy () + (Ey(t) - f,(1))* < AP, (122)

where (f,, f,) is the solution of (1) with f,(0) = Ex(0), f,(0) =
Ey(0).

Proof. Let
D(t)=x(t)-Ex(t),

Y(@#)=y(@)-Ey(t).
Applying Itd’s formula, we have

(123)

Ay (t) = (—2 (D + D,) ¥* (1)

+ 2 (1) (#x(t))’(t) _E<Mx (t)y(t))))dt (124)

a+x%(t) a+x%()

+ g5 (y (@) dt +2¥ (t) g, (y () dW,.
Then
EY? () = E¥* (0) e 2PHP

! —-2(D+D,)(t-s) ux () y (GRA()
* Jo ¢ <2E R (125)

+ Eg§ (y (t)))dt.

By Lemma 5, we have

o= sup sup sup sup 2E
Ez*(0)<b D,20 0<D, <k, D, +%x; 0<s<T

px (t) y () ¥ (t) (126)
| Tarem TR O) <o
Therefore
EY? (t) < E¥? (0) e 20Dt
_ &  (y_ DDyt
2D+ D) (1-e ) 27)
2 o
< max{E\I’ (0)’M}‘
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Next, applying It6’s formula, we get

do* (t) = (—2 (r-D,) ¥ (t)

ux(t)y(t)) _ux®)y® ))dt

a+x2(t) a+ x2(t)

+2D (1) (E(

r(Ex’ (t) - x* (1))
K

+20(b) +g; (y (@) dt

, (128)
2009, (yO)dW, < (-2(7- D) ¥ ()
+ %“ 1D ()] (x (1) y (1) + Ex (£) (t))) dt

2
; (Er 1@ (6)] (Ex (6) + 5 (1) + gLy (t)) dt
+20 (1) g, (y (1)) dW,.

Then

ED*(t) < E®? (0) e 2Pt

t 2
+J 2D | (5)] <(_P‘ + ﬂ)
0 a K

(129)
. [x2 (s) + y2 (s) + Ex* (s) + Ey2 (s)]

2
L9 (y(®) ) s

| (s)]
By Lemma 5, we also have

a= sup sup sup sup E|D(s)]
Ez*(0)<b D,20 0<D, <r 0<s<T

. 'xz (s) + yz (s) + Ex? (s) + Ey2 (s)| + ng (y (@) (130)

< 00.
Therefore

E®*(t) < E®? (0) ¢ 2Pt

@ (1 _ e—Z(r—Dl)t)

"2 (r-Dy) (131)

) @
Smax{CD (0),@}

Let E¥%(0) < B, and we have EY2(t) < B. Then

(Ex(t) - f, (1) = L 2(Ex(s) - £, (5))

) i)
K K

x(®)y)\ f6)f6)
_(E<a+x2(s))_ a+ f2(s) ))ds,

(- ooz
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(B O~ £0) = [ 26~ 1,6)

-(—D(Ey@>—f;u»

x(t) y(t) f @) @)
+(E<a+x2(t)>_ at f2(1) ))ds'

(132)
Let
H@® = (Ex(®) - i) +(Ey () - L,©), (133
and we get

zr

t r )
H(t) < L (2rH (9)+ 2 |Ex (5) = £, ()| [E®® (s)

+ 2B () Ex (s) + Ex (s) - /2 (s)|> ds

+ j 2 (|Ex (s) = f1 ()] + |Ey (s) = £ (5)])
0oa
(134)

. <|(Ed>2 )" (B¥ ()" + B0 (5) Ey (s)

+ EYEx (s) + Ex (s) Ey (s)

w1 ) (s)|>ds

t

< J (2rH (s) + © (s)) ds,
0
where

Q(t) = % |Ex (s) = £, ()| [EQ? (s) + 2E® (5) Ex (5)
+ EZx(s) - f12 (s)' + 2 (|Ex (s)- fi (s)| + |Ey (s)
- £ (|(p0* )" (v )" (135)

+E® (s) Ey (s) + EYEx (s) + Ex (s) Ey (s)

+M@ﬁwu

By Ez*(0) < b, f, < 0o, f, < 00, Ex(t) < co and Ey(t) <
00, for Vt € [0,T], for some Aand 0 <t < T, we have

o) = % |Ex (s) = £, ()| [EQ? (s) + 2ED (5) Ex (s)
+ E*x (s) — fl2 (S)| + % (|Ex (s)- f1 (s)| + |Ey (s)
- @D (|(E0? ©)" (B¥* )" (136)

+ E® (s) Ey(s) + EYEx (s) + Ex (s) Ey (s)

STACTACIERS
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Then, we get
t
H(t) < J (2rH (s) + A) ds. (137)
0

By Gronwall’s inequality, we have

t

t
Ads + 2rA J se?t9ds
0 (138)

<A(T+2r(e -T-1)).

Ho s |

0

Then, we prove the assertion of Lemma 7. O

Theorem 8. Suppose that ;42 > (16/3)aD? and (u +

\u? —4aD?)/2D > K > (2u — \|y? — 4aD?)/2D. Let x; > 0

and k, > 0, if the following conditions hold:

(i) There is a real number N* such that for all D, > N*,
0<D, <x,D, +x.

(ii) There is a probability measure v* on [0, 00) X [0, 00)
and some T > 0 such that £ (x(0), y(0)) = v".

Then & (x(t*), y(z*)) = v* but Z(x(s), y(s)) + v* for
0 <s< T ie, (4) possesses a periodic distribution.

Proof. (fy', f;') denote the unique periodic solution of (1),
where £,°(0) = 6, f,(0) > 9 (see [1]) and

o u-— \ly2—4aD2,

2D
u—\|u? - 4aD?
P (S L
2KD (139)
2
u — \|u? — 4aD?
| <a ) < \/‘M— > > |
2D
Let
b,>f, >b>9 (140)
and
T = mebax min{u >0: f; (u) =0, f, ()
1<b<by (141)

>9, fiw) =0, f,(w)=0b, (f,f) solve (1)}.

( fl(i), 2(1')) denote the solution of system (1) starting at
f90) =6, £700)=1b (i =1,2) and let

t= min min{u>0:f, (u) =0, f; W) <9, f(0)

by <b<b,

=0, £,(0)=b, (f;. f1) solve (1}
b=b+0
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Z

=b,

{ w-o)
= dist ({0.6):9 <b <} {(f ), £V (1)1

}

{

=i (A7 0~

<t T)
&5 =dist ({(6,0);b 2 b}, {(f (1), 17 (1)) <t

<T}).

(142)

o= sup sup sup sup 2E
Ez*(0)<b D,20 0<D; <k, D, +%x, 0<s<T

and

@ = sup sup
Ez*(0)<b D,20

- sup sup E|® ()] |2 () + y7 (s) + Ex” (s) + By’ (s)| (144)

0<D;<r 0<s<T
+Eg: (y (1) <2(r+ N*)B,.

From (127) and (131), it is shown that supogsTEd)Z(t) <
E®*(0) if E®*(0) > 8, and E¥*(t) < E¥*(0) if E¥*(0) > f3,,
Ez*(0) < b,and D, > N*. By Lemma 6, it is easy see that
SuPOgthEE4(t) <bifEZ'(0) < A, and EZ(0) < b. It implies
that there are real numbers § > 0 and 0 > 1 such that
supy.,.rE exp(éx2 (t)) < o whenever E exp((sz(O)) < 0. Let
%, (0, 00)?) denote the set on [0, c0)? and

% =1{ve ([0,00)):Ex(0) =0, b < E,x(0)

<¢, E,®*(0)< B, E,2"(0) <A, for n (145)
=2,3,4 and Eexp (8x2 (0)) < 0}
and forv € %
t(v)=inf{t>0:Ex(t)=0, E,y(t)>9, It =>s
(146)
>0:E,y(t) <9}
and
S: % — %, ([0,00)")
(147)

S =Z(xT M),y ).

Next, we will prove that S maps % into %; hence, we show
that there are real numbers § > 0 and 0 > 1 satisfying
SUpoE exp(5x2(t)) < 0 whenever E exp(8x2(0)) <o.

px (t) y (1) ¥ (t)
a+x2(t)
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Since {(fl(l)(t),fz(l)(t));o < t < T} is a compact set but not
included in (8, 9), because there exists the uniqueness of the
solution of system (1), it is easy to see that ¢; > 0 is proven.
Next, we prove that €, > 0. Suppose that there exist some

t <t < Tsuchthat () = aand 9 < V() <
Then the line segment {(0,u), ¢, < u < fl(l)(t)} and the
curve {(fl(l)(s), fz(l)(s)); 0 < s < t} form a set Q which is
invariant, it is easy see that Q) contains the limit cycle (f}', f,)
and Q # {(6,9)}, due to the globally stable limit cycle, then
we prove €, > 0. By the same way, we prove that €5 > 0.

For n = 2, 3,4, we take values A, satisfying the condition
of Lemma 6 with ,_; = A, ,,= 2,3,4and a; = c. Letc =
A,; fix A and f,, B, satisfying (AB)/* < min{e,,¢,,€;} and
rK/4 > A. Now let N* > N be large enough such that

Eg; (y(®))| <2(D+N") B, (143)

LetC = supézogf(x), 8 = N/4C; suppose that EZ(0) < b
and sup Eexp(8x2(0)) < 00. By the proof of Theorem 3, it
proves that sup,_,.-E exp(@xzn(t)) < oo forall n > 1 and for
A=

2n _ 2n _ & _ )/(t)
dx™" (t) = (an t)r <1 X (et (a2 0) )

+n(2n-1)x""g (x (t)))

+x" g, (x (£)) dW (t) + D, 2nx™"" (1) ws)
-(Ex (t) - x (t) dt < (2nx™" (t) (r - D,)
+n(2n-1)x""B)dt

+x7" g, (x (£)) AW (t) + D, 2nx™" " (1)

- Ex(t) dt.

Then, we have

Ex2 (t) < r (2n (r - Dl) e (s)
(149)

+n(2n— 1) Bx™ 2 (s) + 2nD, AEx™""" (t)) ds

Therefore, we get

Né\xZ}’l (t)
EZ '

< Eexp (8x2 (0))

N on ot
+ ;% J;) Ex™(s)(2n+1)B8 + n(r - D,))ds
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N
& (! e —
+ ;F L nDlEx2 L) (2A -x (s)) ds + 0Bt

N+1

N!

(2N +1)B JtExN (s) ds.
0

(150)

Due to 8 = N/4B < D, /4B, we show that the first integrand
is negative real number for large enough n. The second

integrand is not larger than D,n(2A)*" and

ul 2n 2 2

Y =Dy (2A) "t < 6D, (24) texp(8(24) ). (151)
Hence, we get

N 671 t n
BSZE L Ex“"ds

(152)
R LT
+6(238—D1);m J;) Ex X (S)dS
and using 2B§ — D, < —(1/2)D,, we have
Eexp (6x (t)) < Eexp (6x(0))
t
+ BS J Eexp (8x2 (s)) ds

0

(153)

1 L2 2
_ §8D1 L Ex” (s) exp (8x (s)) ds
+40D, A texp (8 (ZZ)Z)
Clearly, Ex? exp(8x2) - «F exp(8x2) — 00 when

E exp(8x2) — oo forany —« > 0. Therefore, we choose o > 1
satisfying

DlEx2 (s) exp (sz) — 2BE exp (sz)
. . (154)
> 8D, A exp (8 (ZA) )
It shows that sup,.rE exp(8x2(t)) < o whenever
Eexp(@xz(O)) >0.

Next, we prove that S is weakly continuous. Hence, if we
have proved that 7 : % — [0,T] is continuous, it is easy
to see that S is weakly continuous on %. Then it implies that
T:9% — [0,T] is continuous. For v € %, we have

d
gEx (r(»)

:E(r<x(r(y))_x(T(V)))_X(T(V))y(T(V)))

K a+x%(r(v))

15
_ 1K
4
E ( (x(@ ) -K[2)" x@O)y( (V)))
- +
K a+x?(t(v))
> % -A=p>0.
(155)

Let v € % and take t, > 0 such that (d/dt)E,x(t) > ¢/2 for all
t € [t(v)—t,, T(v)+t,]. Fix0 < € < 9/2,let v, TV (v, € %)
and take 7, such that supogsTlEynx(t) - E,x(t)| < € for all
n > ny(e). Then |t(v) — 7(v,)| < (2/g)e for n > ny(e); it is
easy to see that 7 is continuous on % and therefore the proof
is completed. O

Corollary 9. Suppose that y* > (16/3)aD* and (u +

\Ju* —4aD*)/2D > K > (QQu — \|y? —4aD?)/2D, x; >

0, k, > 0, and the following conditions hold:
(i) There exists a sequence (D, D, ,),cn satisfying the
conditions of Theorem 8 for everyn € N and D, ,, T30, 00

(ii) There is a sequence v,, on [0, 00) x [0, 00) such that (4)
with D| = D, ,, D, = D, and Z(x(0), y(0)) = v,.
Then system (4) possesses a periodic distribution and

() (E,, (<(0), Ey; (D) = (f7 (1), f5 (1))
(b) 31,; (x(-)) njoo efl*(.)-

Proof. Let b (n) and b, = b,(n) converge to f, (0) with D, , >
N* = N*(n). It is easy to see that 3 = B(n) converges to zero.
Then, the first assertion of theorem is proved. Furthermore,
we have

dv¥ (t) = <— (D+D,,)¥(t)

(156)

+(#x(t)y(t) _Eﬂx(t)y(t)»dt

a+x*(t) a+x%(t)
+9,(y(®)dW (1)
and hence, solving for (), we get
¥ (t) = e PPy (0)
N j ! D)) (Mx Oy
0 a+x*(t)
(157)
J“@YW>#

a+x%(t)

t
- L e PP g (y (1) AW ().

Applying Chebychev’s inequality, we have

P{ sup ¥ (t) = R} <P{¥(0) >R}
0<t<T
px (t) y (t)

T
P { J (DD, (=9
0 a+x*()
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-1ai0MACI P R}
a+ x*(t)
+P { sup j e PP g (3 (1)) dW (t)’
0<t<T 1J0
>R <lE‘I’(0)+l +P1supQ,(t)
B "R RD+D,, ost<T
> R} ,
(158)
where
Q, (1) = Lt e PP g (y (1) dw (1) (159)
and
B pux @) y @)  _ux(®)y @)
Ot arew Tarenl 10
Since
EY (0) < (E¥’ (0))2 < 2 (n) — 0 (161)

then we prove the second assertion of theorem that is

P{ sup |Qn (t)| > R} = 0 for every R>0. (162)

0<t<T

By [31, pp 142], we get

Q,(t)=—-(D+D,,)Q,®)dt+g,(y®))dW (1),

63)
Q,(0)=0.
99, (¥ (s))
6y°g; (y(s) —4(D+D,,) y* < {4(D+D,,)

Discrete Dynamics in Nature and Society

Therefore, for

ly] <R

4

y)
= 164
o {bounded, & (R), o4

then

t

Q)+ (D+Dy) [ 7@ )0 @ds

0
(165)

1

) L £"(Q,(9) g, (¥ (s)) ds

is a martingale. Denoting the stopping time,

T=inf{t 20:|Q,(s)| =R} AT. (166)

By Chebychev’s inequality, we get

P{ sup |Q, (1) ZR} =P{f(Q,(r)) =R} <

1
0<t<T R*

-Ef (Q, (1)) = %E L (6Q2 (5) &2 (7 (s)) (167)
-4(D+D,,,) Q (s)) ds.
For -R* < y <R%,

65°g; (y(s)) -4 (D +D,,) '

362 (y(s)) )

4(D+D,,)

2
=-4(D+D,,) (x - (168)

995 (¥ (5))
+ e —
4(D + Dz,n)

and hence, we have

6R°q; (y(s)) -4 (D +D,, )R if g5(y(s)) > R*(D+D,,);

since sup, E IOT gg( y(s))ds < oo, it implies

P{ sup lQn(t)| ZR} < %

0<t<T

. JT . 8 995 (y ()
0 g5(y(s))<R*(D+D,,) 4 (D + Dz,n)

1 99, (¥ ()
+ BOE>RDD) 4 (1 D, (D+D,,)
N7l

ACAC) A VR
D+D,, n—co

(170)

Therefore, the proof is completed. O

5. Fluctuations

In the section, under some suitable assumptions, we study
the fluctuations of the periodic in distribution processes for
mean-field stochastic predator-prey systems when the white
noise converges to zero.

Theorem 10. Suppose that condition of Theorem 8 is satisfied.
The following conditions hold:

(i) There exist real numbers N and N, satisfying D; > N,
and D, > N,.

(ii) There is a probability measure y, on [0, 00)? such that
dx (t)
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_ _x@® y@®
_x(t)r<1 X r(a+x2(t))>dt

+eg, (x(1)dW (t) + D, (Ex (t) — x (¢)) dt,
dy (t)

B px ()
=y(t) (711 20 D) dt + g, (y (t)) dW (¢)

+ D, (Ey (t) - y (1)) dt,

2(x(0), 5 (0)) = pe.
(171)

Then system (171) exists a periodic distribution forall1 > € > 0.

Furthermore, there exists a periodic solution of (171) with
(e, y) —, (f{> f3) weakly on €([0, c0), R?).

Proof. By the proof of Theorem 8, we prove only sup,.,Ez" <
oo but, using Lemma 6, it is easy to show that there is a
periodic solution such that suptZOEz8 < 00. Then the first
assertion of the theorem is proven.

Next, let &, | 0. Due to Ex, (0) = 6 and Ey, (0) < b,,
{7¢, }nen is family of compact. By the same proof of Theorem 8,
it is easy to see that there is a weakly convergent subsequence
of (x,,, x, ) approaching to a solution (x, y) of

o x®  y(@®
x(t)—x(t)r(l K r(a+x2(t))>

+ D, (Ex () - x(t)), Ex(0)=0
172)
y (1) :y(t)<#(2t)(t) —D) +D, (Ey(t) - y (1),

b, <Ey(0) <b,.

Let 7, denote the period of (x,, y,); we choose a subsequence
g, (k = 1,2,3,...) satisfying Z(x, .y, ) approaches to
Ylk ?'lk

a solution of (172), and 7 = lim;_,, 7, exists. Based on

Theorem 11.1.4 in [18, pp 264], it is easy tlé) see that that the
map (v, &1t) — Z, (x(t), y(t)) from % x [0,1] x [0,T] to
%, (C([0,T1], ERi)) is continuous, where £, . (x(t), y(t)) is the
solution of (171) with £ (x(0), ¥(0)) = v at t.

Let v = limkoovgnk; it will show that the periodic
distribution solution of (172) is (f", f,). Denoting z =
gly(t)) +x(t) (0 <t <T),where gisdefined as in Lemma 5

with b = b,, then we have

az(t) _ x(f)
dt _x(t)r(l_?)
x(t) y (t) '
- (a+x2 (f)) (1 —Hg (J’ (t)))

+ D, (Ex(t) - x (1) - Dg' (y (1)) y (t)

+D,g' (y (1) (Ey (t) - y (1))

17
K K\? '
< % —r<x— 5) -Dg' (y(®)) y (t)
+ Dy (Ex () —x (1)),
(173)

for all y < supy,.r¥(t) < b, then g'(y) = 0. The right
hand side of (173) is negative constant if either x or y is large
enough; i.e., there has some § > 0 satistying dz(t)/dt <
0 whenever z(tf) > J; it easily shows that the support of
Z(x(t), y(t)) which is periodic is included in

{6, y) | x>0, y>0, x+y <6} (174)

for every t > 0.
Let® = x — Exand ¥ = y — Ey; we get

x(t)y(l‘)< 1 1
—_— s _y(t)z_
2+/a

a+x*(t) ~ 2+/a
Hence, (w.p.1) 0 < x + y < §, and therefore 0 < Ex, Ey < §
and -6 <O,¥ <§

(Y+Ey@). (175)

x(t) y (1) 1
q)a +x2 (1) = 2+a
1
4+/a

E|D||¥ + Ey (1)

< (EcD2 + E\I’z)

yXO2O Ok )10+ Ex o) e
a+x*(t) a

< 9 (E®? + E¥?)
2a
EDx* < SE|® (O + Ex)| < SED*

and

d
EE(cD2 +\I’2)

177)

1 ;48) 2
-\D+D, - ——=-— | EY".
< T 4~Ja 2a

Then, we have

iE(CD2+\I’2) <0

T (178)

whenever E(®? + ¥?) > 0 if D, and D, are sufficiently large.
Because E®? and E¥? are periodic, it easily shows that EQ? =
EY? = 0;ie., (x(2), y(t)) is deterministic. There exists only
one periodic solution of system (1) with x(0) = 8 and y(0) >
b,. Therefore, the proof is completed. O

(16/3)aD? and (u +
\Ju? — 4aD?)/2D. Let

Theorem 11. Suppose that y* >
u>—4aD?)/2D > K > (Qu -
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Ky, Ky, K3, K4 are nonnegative constants. For D; < kD, + k,
and D, < k3D, + x,, D, and D, are large enough,

J,
sup — < 00, (179)
O<e<1 €
where
8, = esup {(Eq);1 )", (v (t))1/4},
£0
(180)

O, (t) = ! (x, - Ex,),

Y, () = e (ys - Eys) .
Then there exists a periodic solution (x,, y,) of system (4).
Proof. According to supy...,0, < o0, lim, 6, = 0 and

Theorem 10. It will prove §, = O(e) for ¢ | 0.
Define Lyapunov functions

V. (0,9) = A, (@ +¥) g (D7)

+(1-2,(@+9)) y (D,¥), (181)

ovsM
£
where
M= sup (Ex,+Ey,),
1>e>0,t>0
@ (DY) = O* + ¥,
v (D,¥) =17 (O +¥)*,
(182)
2 : dA
A€ € ([0,00),%R) satisfies o <0
v

1 <
and A (v) = {
0

and

A (v) = /\(oc_lsv),
(183)
and a = M - max {x;, x5, 1}.

Next, we prove that

sup sup sup EV (@, (£),, () < oo

£20 1260 D,,D, (184)

Let L, denote the generator of the diffusion (P (¢), ¥, (¢)).
Then, we have

Lt,sv (q)s (t) > \Ijs (t))
= /\sLt,s(P + (1 + As) Lt,sl//
+a el (9 - v) ((D’ + \P') (185)

-2 .2

1
+2aeN (9 =) (g1 + 43)

+aedl (o — Vo) 91 + (Vo — ) 95).
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Firstly, we consider the case ® + ¥ > 2a/e which shows
A, = 0 and hence

Lt,eV ((De ), \Ps (t)) = Lt,el//' (186)
Incase @ + ¥ > o/e
1
ﬁLt,sw ((Ds (t) > \I’s (t))
<(@+¥)’ ((r-D, +x+Ex)® - (D+D,)V¥)
(187)

+6(D+ W) (gf (e® + Ex) + g5 (e¥ + Ey))
<(@+¥)’ (- (D, —r-2M)® - (D + D,) ¥)
+6(D+ V)’ K ((e® + M) + (¥ + M)°).

Now, for O,¥ > -M/e, ®+V¥ > «fe,and D; > 1 +2M + 1,
we get

(D,-r-2M-1)®+(D+D,-1)¥
Zmin{(Dl—r—ZM—1)<—%>

+(D+D2—1)(d)+‘lf+ M)(Dl—r—zM—1)
&€

-<®+‘{’+ %>+(D+D2—1)(—%>} >e !
~min{(r +2M - 1 - x,D, — k,) M (188)
+(D+D,+1)(a+M)(Dy—r-2M-1)
(a+M)=(D+1+1;D; +x,) M} = ¢

-min{D, (a + M —x,M)+(r+2M —x, — 1) M
+(D+1)(+M)D, (e + M —1x;M)
—(L+7r+2M)(a+ M) - (D+x,— 1) M} >0,
if D, and D, are large enough. Then, we have
-(D;-r-2M)® - (D+D,)¥ < -x—y. (189)
Furthermore, since e® + M > 0 and e¥ + M > 0, we have

6(®+¥)’ K ((e® + M)* + (¥ + M)*)

<6(Q+¥)>K:(eD+ M +e¥ + M)

(190)
<6(Q+¥)> K (e(®+Y)+2a)°
<6(0+%¥) K9 < (O +V¥)*
forall® +¥ > afeand ¢ < (54K2)_1/2. Then
%me (@, (1), ¥. (1)) < -3 (© +¥)*
(191)

3
S CHOR AG)

if € is small enough.
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If ® + ¥ < 2a/e, then we have

Lo (D, (1),Y, (1) < 40’ (_ (D, - 1) ®

+ é (x2 - Exz) +h(ex, y,t))

+ 4% (= (D + D,) ¥ + ph (e, x, y,t))

+6D°g (e® + Ex) + 6¥° g5 (e¥ + Ey) < —4(D,
—r)®4—4(D+D2)\I’4+%(2a+M)®4
+4(|0°) + [¥°|) [ (e, x, ,1)| + 6 (@7 + )

CK? Qa+2M)%,
where

-1

x®)y@®) x@®y@®

|h(e x, y,t)| =€ a+x2(t) a+x2(t)

-1 1

e &

<— |Ex () y ()] + — |x (t) y @)
5¢7¢

< S (B + )

1
+— (s<D2 +2M®D + P2 + 2M‘I’)
2a

-1

< 528—(1 (E(e® + Ex)* + E (¥ + Ey)’)

+ i (e@® + 2M® + £¥* + 2MY¥).
Hence, there is a constant b, satisfying
(|0 + [¥°]) (e0? + 2MD + £9* + 2M¥)
<by (' +¥).
Furthermore, let

5. () = & max {E CHORNCA (t))”4} ,

then

2
eED” (t) < % ,
&

82 (1)
8 b

eEY? () <
and it shows

(|o°] +¥°]) 528—: (E(e® + Ex)’ + E (¥ + Ey)°)

&a

2082 (1) \"
S(D4+‘I’4+2(A>

provided ¢ is small enough such that §, < 1.

(192)

(193)

(194)

(195)

(196)

(197)

19
Furthermore, we have
4
—4(D1 - Er(za+M)>q>4—4(D+D2)\y4
+6 (0% +¥*) K (20 + 2M)°
(198)

4
S—min{Dl—r—Er(Zoc+M),4(D+D2)}

-((134+‘I’4) +b,

as D, and D, are large enough and b, is a suitable constant.
By (197) and (198), it has proven that there are constants
b, and b; satisfying
Lo (@, (1), (1) < —2(* +¥*) +bs8F (1) e™*
(199)
+b,

if D; and D, are large enough and ¢ is small enough.

Next, our aim is to consider the remaining terms in
L, V(®(t), ¥,(t)); it contains derivatives of A,.

Since )t's <0,

—(Dy-r-2M)®-(D+D,)¥ <0, (200)

where )t's # 0 and

4 4
<P(®,‘I’)=<D4+‘I’4s<—M) +<q>+\1'+ M)
€ €

<@+ +Q@+¥) =17(@+ W)t (201)
=y (D,¥) for % <(D+V¥) < 2?“

Then, we have oc_ls/\’s((p—t//)(—(D1 -r=2M)D-(D+D,)) <0.
Furthermore, if € is small enough. Then we have

L.V (®, (1), (1)
<21, (0 + V) @ (D, V)
—3(1-A,(@+ W)y (D, ) (202)
+min (¢ (0, %),y (®,9)) + b, +bd; (t)
<V (D, (1),¥, (1) +b, + b8 (1) e

for b, = b, + b, ®,¥ > —M/e. Hence, we have

%EV (. (1),¥, (1) < EL, .V (O, (1), ¥, (1))
<-EV(®,(t),Y, (1) +b,

+b,67 max {E® (1), B¥! (1)} 209
<—EV (O, (t),¥. (1)) + b,

+bSLEV (D, (t), Y, ().

Because EV(®,(t), ¥, (t)) are periodic and limgloéf = 0,
hence it shows that
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sup sup sup EV (@, (£),, () < oo

£20 1260 D,,D, (204)

it D, and D, satisfy the condition above and are large enough.
Therefore, the proof is completed. O
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Theorem 12. Suppose that condition of Theorem 11 is satisfied.
IfD, and D, are large enough, as e | 0, then (D, V,) converge
weakly to (®y, ;) which possesses the unique time-invariant
distribution solution of

_p, 2O _aff O-(f DO 0
<d®dﬂ)_ K (a+(f;r ©)) a+(fr ) (Qﬂﬂ>m
v, (t) OO )’ f; ® e ¥, (¢)
(a+ (f; ©)) ar(ff @)y (203
N (m (fy ©)dw (t))
g (f; ®)aw @)

Proof. By Theorem 11, it can easily see that the sequence
3((1)8“(0),\118”(0)) is tight for any sequence ¢, | 0. Further-
more

Ao, (t) = ((r ~D,)®, () - % (x* - Ex?)

~ (e ®, (1), %, (1)) dt + g, (e, ()

+ Ex,) dW (t) (206)

d¥, (t) = - (D +D,) ¥, (t)
+uh(e, @, (), Y, (t)dt + g, (¥, (t)

+Ey,)dW (t),

where h defined in (194).

By Theorem 11.1.4 in [29], if we can prove that (205) is
no larger than one solution such that Z(®y(7), ¥, (7)) =
ZL(Dy(0),¥,(0)) for some T > 0, (O.(t), ¥, (t)) converge
weakly to the solution of (205). For any solution (@, ¥,) of
(205), it can be described by

[q)o (f)]
¥, ()
dw (t) (207
i 0] [
_Q“%L%mJ+LQ ®r®(mwn”
where
91 (fl* (5)) 0
Q) = ( . ) . (208)
0 D (fl ()

Let (1) = Ot + nr), W) = Wt + n1), t >
0, then (@f)”),\l’é")) converge in %,(C[0,00),R?) to the
Gaussian process

Q' ()T (s)dW (1)

t
—00

Km=Qmj
(209)

t+nt

=Q(t+ m’)J Q' ()T (s)dW (s — n7)

-0

where K(t) is a periodic. For all n € N, because the law of
(©,(0), ¥,(0)) is periodic, it shows that £ (D (7), ¥, (1)) =
ZL(D,(0), ¥,(0)); therefore the laws of (dD(”),‘I’é")) are iden-
tical with (@, ¥,); it is easy to see that the laws of (®, V)
are identical with K(¢) if system (205) shows the uniqueness
periodic solution. Therefore, the proof is completed. O
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