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A fourth-order nonlinear difference equation is considered. By making use of critical point theory, some new criteria are obtained
for the existence of periodic solutions with minimal period. The main methods used are a variational technique and the Linking

Theorem.

1. Introduction

Let N, Z, and R denote the sets of all natural numbers,
integers, and real numbers, respectively. [-] denotes the
greatest-integer function. For any a,b € Z, define Z(a,b) =
{a,a +1,...,b} when a < b. x* denotes the transpose of a
vector x.

Consider the following fourth-order nonlinear difference
equation:

Au, , = f(nu,), neZ (1)

where A is the forward difference operator Au,, = u,,,; — u,;
Aiun = A(AHun) fori>2,and f € CY(R%, R) and f(n,u) are
T-periodic in n for a given positive integer T

Equation (1) can be considered as a discrete analogue of
continuous versions of problem like

u (1) = f(t,u@t), teR, (2)

which is used to describe the stationary states of the deflec-
tion of an elastic beam [1]. Equations similar to (2) arise

in the study of the existence of solutions to differential
equations; we refer the reader to [2-7] and the references
therein.

The theory of nonlinear difference equations has been
widely used to study discrete models in many fields such
as finance insurance, computing, electrical circuit analy-
sis, dynamical systems, physical field, and biology. Because
of their importance, many literature and monographs
deal with their existence and uniqueness problems; see
[8-27].

Using the critical point theory and monotone operator
theory, He and Su [13] studied the following discrete nonlin-
ear fourth-order boundary value problems:

A41";1—2 + ﬂAzun—l - Eun = Af (1’1, un) >
neZla+1,b+1],

with three parameters. Some existence, multiplicity, and
nonexistence results of nontrivial solutions are obtained.
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Chen and Tang [12] in 2011 were concerned with the
existence of infinitely many homoclinic orbits from 0 of the
fourth-order difference system

4
A Uy + qnUn = f(n’un+l’un’un—l) » ne€ z (4)

by using the symmetric Mountain Pass Lemma and estab-
lished some existence criteria to guarantee that (4) has
infinitely many homoclinic orbits.

In 2012, Ma and Lu [19] showed the existence and
multiplicity of positive solutions of the nonlinear discrete
fourth-order boundary value problem for

Au, 5=, f(u,), nef23...,T}, (5)

by using Dancer’s global bifurcation theorem.

Liu et al. [18] studied the existence and multiplicity
of periodic and subharmonic solutions to the following
nonlinear difference equation:

AZ (rn—ZAzun—Z) = f (1’[, Upi1s un’ un—l) , ne€ Z’ (6)

using variational technique and the Linking Theorem.

By employing the variational methods, Yu et al. [22] got
some new criteria for the existence of subharmonic solutions
with prescribed minimal period of second-order nonlinear
difference equation

Azun_l +Asinu, = f(n), nelZ. (7)

Applying the direct method of the calculus of variations
and the mountain pass technique, Leszczynski [17] in 2015
proved the existence of at least one and at least two solutions
to the fourth-order discrete anisotropic boundary value
problem with both advance and retardation of form

Az (Yn - 1¢pn (Azun—Z)) = f (I’l, Upi1> Ups un—l) 4

neZ[lk].

(8)

Nonexistence of nontrivial solutions was also obtained.

Motivated by the recent papers [12, 16], our purpose in
this work is to apply Linking Theorem in critical point theory
to establish some conditions for the nonlinear function f
which are able to guarantee the existence of at least two
nontrivial periodic solutions with minimal period mT for the
above problem.

Throughout this paper, we suppose that m is a given
integer and m > 1. Let

2

w = ? (9)

To wit, we get the following.

Theorem 1. Assume that the following hypotheses are satisfied:

(F,) there exists a function F € C*(R%:,R) with Fn+T, u) =
F(n,u), F(-n,—u) = F(n,u), and F(n,u) > 0 and it
satisfies

OF (n,u)

3 Vn e Z; (10)

= f(nu),
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(F,) there exist positive constants €;, « € (0,8 sin*(zr/mT))
such that

F(mu) <au’, VnelZ, |ul < €3 11)
(F,) there exist positive constants {, 3 € (8,+00) such that
F(nu) > pu’ -, V(nu)eZxR; (12)

(F,) there exist positive constants p and p > v such that

0°F (n,u) 2
(TM <um, V(mu)eZxR, neR,

2 (13)
(iéi?ﬁmn>2wﬁ Vlul<p neZ nek

(Fs) if u is a solution of (1) with minimal period IT, | is a
rational number, and f (n, u) also has a minimal period
IT, then | must be an integer.

(Fy) let T, be the least prime factor of m,
v > 16sin’ ——,
2m
wT,
16 sin* — > p,
2m

mT (14)
Y2 (n,0)

n=1

np’ (32 sin* (wt,,/2m) — Zy) (21} - 32sin* (w/2m))
<

w

Then (1) has at least two nontrivial periodic solutions with
minimal period mT.

Theorem 2. Assume that (F,), (F,)-(Fy), and the following
conditions are satisfied:

(F;) lim, o (F(n, w)/ur) =0, Y(n,u) € ZxR;

(Fg) there exist positive constants €, and y > 2 such that for
neZand|u| > e,

0 < yF (n,u) < uf (n,u). (15)
Then (1) has at least two nontrivial periodic solutions with
minimal period mT.
2. Variational Structure and Some Lemmas

Define the functional J as follows:

1mT 2 mT
J@ =13 () - YFu), 09
n=1 n=1

on the finite-dimensional Hilbert space

E,r = {u| Uy = u,, Yn € Z}, (17)
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where
U= (oo Uiy U Uy Upy ey Uy ) (18)

For mT > 2, define

2 -10 -+ 0 -1
12 -1--0 0
o -1 2 --0 O
M = .19
o o0 0 - 2 -1
-1 0 O - -1 2

mTxmT

For mT = 2, define

m=(> 20
'_<—2 2)' (20)

The argument need not be changed and we omit it.
J(u) can be rewritten as

mT mT
1 2 2
J(u) = EZ' (A u,, A un) - ;F (n,u,)
(21)
1 mT
=5 Mx - ;F (nu,),
Au,r)".
Clearly, ] € C'(E,,r»R) and for any u € E, ;, by using

Uy = Uy,> Uy = U,r,;, We can compute the partial derivative
as

where x = (Auy, Au,, ...,

o _

e = Ay, , - f(nu,), VneZ(1,mT). (22)

Therefore, u € E, is a critical point of J on E,; if and only
if
f(nu,),

Since u = {u,},cz € E,,; and f(n,u) in the first variable n
are mT-periodic in #, we can reduce the existence of periodic
solutions of (1) to the existence of critical points of ] on E,, -

Ay, , = vn € Z(1,mT). (23)

By matrix theory, the eigenvalues of M can be given by

A =4sin2£, j=
mT

i omT — 1. (24)

0,1,2,...

It is easy to see that 0 is an eigenvalue of M and A; > 0, j =
1,2,...,mT —1,and

.2 7T
i} = dsin® 2

min{A;,A,,..., 4

max{A;, A, .. A} <4
Denote

C=kerM={ucE, | Mu=0eR"}. (26

Therefore,
C={ueE, |lu=1{}, EcR}. (27)

Let D be the direct orthogonal complement of E,,, to C;
thatis, E, = Ce® D.

For 1 < j < [(mT - 1)/2], the eigenvectors of M cor-
responding to A ; are

B jr 2jm-2 2jm-mT\*
fj—<cos—mT cos—mT ,...,cos—mT ,
(28)
2jm -2 2jm-mT \*
(-:(smﬁ,sinL,...,sinM> .
J mT mT mT

When mT is even, the eigenvector corresponding to 4
is¢& = (-1,1,-1,1,...,-1,1)". Let P = span{f}, Q =
span{Ej, j=12,...,[(ml-1)2]},and S = span{Cj, j=

o [(mT —1)/2]}. Then E,, = C® P ®Q & S. For any
uc€k,r

[((mT-1)/2] . .
w w
=a+ Z (ajcos—]n+bjsin—]n>,

= m m (29)
VneZz,

where a, a;, and b are constants.

When mT is odd E,r=CeQ@oS.Foranyu € E,

u,=a+(-1)"b

[(mT-1)/2] w]' (Uj
+ Z (aj cos —n+b; sin —n) , (30)
st m m
VneZ,
where a, b, a;, and b]- are constants.
Denote
E,r={u€E,rlu,=u, YneZl. (31)
Then E,,,; = S and
[((mT-1)/2]
u, = ]:Zl bj sin Zn, Vn e Z. (32)

Let B, denote the open ball in E about 0 of radius r and
let B, denote its boundary.

Lemma 3 (Linking Theorem [1]). Let G be a real Banach
space, G = G, & G,, where G, is finite dimensional. Assume
that ] € CY{(G,R) satisfies the PS condition and

(J,) there exist constants b > 0 and ¢ > 0 such that
J |aBgrwG2 > b;

(J,) there exists an e € 0B, N G, and a constant ¢ > ¢ such
that J|3¢ < 0, where © = (Ec NG, ®{se|0<s<cgl



Then ] possesses a critical value ¢ > b, where

c= }lnf sup J (h (), (33)

€l e

andT = {h € C(®,G) | hlye = I}, where I denotes the identity
operator.

Lemma 4. Assume that the hypotheses (F,)-(F;) are satisfied.
Then the functional ] is bounded from above in E, .

Proof. According to (F;) and (21), for any u € E,

mT
J(u) = —x *Mx — ZF n,u,)

1., & (34)
< —x Mx - Z(ﬁui—()
2 n=1
2 2
<2|x|° = Bllull” +mT¢,
where x = (Auy, Au,, ..., Au,,r)". Since
mT
Ixl? = (thysy = thys Uy —14,) = 1" Mu < 4ful®,  (35)
n=1
we get
u) < (8 = B) |lull* + mT¢ < mT¢. (36)
The desired results are obtained. O

Lemma 5. Assume that the hypotheses (F,)-(F;) are satisfied.
Then the functional ] satisfies the PS condition.

Proof. Let {]J ")} be a bounded sequence from below, that
is, there exists a constant b; > 0 such that

by <7 (u®),

Due to the proof of Lemma 4, it is obvious that

by <7 (uM) < (8
Thus,

Vk € N. (37)
B[] +mT¢, VEeN. (38)

W < 2 )

That is, {4} is a bounded sequence in the finite-dimensional
space E, . Consequently, it has a convergent subsequence.
The proof is finished. O

Lemma 6. If u is a critical point of J(u) on E, , then u is a
critical point of J(u) on E,

In a similar fashion to the proof of Lemma 4 and the
process in [22], we can prove Lemma 6. The detailed proof
is omitted.

Set

m
~ 325in’ (wl/2m) —

Zf (m,0).  (40)
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Lemma 7. Assume that the hypotheses (F,)-(F,) are satisfied.
Ifu is a critical point of J(u) on E,.p, J(u) < Q. , then u has
minimal period mT.

Proof. If not, there is a positive integer [ such that u has
minimal period mT/I. By (Fs),1 > 7,,. For any u € E,,1,

[(mT-1)/21]

u, =

/i
b; sin ﬂn, (41)
i "

and then

mT
](u):zxMx ZF n,u,

(42)
) wl ) mT
> 2sin’ llxI —;F (n,u,),
where x = (Auy, Au,, ..., Au,,r)". Since
5 mT
1617 = 3 (e = s Uy = 14) = " Mus
n=1 (43)
> asin? et lull®,
2m
we get
l T 1/2
.4 W 2 2
J () 2 8sin’ = ull* - (Zf (n,o>> Jul
u 2
5 [[ul
(44)
1
n,0
~ 32sin’ (wl/2m) — Zf (n.0)
m
0).
~ 32sin’ (wl/2m) — Zf (n
Then
] (M) > Ql > QTm’ (45)
which contradicts /(1) < Q, . The proof is complete. O

3. Proof of Results

Proof of Theorem 1. It comes from Lemma 4 that the func-
tional J is bounded from above on E, ;..
Take

ko = sup J (u). (46)

u€kE, r

On one hand, there exists a sequence {u(k)} on E,  such
that

ky = hm]( ) (47)

k—00
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On the other hand, from (36), we get

J () < (8= B) |ul* + mT{ < mT¢, VueE, ;. (48)

Thus, limy,_,,,,J(u) = —oo, which implies that w®} is
bounded. Therefore {u®} has a convergent subsequence,
denoted by{ 1. Set
u= lim uki, (49)
j—o+oo
Due to the continuity of J(u), it is obvious that J (i)
is, u is a critical point of J on E, .
Assumption (F,) implies that, for any u € D, [lu < ¢,

= k,. That

J(u) = —x *Mx — ZF nu,) = x *Mx — ocZun
n=1 n=1 (50)

.2 7T 2 2
> 2sin”— ||x|I” -« |lull”,
mT

where x = (Auy, Au,, ..., Au,,r)". Since

mT
IxI* = Z (tyyy — Uy Upyy — ) = " Mu
e (51)
. T 2
> 4sin” — ||lu R
= lul
then
.4 T 2
T ) > <8 sin® L _ (x> lull. (52)
mT
Let o = (8 sin*(m/mT) - oc)ef. Therefore, the functional

Jlap, ap 2 0 (53)

Thus, we have proved that kg = sup,.p J(u) > o > 0. At
the same time, we have also proved that there exist constants
o > 0and €, > 0such that J|;z p > 0.

€1

By Y- (A2 _)* =0, Vu € C and assumption (F,),
mT 3 mT mT
J(u) = _Z ( nfl) - ZF(I’Z, un) - —ZF(TZ, un)
n 1 n=1 n=1 (54)
<0.

Then u ¢ C and the critical point % of ] corresponding to the
critical value ¢ is a nontrivial periodic solution of (1).

Let v € 0B, N D. Then, forany v € Candt € R, let
u = tv+y. Then

1mT mT
J(u) = EZ (Au,, Au,) = ' F (n,u,)
n=1 n=1
t2 mT mT
< EZ (szn, szn) - ZF (n,tv, +v,)
n=1 n=1
t* * “ 2
<Y MY—; [B(tv, +w,)" - {]

5
mT 5
<282 YIP = BY (tv, +,)" + mT¢
n=1
2
=26 |YI* - Bt* — Bl +mT¢,
(55)
where Y = (Av;, Av,,...,Av, )" Since
mT
IYIP = D" (Vs = Vs Voors = V) =v' My <4, (56)
n=1
then

J(w) < (8- B)e* = Blly|* + mT¢ < -B|w|’ + mT¢. (57)

Therefore, there is a constant y > €; > 0 such that, for any
u € 00, J(u) < 0, where ® = (EXOC)eB{tv | 0<t<x} By
the Linking Theorem, ] possesses a critical value ¢ > o > 0,
where

¢ =infsup ] (h(u)), (58)

I'yew

andT = {h € C(D,E, 1) | hlyp = I

Similar to the proof of [18], we can prove that (1) has at
least two mT-periodic nontrivial solutions. For simplicity, its
proof is omitted.

By (F,), for |u| < p, we have

Fnu)=f(n,0)u+ %wuz

(59)
> f(n,0)u+ %}uz.
Then, for |u| < p,
1 mT 5 5 mT
J(w) = EZ (A u,, A un) - ZF (n,u,)
n=1 n=1
(60)
1 mT 5 5 v mT 5 mT
< EZ (A u,, A un) - EZun - Zf(n,O)un.
n=1 n=1 n=1
Take u,, = p sin(w/m)n. From (F,), we have
[(T-1)/2] : [(T-1)/2]
. 2 . T
f(®,0) = 2 a;sin Tn = 2 a;sin ﬁmn, (61)
j=1 j=1
where a; is a constant. Note that m > 1; we get
(T-1/2)  mT -
0Dy = intiad finiddl
Zf(n Yu, = Z pa; ZSIH mmn - sman
(62)
=0.
Therefore, we have
. 4w 2
T () < (32 sin*-2 _ 2y) Il 63)
2m
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Since
1/2
It =p("5) (64)
then
I ) = (32 sin* (w/2m) — 21/) pzmrr <q,. (65)

w m

It comes from Lemma 7 that the desired result is obtained.
O

Remark 8. Similarly to the above argument, we can also prove
Theorem 2. For simplicity, we omit its proof.
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