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A fourth-order nonlinear difference equation is considered. By making use of critical point theory, some new criteria are obtained
for the existence of periodic solutions with minimal period. The main methods used are a variational technique and the Linking
Theorem.

1. Introduction

Let N, Z, and R denote the sets of all natural numbers,
integers, and real numbers, respectively. [⋅] denotes the
greatest-integer function. For any 𝑎, 𝑏 ∈ Z, define Z(𝑎, 𝑏) ={𝑎, 𝑎 + 1, . . . , 𝑏} when 𝑎 ≤ 𝑏. 𝑥∗ denotes the transpose of a
vector 𝑥.

Consider the following fourth-order nonlinear difference
equation: Δ4𝑢𝑛−2 = 𝑓 (𝑛, 𝑢𝑛) , 𝑛 ∈ Z, (1)
where Δ is the forward difference operator Δ𝑢𝑛 = 𝑢𝑛+1 − 𝑢𝑛;Δ𝑖𝑢𝑛 = Δ(Δ𝑖−1𝑢𝑛) for 𝑖 ≥ 2, and𝑓 ∈ 𝐶1(R2,R) and𝑓(𝑛, 𝑢) are𝑇-periodic in 𝑛 for a given positive integer 𝑇.

Equation (1) can be considered as a discrete analogue of
continuous versions of problem like𝑢(4) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R, (2)
which is used to describe the stationary states of the deflec-
tion of an elastic beam [1]. Equations similar to (2) arise

in the study of the existence of solutions to differential
equations; we refer the reader to [2–7] and the references
therein.

The theory of nonlinear difference equations has been
widely used to study discrete models in many fields such
as finance insurance, computing, electrical circuit analy-
sis, dynamical systems, physical field, and biology. Because
of their importance, many literature and monographs
deal with their existence and uniqueness problems; see
[8–27].

Using the critical point theory and monotone operator
theory, He and Su [13] studied the following discrete nonlin-
ear fourth-order boundary value problems:Δ4𝑢𝑛−2 + 𝜂Δ2𝑢𝑛−1 − 𝜉𝑢𝑛 = 𝜆𝑓 (𝑛, 𝑢𝑛) ,𝑛 ∈ Z [𝑎 + 1, 𝑏 + 1] , (3)

with three parameters. Some existence, multiplicity, and
nonexistence results of nontrivial solutions are obtained.
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Chen and Tang [12] in 2011 were concerned with the
existence of infinitely many homoclinic orbits from 0 of the
fourth-order difference systemΔ4𝑢𝑛−2 + 𝑞𝑛𝑢𝑛 = 𝑓 (𝑛, 𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) , 𝑛 ∈ Z (4)

by using the symmetric Mountain Pass Lemma and estab-
lished some existence criteria to guarantee that (4) has
infinitely many homoclinic orbits.

In 2012, Ma and Lu [19] showed the existence and
multiplicity of positive solutions of the nonlinear discrete
fourth-order boundary value problem forΔ4𝑢𝑛−2 = 𝜆ℎ𝑛𝑓 (𝑢𝑛) , 𝑛 ∈ {2, 3, . . . , 𝑇} , (5)

by using Dancer’s global bifurcation theorem.
Liu et al. [18] studied the existence and multiplicity

of periodic and subharmonic solutions to the following
nonlinear difference equation:Δ2 (𝑟𝑛−2Δ2𝑢𝑛−2) = 𝑓 (𝑛, 𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) , 𝑛 ∈ Z, (6)

using variational technique and the LinkingTheorem.
By employing the variational methods, Yu et al. [22] got

some new criteria for the existence of subharmonic solutions
with prescribed minimal period of second-order nonlinear
difference equationΔ2𝑢𝑛−1 + 𝐴 sin 𝑢𝑛 = 𝑓 (𝑛) , 𝑛 ∈ Z. (7)

Applying the direct method of the calculus of variations
and the mountain pass technique, Leszczyński [17] in 2015
proved the existence of at least one and at least two solutions
to the fourth-order discrete anisotropic boundary value
problem with both advance and retardation of formΔ2 (𝛾𝑛 − 1𝜙𝑝𝑛 (Δ2𝑢𝑛−2)) = 𝑓 (𝑛, 𝑢𝑛+1, 𝑢𝑛, 𝑢𝑛−1) ,𝑛 ∈ Z [1, 𝑘] . (8)

Nonexistence of nontrivial solutions was also obtained.
Motivated by the recent papers [12, 16], our purpose in

this work is to apply LinkingTheorem in critical point theory
to establish some conditions for the nonlinear function 𝑓
which are able to guarantee the existence of at least two
nontrivial periodic solutions withminimal period𝑚𝑇 for the
above problem.

Throughout this paper, we suppose that 𝑚 is a given
integer and𝑚 > 1. Let

𝜔 = 2𝜋𝑇 . (9)

To wit, we get the following.

Theorem 1. Assume that the following hypotheses are satisfied:(𝐹1) there exists a function𝐹 ∈ 𝐶2(R2,R)with𝐹(𝑛+𝑇, 𝑢) =𝐹(𝑛, 𝑢), 𝐹(−𝑛, −𝑢) = 𝐹(𝑛, 𝑢), and 𝐹(𝑛, 𝑢) ≥ 0 and it
satisfies 𝜕𝐹 (𝑛, 𝑢)𝜕𝑢 = 𝑓 (𝑛, 𝑢) , ∀𝑛 ∈ Z; (10)

(𝐹2) there exist positive constants 𝜖1, 𝛼 ∈ (0, 8 sin4(𝜋/𝑚𝑇))
such that𝐹 (𝑛, 𝑢) ≤ 𝛼𝑢2, ∀𝑛 ∈ Z, |𝑢| ≤ 𝜖1; (11)

(𝐹3) there exist positive constants 𝜁, 𝛽 ∈ (8, +∞) such that𝐹 (𝑛, 𝑢) ≥ 𝛽𝑢2 − 𝜁, ∀ (𝑛, 𝑢) ∈ Z × R; (12)

(𝐹4) there exist positive constants 𝜌 and 𝜇 > ] such that

(𝜕2𝐹 (𝑛, 𝑢)𝜕𝑢2 𝜂, 𝜂) ≤ 𝜇𝜂2, ∀ (𝑛, 𝑢) ∈ Z × R, 𝜂 ∈ R,
(𝜕2𝐹 (𝑛, 𝑢)𝜕𝑢2 𝜂, 𝜂) ≥ ]𝜂2, ∀ |𝑢| ≤ 𝜌, 𝑛 ∈ Z, 𝜂 ∈ R; (13)

(𝐹5) if 𝑢 is a solution of (1) with minimal period 𝑙𝑇, 𝑙 is a
rational number, and𝑓(𝑛, 𝑢) also has aminimal period𝑙𝑇, then 𝑙must be an integer.(𝐹6) let 𝜏𝑚 be the least prime factor of𝑚,

] > 16 sin4 𝜔2𝑚,16 sin4𝜔𝜏𝑚2𝑚 > 𝜇,
𝑚𝑇∑
𝑛=1

𝑓2 (𝑛, 0)
< 𝜋𝜌2 (32 sin4 (𝜔𝜏𝑚/2𝑚) − 2𝜇) (2] − 32 sin4 (𝜔/2𝑚))𝜔 .

(14)

Then (1) has at least two nontrivial periodic solutions with
minimal period𝑚𝑇.
Theorem 2. Assume that (𝐹1), (𝐹4)–(𝐹6), and the following
conditions are satisfied:(𝐹7) lim|𝑢|→0(𝐹(𝑛, 𝑢)/𝑢2) = 0, ∀(𝑛, 𝑢) ∈ Z × R;(𝐹8) there exist positive constants 𝜖2 and 𝛾 > 2 such that for𝑛 ∈ Z and |𝑢| ≥ 𝜖2,0 < 𝛾𝐹 (𝑛, 𝑢) ≤ 𝑢𝑓 (𝑛, 𝑢) . (15)

Then (1) has at least two nontrivial periodic solutions with
minimal period𝑚𝑇.
2. Variational Structure and Some Lemmas

Define the functional 𝐽 as follows:
𝐽 (𝑢) fl 12 𝑚𝑇∑𝑛=1 (Δ2𝑢𝑛−1)2 − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛) , (16)

on the finite-dimensional Hilbert space𝐸𝑚𝑇 = {𝑢 | 𝑢𝑛+𝑚𝑇 = 𝑢𝑛, ∀𝑛 ∈ Z} , (17)
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where 𝑢 = (. . . , 𝑢−𝑛, . . . , 𝑢−1, 𝑢0, 𝑢1, . . . , 𝑢𝑛, . . .) . (18)

For𝑚𝑇 > 2, define

𝑀 fl
(((((
(

2 −1 0 ⋅ ⋅ ⋅ 0 −1−1 2 −1 ⋅ ⋅ ⋅ 0 00 −1 2 ⋅ ⋅ ⋅ 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 0 ⋅ ⋅ ⋅ 2 −1−1 0 0 ⋅ ⋅ ⋅ −1 2
)))))
)𝑚𝑇×𝑚𝑇

. (19)

For𝑚𝑇 = 2, define
𝑀 fl ( 2 −2−2 2 ) . (20)

The argument need not be changed and we omit it.𝐽(𝑢) can be rewritten as

𝐽 (𝑢) = 12 𝑚𝑇∑𝑛=1 (Δ2𝑢𝑛, Δ2𝑢𝑛) − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛)
= 12𝑥∗𝑀𝑥 − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛) ,

(21)

where 𝑥 = (Δ𝑢1, Δ𝑢2, . . . , Δ𝑢𝑚𝑇)∗.
Clearly, 𝐽 ∈ 𝐶1(𝐸𝑚𝑇,R) and for any 𝑢 ∈ 𝐸𝑚𝑇, by using𝑢0 = 𝑢𝑚𝑇, 𝑢1 = 𝑢𝑚𝑇+1, we can compute the partial derivative

as 𝜕𝐽𝜕𝑢𝑛 = Δ4𝑢𝑛−2 − 𝑓 (𝑛, 𝑢𝑛) , ∀𝑛 ∈ Z (1, 𝑚𝑇) . (22)

Therefore, 𝑢 ∈ 𝐸𝑚𝑇 is a critical point of 𝐽 on 𝐸𝑚𝑇 if and only
if Δ4𝑢𝑛−2 = 𝑓 (𝑛, 𝑢𝑛) , ∀𝑛 ∈ Z (1, 𝑚𝑇) . (23)

Since 𝑢 = {𝑢𝑛}𝑛∈Z ∈ 𝐸𝑚𝑇 and 𝑓(𝑛, 𝑢) in the first variable 𝑛
are𝑚𝑇-periodic in 𝑛, we can reduce the existence of periodic
solutions of (1) to the existence of critical points of 𝐽 on 𝐸𝑚𝑇.

By matrix theory, the eigenvalues of𝑀 can be given by

𝜆𝑗 = 4 sin2 𝑗𝜋𝑚𝑇, 𝑗 = 0, 1, 2, . . . , 𝑚𝑇 − 1. (24)

It is easy to see that 0 is an eigenvalue of𝑀 and 𝜆𝑗 > 0, 𝑗 =1, 2, . . . , 𝑚𝑇 − 1, and
min {𝜆1, 𝜆2, . . . , 𝜆𝑚𝑇−1} = 4 sin2 𝜋𝑚𝑇,
max {𝜆1, 𝜆2, . . . , 𝜆𝑚𝑇−1} ≤ 4. (25)

Denote𝐶 = ker𝑀 = {𝑢 ∈ 𝐸𝑚𝑇 | 𝑀𝑢 = 0 ∈ R𝑚𝑇} . (26)

Therefore, 𝐶 = {𝑢 ∈ 𝐸𝑚𝑇 | 𝑢 = {𝜉} , 𝜉 ∈ R} . (27)

Let 𝐷 be the direct orthogonal complement of 𝐸𝑚𝑇 to 𝐶;
that is, 𝐸𝑚𝑇 = 𝐶 ⊕ 𝐷.

For 1 ≤ 𝑗 ≤ [(𝑚𝑇 − 1)/2], the eigenvectors of 𝑀 cor-
responding to 𝜆𝑗 are

𝜉𝑗 = (cos 2𝑗𝜋𝑚𝑇 , cos 2𝑗𝜋 ⋅ 2𝑚𝑇 , . . . , cos 2𝑗𝜋 ⋅ 𝑚𝑇𝑚𝑇 )∗ ,
𝜁𝑗 = (sin 2𝑗𝜋𝑚𝑇 , sin 2𝑗𝜋 ⋅ 2𝑚𝑇 , . . . , sin 2𝑗𝜋 ⋅ 𝑚𝑇𝑚𝑇 )∗ . (28)

When 𝑚𝑇 is even, the eigenvector corresponding to 4
is 𝜉 = (−1, 1, −1, 1, . . . , −1, 1)∗. Let 𝑃 = span{𝜉}, 𝑄 =
span{𝜉𝑗, 𝑗 = 1, 2, . . . , [(𝑚𝑇 − 1)/2]}, and 𝑆 = span{𝜁𝑗, 𝑗 =1, 2, . . . , [(𝑚𝑇 − 1)/2]}. Then 𝐸𝑚𝑇 = 𝐶 ⊕ 𝑃 ⊕ 𝑄 ⊕ 𝑆. For any𝑢 ∈ 𝐸𝑚𝑇,
𝑢𝑛 = 𝑎 + [(𝑚𝑇−1)/2]∑

𝑗=1

(𝑎𝑗 cos 𝜔𝑗𝑚 𝑛 + 𝑏𝑗 sin 𝜔𝑗𝑚 𝑛) ,
∀𝑛 ∈ Z, (29)

where 𝑎, 𝑎𝑗, and 𝑏𝑗 are constants.
When𝑚𝑇 is odd, 𝐸𝑚𝑇 = 𝐶 ⊕ 𝑄 ⊕ 𝑆. For any 𝑢 ∈ 𝐸𝑚𝑇,𝑢𝑛 = 𝑎 + (−1)𝑛 𝑏

+ [(𝑚𝑇−1)/2]∑
𝑗=1

(𝑎𝑗 cos 𝜔𝑗𝑚 𝑛 + 𝑏𝑗 sin 𝜔𝑗𝑚 𝑛) ,
∀𝑛 ∈ Z,

(30)

where 𝑎, 𝑏, 𝑎𝑗, and 𝑏𝑗 are constants.
Denote𝐸𝑚𝑇 = {𝑢 ∈ 𝐸𝑚𝑇 | 𝑢−𝑛 = 𝑢𝑛, ∀𝑛 ∈ Z} . (31)

Then 𝐸𝑚𝑇 = 𝑆 and
𝑢𝑛 = [(𝑚𝑇−1)/2]∑

𝑗=1

𝑏𝑗 sin 𝜔𝑗𝑚 𝑛, ∀𝑛 ∈ Z. (32)

Let 𝐵𝑟 denote the open ball in 𝐸 about 0 of radius 𝑟 and
let 𝜕𝐵𝑟 denote its boundary.
Lemma 3 (Linking Theorem [1]). Let 𝐺 be a real Banach
space, 𝐺 = 𝐺1 ⊕ 𝐺2, where 𝐺1 is finite dimensional. Assume
that 𝐽 ∈ 𝐶1(𝐺,R) satisfies the PS condition and(𝐽1) there exist constants 𝑏 > 0 and 󰜚 > 0 such that𝐽|𝜕𝐵󰜚∩𝐺2 ≥ 𝑏;(𝐽2) there exists an 𝑒 ∈ 𝜕𝐵1 ∩ 𝐺2 and a constant 𝜍 ≥ 󰜚 such

that 𝐽|𝜕Φ ≤ 0, where Φ = (𝐵𝜍 ∩ 𝐺1) ⊕ {𝑠𝑒 | 0 < 𝑠 < 𝜍}.
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Then 𝐽 possesses a critical value 𝑐 ≥ 𝑏, where𝑐 = inf
ℎ∈Γ

sup
𝑢∈Φ

𝐽 (ℎ (𝑢)) , (33)

and Γ = {ℎ ∈ 𝐶(Φ, 𝐺) | ℎ|𝜕Φ = 𝐼}, where 𝐼 denotes the identity
operator.

Lemma 4. Assume that the hypotheses (𝐹1)–(𝐹3) are satisfied.
Then the functional 𝐽 is bounded from above in 𝐸𝑚𝑇.
Proof. According to (𝐹3) and (21), for any 𝑢 ∈ 𝐸𝑚𝑇,

𝐽 (𝑢) = 12𝑥∗𝑀𝑥 − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛)
≤ 12𝑥∗𝑀𝑥 − 𝑚𝑇∑𝑛=1 (𝛽𝑢2𝑛 − 𝜁)≤ 2 ‖𝑥‖2 − 𝛽 ‖𝑢‖2 + 𝑚𝑇𝜁,

(34)

where 𝑥 = (Δ𝑢1, Δ𝑢2, . . . , Δ𝑢𝑚𝑇)∗. Since
‖𝑥‖2 = 𝑚𝑇∑

𝑛=1

(𝑢𝑛+1 − 𝑢𝑛, 𝑢𝑛+1 − 𝑢𝑛) = 𝑢∗𝑀𝑢 ≤ 4 ‖𝑢‖2 , (35)

we get 𝐽 (𝑢) ≤ (8 − 𝛽) ‖𝑢‖2 + 𝑚𝑇𝜁 ≤ 𝑚𝑇𝜁. (36)

The desired results are obtained.

Lemma 5. Assume that the hypotheses (𝐹1)–(𝐹3) are satisfied.
Then the functional 𝐽 satisfies the PS condition.
Proof. Let {𝐽(𝑢(𝑘))} be a bounded sequence from below, that
is, there exists a constant 𝑏1 > 0 such that−𝑏1 ≤ 𝐽 (𝑢(𝑘)) , ∀𝑘 ∈ N. (37)

Due to the proof of Lemma 4, it is obvious that−𝑏1 ≤ 𝐽 (𝑢(𝑘)) ≤ (8 − 𝛽) 󵄩󵄩󵄩󵄩󵄩𝑢(𝑘)󵄩󵄩󵄩󵄩󵄩2 + 𝑚𝑇𝜁, ∀𝑘 ∈ N. (38)

Thus, 󵄩󵄩󵄩󵄩󵄩𝑢(𝑘)󵄩󵄩󵄩󵄩󵄩2 ≤ 𝑏1 + 𝑚𝑇𝜁𝛽 − 8 . (39)

That is, {𝑢(𝑘)} is a bounded sequence in the finite-dimensional
space 𝐸𝑚𝑇. Consequently, it has a convergent subsequence.
The proof is finished.

Lemma 6. If 𝑢 is a critical point of 𝐽(𝑢) on 𝐸𝑚𝑇, then 𝑢 is a
critical point of 𝐽(𝑢) on 𝐸𝑚𝑇.

In a similar fashion to the proof of Lemma 4 and the
process in [22], we can prove Lemma 6. The detailed proof
is omitted.

Set

Ω𝑙 = − 𝑚32 sin4 (𝜔𝑙/2𝑚) − 2𝜇 𝑚𝑇∑𝑛=1𝑓2 (𝑛, 0) . (40)

Lemma 7. Assume that the hypotheses (𝐹4)–(𝐹6) are satisfied.
If 𝑢 is a critical point of 𝐽(𝑢) on 𝐸𝑚𝑇, 𝐽(𝑢) < Ω𝜏𝑚 , then 𝑢 has
minimal period𝑚𝑇.
Proof. If not, there is a positive integer 𝑙 such that 𝑢 has
minimal period𝑚𝑇/𝑙. By (𝐹5), 𝑙 ≥ 𝜏𝑚. For any 𝑢 ∈ 𝐸𝑚𝑇,

𝑢𝑛 = [(𝑚𝑇−𝑙)/2𝑙]∑
𝑗=1

𝑏𝑗 sin 𝜔𝑙𝑗𝑚 𝑛, (41)

and then

𝐽 (𝑢) = 12𝑥∗𝑀𝑥 − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛)
≥ 2 sin2 𝜔𝑙2𝑚 ‖𝑥‖2 − 𝑚𝑇∑

𝑛=1

𝐹 (𝑛, 𝑢𝑛) , (42)

where 𝑥 = (Δ𝑢1, Δ𝑢2, . . . , Δ𝑢𝑚𝑇)∗. Since
‖𝑥‖2 = 𝑚𝑇∑

𝑛=1

(𝑢𝑛+1 − 𝑢𝑛, 𝑢𝑛+1 − 𝑢𝑛) = 𝑢∗𝑀𝑢
≥ 4 sin2 𝜔𝑙2𝑚 ‖𝑢‖2 , (43)

we get

𝐽 (𝑢) ≥ 8 sin4 𝜔𝑙2𝑚 ‖𝑢‖2 − (𝑚𝑇∑
𝑛=1

𝑓2 (𝑛, 0))1/2 ‖𝑢‖
− 𝜇2 ‖𝑢‖2

≥ − 132 sin4 (𝜔𝑙/2𝑚) − 2𝜇 𝑚𝑇∑𝑛=1𝑓2 (𝑛, 0)
≥ − 𝑚32 sin4 (𝜔𝑙/2𝑚) − 2𝜇 𝑚𝑇∑𝑛=1𝑓2 (𝑛, 0) .

(44)

Then 𝐽 (𝑢) ≥ Ω𝑙 ≥ Ω𝜏𝑚 , (45)

which contradicts 𝐽(𝑢) < Ω𝜏𝑚 . The proof is complete.

3. Proof of Results

Proof of Theorem 1. It comes from Lemma 4 that the func-
tional 𝐽 is bounded from above on 𝐸𝑚𝑇.

Take 𝑘0 = sup
𝑢∈𝐸𝑚𝑇

𝐽 (𝑢) . (46)

On one hand, there exists a sequence {𝑢(𝑘)} on 𝐸𝑚𝑇 such
that 𝑘0 = lim

𝑘→∞
𝐽 (𝑢(𝑘)) . (47)
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On the other hand, from (36), we get𝐽 (𝑢) ≤ (8 − 𝛽) ‖𝑢‖2 + 𝑚𝑇𝜁 ≤ 𝑚𝑇𝜁, ∀𝑢 ∈ 𝐸𝑚𝑇. (48)

Thus, lim‖𝑢‖→+∞𝐽(𝑢) = −∞, which implies that {𝑢(𝑘)} is
bounded. Therefore, {𝑢(𝑘)} has a convergent subsequence,
denoted by {𝑢(𝑘𝑗)}. Set 𝑢 = lim

𝑗→+∞
𝑢(𝑘𝑗). (49)

Due to the continuity of 𝐽(𝑢), it is obvious that 𝐽(𝑢) = 𝑘0.That
is, 𝑢 is a critical point of 𝐽 on 𝐸𝑚𝑇.

Assumption (𝐹2) implies that, for any 𝑢 ∈ 𝐷, ‖𝑢‖ ≤ 𝜖1,
𝐽 (𝑢) = 12𝑥∗𝑀𝑥 − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛) ≥ 12𝑥∗𝑀𝑥 − 𝛼𝑚𝑇∑𝑛=1𝑢2𝑛≥ 2 sin2 𝜋𝑚𝑇 ‖𝑥‖2 − 𝛼 ‖𝑢‖2 ,

(50)

where 𝑥 = (Δ𝑢1, Δ𝑢2, . . . , Δ𝑢𝑚𝑇)∗. Since
‖𝑥‖2 = 𝑚𝑇∑

𝑛=1

(𝑢𝑛+1 − 𝑢𝑛, 𝑢𝑛+1 − 𝑢𝑛) = 𝑢∗𝑀𝑢
≥ 4 sin2 𝜋𝑚𝑇 ‖𝑢‖2 ,

(51)

then 𝐽 (𝑢) ≥ (8 sin4 𝜋𝑚𝑇 − 𝛼) ‖𝑢‖2 . (52)

Let 𝜎 = (8 sin4(𝜋/𝑚𝑇) − 𝛼)𝜖21 . Therefore, the functional𝐽|𝜕𝐵𝜖1∩𝐷 ≥ 𝜎. (53)

Thus, we have proved that 𝑘0 = sup𝑢∈𝐸𝑚𝑇𝐽(𝑢) ≥ 𝜎 > 0. At
the same time, we have also proved that there exist constants𝜎 > 0 and 𝜖1 > 0 such that 𝐽|𝜕𝐵𝜖1∩𝐷 ≥ 𝜎.

By ∑𝑚𝑇𝑛=1(Δ2𝑢𝑛−1)2 = 0, ∀𝑢 ∈ 𝐶 and assumption (𝐹1),
𝐽 (𝑢) = 12 𝑚𝑇∑𝑛=1 (Δ2𝑢𝑛−1)2 − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛) = −𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛)≤ 0. (54)

Then 𝑢 ∉ 𝐶 and the critical point 𝑢 of 𝐽 corresponding to the
critical value 𝑐0 is a nontrivial periodic solution of (1).

Let V ∈ 𝜕𝐵1 ∩ 𝐷. Then, for any 𝜓 ∈ 𝐶 and 𝑡 ∈ R, let𝑢 = 𝑡V + 𝜓. Then

𝐽 (𝑢) = 12 𝑚𝑇∑𝑛=1 (Δ2𝑢𝑛, Δ2𝑢𝑛) − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛)
≤ 𝑡22 𝑚𝑇∑𝑛=1 (Δ2V𝑛, Δ2V𝑛) − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑡V𝑛 + 𝜓𝑛)
≤ 𝑡22 Υ∗𝑀Υ − 𝑚𝑇∑

𝑛=1

[𝛽 (𝑡V𝑛 + 𝜓𝑛)2 − 𝜁]

≤ 2𝑡2 ‖Υ‖2 − 𝛽𝑚𝑇∑
𝑛=1

(𝑡V𝑛 + 𝜓𝑛)2 + 𝑚𝑇𝜁
= 2𝑡2 ‖Υ‖2 − 𝛽𝑡2 − 𝛽 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2 + 𝑚𝑇𝜁,

(55)

where Υ = (ΔV1, ΔV2, . . . , ΔV𝑚𝑇)∗. Since
‖Υ‖2 = 𝑚𝑇∑

𝑛=1

(V𝑛+1 − V𝑛, V𝑛+1 − V𝑛) = V∗𝑀V ≤ 4, (56)

then𝐽 (𝑢) ≤ (8 − 𝛽) 𝑡2 − 𝛽 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2 + 𝑚𝑇𝜁 ≤ −𝛽 󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩2 + 𝑚𝑇𝜁. (57)

Therefore, there is a constant 𝜒 > 𝜖1 > 0 such that, for any𝑢 ∈ 𝜕Φ, 𝐽(𝑢) ≤ 0, where Φ = (𝐵𝜒 ∩ 𝐶) ⊕ {𝑡V | 0 < 𝑡 < 𝜒}. By
the Linking Theorem, 𝐽 possesses a critical value 𝑐 ≥ 𝜎 > 0,
where 𝑐 = inf

ℎ∈Γ
sup
𝑢∈Φ

𝐽 (ℎ (𝑢)) , (58)

and Γ = {ℎ ∈ 𝐶(Φ, 𝐸𝑚𝑇) | ℎ|𝜕Φ = 𝐼}.
Similar to the proof of [18], we can prove that (1) has at

least two𝑚𝑇-periodic nontrivial solutions. For simplicity, its
proof is omitted.

By (𝐹4), for |𝑢| ≤ 𝜌, we have
𝐹 (𝑛, 𝑢) = 𝑓 (𝑛, 0) 𝑢 + 12 𝜕2𝐹 (𝑛, 𝜃𝑢)𝜕𝑢2 𝑢2

≥ 𝑓 (𝑛, 0) 𝑢 + ]2𝑢2. (59)

Then, for |𝑢| ≤ 𝜌,
𝐽 (𝑢) = 12 𝑚𝑇∑𝑛=1 (Δ2𝑢𝑛, Δ2𝑢𝑛) − 𝑚𝑇∑𝑛=1𝐹 (𝑛, 𝑢𝑛)

≤ 12 𝑚𝑇∑𝑛=1 (Δ2𝑢𝑛, Δ2𝑢𝑛) − ]2 𝑚𝑇∑𝑛=1𝑢2𝑛 − 𝑚𝑇∑𝑛=1𝑓 (𝑛, 0) 𝑢𝑛.
(60)

Take 𝑢𝑛 = 𝜌 sin(𝜔/𝑚)𝑛. From (𝐹1), we have
𝑓 (𝑛, 0) = [(𝑇−1)/2]∑

𝑗=1

𝑎𝑗 sin 2𝑗𝜋𝑇 𝑛 = [(𝑇−1)/2]∑
𝑗=1

𝑎𝑗 sin 2𝑗𝜋𝑚𝑇𝑚𝑛, (61)

where 𝑎𝑗 is a constant. Note that𝑚 > 1; we get
𝑚𝑇∑
𝑛=1

𝑓 (𝑛, 0) 𝑢𝑛 = [(𝑇−1)/2]∑
𝑗=1

𝜌𝑎𝑗𝑚𝑇∑
𝑛=1

sin
2𝑗𝜋𝑚𝑇𝑚𝑛 ⋅ sin 2𝜋𝑚𝑇𝑛

= 0. (62)

Therefore, we have

𝐽 (𝑢) ≤ (32 sin4 𝜔2𝑚 − 2]) ‖𝑢‖2 . (63)
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Since

‖𝑢‖ = 𝜌 (𝑚𝜋𝜔 )1/2 , (64)

then

𝐽 (𝑢) = (32 sin4 (𝜔/2𝑚) − 2]) 𝜌2𝑚𝜋𝜔 < Ω𝜏𝑚 . (65)

It comes from Lemma 7 that the desired result is obtained.

Remark 8. Similarly to the above argument, we can also prove
Theorem 2. For simplicity, we omit its proof.
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