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In this paper, the impact of the fusion framework on the fault diagnosis process is discussed. The centralized fusion framework
makes it difficult to locate and estimate the sensor fault. Based on the fault detectionmethod, the sequential fusion framework could
locate and estimate the sensor fault and realize the fault-tolerant estimation of system states. In the sense of minimummean square
error (MMSE), based on the sequential detection of bias fault of sensors, a sequential fault-tolerant fusion estimation approach
is presented to estimate the sensor fault and the system state, simultaneously, optimally, in real time. Further, a novel alternate
fault-tolerant fusion estimation method is proposed to alternately estimate the sensor fault and the system state, in the frame of
sequential fusion. What is more, the equivalency of the two proposed methods is proved. And the feasibility and equivalency of
them are also verified by the computer simulation.

1. Introduction

With the improvement of computer science and sensor
technology, various kinds of sensors are applied in the fields
of military defense, modern industry, intelligent agriculture,
navigation guidance, and other fields. Compared with tradi-
tional single senor monitoring systems, multisensor systems
gather lots of redundancy and complementarity observation
data from different time scales and different space scales
and then obtain more comprehensive information of target
interested through the information fusion methods [1–3].

Due to their working mechanism and application envi-
ronment, the sensors will inevitably show components aging,
drift point, mechanical wear, and such other phenomena. As
a result, the bias faults could occur in the sensors in service.
Therefore, several effective fault detection method and fault-
tolerant fusion estimation methods are proposed for multi-
sensor systems. Based on the federated filter, the literature
[4–7] used the 𝜒2 detection method to detect and isolate
the faulty sensor and realized the fault-tolerant performance
of the navigation system. A multimode federated Gaussian
sum particle fault-tolerant filtering method was proposed

to improve the estimation precision for nonlinear and non-
Gaussian systems in [8]. In [9], the 𝜒2 detection method
was utilized to detect the fault of three height sensors for
unmanned aerial vehicles (UAV). The faulty height sensor
was isolated to achieve fault-tolerant integrated navigation
for UAV. In [10], three kinds of sensor faults were considered:
the complete failure of the sensor, partial failure, and normal
working conditions. And a fault-tolerant H∞ filter was
designed to ensure the estimation accuracy. In [11], the sensor
bias fault was introduced and modeled as a state-dependent
uncertain term, and a passive fault-tolerant filtering method
was designed by using the linear matrix inequation (LMI)
technique for the failure fault and bias faults of sensors. In
[12], the 𝜒2 detection method was utilized for the multirate
multisensor systems to detect the unreliable measurements.
The faulty measurements were also isolated and replaced
by its predictions. In [13], it pointed out that the method
of discarding faulty sensors would result in resource wastes
and even lead to the fact that the system state could not be
fusion estimated effectively. Based on fault detection of each
sensor by using 𝜒2 detection criteria, a fault estimator was
proposed to realize the distributed fault-tolerant estimation
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for multisensor sampling systems. However, the proposed
fault estimator took the variance of innovation as the variance
of the fault, which results in the conservation of the fault-
tolerant fusion estimation method.

In this paper, the shortcoming of the traditional cen-
tralized Kalman fusion filtering method for the linear time-
varying systemswith sensor bias fault is analyzed firstly.Then,
in the sense of MMSE, a sequential fault-tolerant estima-
tion method is presented to estimate the system state and
the sensor bias fault simultaneously, optimally. Further, an
alternate fault-tolerant fusion estimation method is proposed
to alternately estimate the sensor fault and the system state,
if the sensor is detected with bias fault. The two sequential
fault-tolerant fusion estimation methods are performance
equivalent, which is proved in theory and in simulation.

This paper is organized as follows. In Section 1, the math-
ematical models of a class of linear time-varying dynamic
systems in normal operation and with sensor bias fault
are formulated in Section 2. In Section 3, the traditional
centralized Kalman fusion estimation method is reviewed.
In Sections 4 and 5 two sequential fault-tolerant fusion
estimation methods are presented, and the performance
equivalence of these two methods is proved. The feasibility,
optimality, and equivalence of the two presented methods are
illustrated in the simulation in Section 6, and Section 7 draws
conclusions.

2. Problem Formulation

Consider the following linear time-varying dynamic system:

𝑥 (𝑘) = 𝐹 (𝑘 − 1) 𝑥 (𝑘 − 1) + 𝑤 (𝑘 − 1) (1)

where 𝑥(𝑘) ∈ 𝑅𝑛×1 is the system state at time instant 𝑘,𝐹(𝑘) ∈ 𝑅𝑛×𝑛 is the corresponding state transition matrix, and
the process noise 𝑤(𝑘) ∈ 𝑅𝑛×1 obeys Gaussian distributions
with zero mean and the variance of which is 𝑄(𝑘), namely,𝑤(𝑘) ∼N(0, 𝑄(𝑘)).

There are 𝑁 sensors used to monitor the system; the
corresponding measurement equations are given by

𝑧𝑖 (𝑘) = 𝐻𝑖 (𝑘) 𝑥 (𝑘) + V𝑖 (𝑘) , 𝑖 = 1, 2, . . . , 𝑁 (2)

in which 𝑧𝑖(𝑘) ∈ 𝑅𝑝𝑖×1 is the measurement sampled by the
sensor 𝑖, 𝐻𝑖(𝑘) is associated measurement matrix, and the
measurement noise V𝑖(𝑘) ∈ 𝑅𝑝𝑖×1 ∼N(0, 𝑅𝑖(𝑘)).

Because of the aging of the parts, the drift of the operating
point, and the mechanical wear, the sensors may cause faults
such as sensor bias, which are usually relative fixed over a
period of time. Therefore, the measurement equations with
fault sensors can be modeled as follows:

𝑧𝑖 (𝑘) = 𝐻𝑖 (𝑘) 𝑥 (𝑘) + V𝑖 (𝑘) + 𝑓𝑖 (𝑘) (3)

where 𝑓𝑖(𝑘) is the sensor bias fault of sensor 𝑖 and 𝑓𝑖(𝑘 + 1) =𝑓𝑖(𝑘).
Assumption 1. For the initial state of system (1), 𝑥(0) ∼
N(𝑥0, 𝑃0) holds.

Assumption 2. The process noises 𝑤(𝑘 − 1) and the mea-
surement noises V𝑖(𝑗) are independent; namely, the following
cross-variance hold:

𝐸 {𝑤 (𝑘 − 1) V𝑇𝑖 (𝑗)} = 0, 𝑖 = 1, 2, . . . ,𝑁, ∀𝑘, 𝑗 (4)

Assumption 3. (𝐹(𝑘−1),𝐻𝑖(𝑘)), (𝑖 = 1, 2, . . . ,𝑁) is uniformly
observable.

Assumption 4. In this paper, it is assumed that the sensors
cannot exchange some information to each other, and the
measurement sampled by them is all transmitted to the fusion
center and fused in it.

3. Centralized Fusion Estimation and
Fault Detection

In this section, the centralized fusion estimation method and
the further sensor fault detection method are reviewed.

Firstly, the following auxiliary variables are denoted, in
the centralized fusion frame:

𝑍 (𝑘) =
[[[[[[
[

𝑧1 (𝑘)𝑧2 (𝑘)...
𝑧𝑁 (𝑘)

]]]]]]
]
;

𝐻 (𝑘) =
[[[[[[
[

𝐻1 (𝑘)𝐻2 (𝑘)...
𝐻𝑁 (𝑘)

]]]]]]
]
;

𝑉 (𝑘) =
[[[[[[
[

V1 (𝑘)
V2 (𝑘)...
V𝑁 (𝑘)

]]]]]]
]

(5)

According to the measurement equations (2), a similar
augmented measurement equation is obtained as shown in

𝑍 (𝑘) = 𝐻 (𝑘) 𝑥 (𝑘) + 𝑉 (𝑘) (6)

where 𝑉(𝑘) is the augmented measurement noise which
satisfies

𝐸 {𝑉 (𝑘)} = 0;

𝐸 {𝑉 (𝑘) 𝑉𝑇 (𝑘)} = [[[[[
[

𝑅1 (𝑘) 0 0 0
0 𝑅2 (𝑘) 0 0
0 0 d 0
0 0 0 𝑅𝑁 (𝑘)

]]]]]
]

(7)

For the case all the sensorsworks normally, the state of the
dynamic system can be estimated by the following centralized
fusion estimation method.
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Lemma 5. For the linear time-varying system (1)-(2), assume
the estimate of the state at 𝑘 − 1 is 𝑥(𝑘 − 1 | 𝑘 − 1), the
corresponding estimation error covariance is 𝑃(𝑘 − 1 | 𝑘 − 1),
and then the fusion estimate of the state at 𝑘 is

𝑥 (𝑘 | 𝑘) = 𝑥 (𝑘 | 𝑘 − 1)
+ 𝐾 (𝑘) (𝑍 (𝑘) − 𝐻 (𝑘) 𝑥 (𝑘 | 𝑘 − 1)) (8)

	e corresponding estimation error covariance can be given by

𝑃 (𝑘 | 𝑘) = (𝐼 − 𝐾 (𝑘)𝐻 (𝑘)) 𝑃 (𝑘 | 𝑘 − 1) (9)

where

𝑥 (𝑘 | 𝑘 − 1) = 𝐹 (𝑘 − 1) 𝑥 (𝑘 − 1 | 𝑘 − 1)
𝑃 (𝑘 | 𝑘 − 1) = 𝐹 (𝑘 − 1) 𝑃 (𝑘 − 1 | 𝑘 − 1) 𝐹𝑇 (𝑘 − 1)
+ 𝑄 (𝑘 − 1)

𝐾 (𝑘) = 𝑃 (𝑘 | 𝑘 − 1)𝐻𝑇 (𝑘)
⋅ (𝐻 (𝑘) 𝑃 (𝑘 | 𝑘 − 1)𝐻𝑇 (𝑘) + 𝑅 (𝑘))−1

(10)

Remark 6. Thecentralized fusion filter in Lemma 5 is optimal
in the sense of MMSE, for the case that all the sensors work
normally. Actually, the above centralized fusion filter is a
standard Kalman filter for the argument system described by
(1) and (6), which collects all the normal measurement of the
sensors.

However, the sensor bias fault cannot be avoided due to
the long-time utility of the sensor and the large-scale change
of the environment. In this case, the sensor bias fault should
be detected and estimated. On this basis, then, achieve the
fault-tolerant estimation of the system state.

According to the estimation criterion of MMSE, for the
case that all the sensors works normally, the measurement
residual 𝑍(𝑘 | 𝑘 − 1) = 𝑍(𝑘) −𝐻(𝑘)𝑥(𝑘 | 𝑘 − 1) should satisfy
the zero-mean Gaussian distribution with the covariance𝑃𝑧𝑧(𝑘 | 𝑘−1) = 𝐻(𝑘)𝑃(𝑘 | 𝑘−1)𝐻𝑇(𝑘)+𝑅(𝑘). Otherwise, if a
sensor is faulty, the probability distribution of𝑍(𝑘 | 𝑘−1)will
change. Therefore, the following index can be given to detect
the sensor fault:

𝛾 (𝑘) = 𝑍𝑇 (𝑘 | 𝑘 − 1) (𝑃𝑧𝑧 (𝑘 | 𝑘 − 1))−1𝑍 (𝑘 | 𝑘 − 1) (11)

Obviously, the detect index above satisfies the 𝜒2 dis-
tribution with the degree ∑𝑁𝑖=1 𝑝𝑖. The detect standard can
be used as a measure to judge whether the augmented
measurement𝑍(𝑘) is faulty or not. If𝑇𝛼 is set as the one-sided𝜒2 distribution value with confidence 𝛼, the detect standard
can be given by [12]

𝛾 (𝑘) > 𝑇𝛼, 𝑓𝑎𝑢𝑙𝑡
𝛾 (𝑘) ≤ 𝑇𝛼, 𝑓𝑎𝑢𝑙𝑡 𝑓𝑟𝑒𝑒 (12)

Remark 7. In Lemma 5, the augmented measurement 𝑍(𝑘) is
established including the measurements sampled by all the

sensors at 𝑘. The fault detection index above is with a high
degree. If a small bias fault happened in a sensor, it is difficult
to detect the fault and determine which sensor is failed.
Therefore, the sequential fault-tolerant fusion estimation
approach will be presented in the following section, which
could detect and locate the sensor bias fault for multisensor
time-varying systems in real time.

4. Sequential Fault-Tolerant Fusion
Estimation I

For linear time-varying systems shown in (1)-(2), the bias
fault may appear in each sensor.Therefore, the fault detection
should be added in the fusion estimator to ensure its reliabil-
ity. In order to detect the sensor bias fault and locate the failed
sensor in real time, the fault detection method and the fault-
tolerant estimation method are presented in the sequential
fusion frame, in this section.

Assumption 8. Without loss of generality, assume the order in
which the measurements reach the fusion center is the same
as that of the sensor.

Denote the fusion estimate of the state at 𝑘−1 as 𝑥(𝑘−1 |𝑘 − 1) and the corresponding estimation error covariance as𝑃(𝑘 − 1 | 𝑘 − 1). When the measurement sampled by Sensor
1 reaches the fusion center, the prediction of the state at𝑘 can
be given by

𝑥0 (𝑘 | 𝑘) = 𝑥 (𝑘 | 𝑘 − 1) = 𝐹 (𝑘 − 1) 𝑥 (𝑘 − 1 | 𝑘 − 1)
𝑃0 (𝑘 | 𝑘) = 𝑃 (𝑘 | 𝑘 − 1)

= 𝐹 (𝑘 − 1) 𝑃 (𝑘 − 1 | 𝑘 − 1) 𝐹𝑇 (𝑘 − 1)
+ 𝑄 (𝑘 − 1)

(13)

Then, the prediction and innovation of the measurement
sampled by Sensor i at 𝑘 are

𝑧̂1 (𝑘 | 𝑘 − 1) = 𝐻1 (𝑘) 𝑥0 (𝑘 | 𝑘)
𝑧̃1 (𝑘 | 𝑘 − 1) = 𝑧1 (𝑘) − 𝐻1 (𝑘) 𝑥0 (𝑘 | 𝑘) (14)

and the covariance of 𝑧̃1(𝑘 | 𝑘 − 1) is
𝑃𝑧𝑧,1 (𝑘 | 𝑘 − 1) = 𝐻1 (𝑘) 𝑃0 (𝑘 | 𝑘)𝐻𝑇1 (𝑘) + 𝑅1 (𝑘) (15)

Define the following fault detection index for Sensor 1:

𝛾1 (𝑘)
= 𝑧̃𝑇1 (𝑘 | 𝑘 − 1) (𝑃𝑧𝑧,1 (𝑘 | 𝑘 − 1))−1 𝑧̃1 (𝑘 | 𝑘 − 1) (16)

It is easy to know that 𝛾1(𝑘) satisfies the 𝜒2 distribution with
the degree 𝑝1. And the detection standard is given by

𝛾1 (𝑘) > 𝑇1, 𝑓𝑎𝑢𝑙𝑡
𝛾1 (𝑘) ≤ 𝑇1, 𝑓𝑎𝑢𝑙𝑡 𝑓𝑟𝑒𝑒 (17)

where 𝑇1 is the detection threshold, which can be set by the𝜒2 distribution [12].
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If Sensor 1 is detected with bias fault, the state space
should be described by (1) and (3). And the following
augmented state fusion is established:

[𝑥 (𝑘)𝑓𝑖 (𝑘)] = [
𝐹 (𝑘 − 1) 0

0 𝐼] [
𝑥 (𝑘 − 1)
𝑓𝑖 (𝑘 − 1)] + [

𝑤 (𝑘 − 1)
0 ] (18)

Denote 𝐹∗(𝑘−1) = [ 𝐹(𝑘−1) 0
0 𝐼

], 𝑥∗(𝑘) = [ 𝑥(𝑘)𝑓𝑖(𝑘) ], and𝑤∗(𝑘−1) = [ 𝑤(𝑘−1)0 ]. And (18) can be rewritten as

𝑥∗ (𝑘) = 𝐹∗ (𝑘 − 1) 𝑥∗ (𝑘 − 1) + 𝑤∗ (𝑘 − 1) (19)

The augmented process noise 𝑤∗(𝑘 − 1) ∼ 𝑁(0,𝑄∗(𝑘 − 1)),
where𝑄∗(𝑘 − 1) = [ 𝑄(𝑘−1) 0

0 0
].

The corresponding measurement function is described as

𝑧1 (𝑘) = 𝐻∗1 (𝑘) 𝑥∗ (𝑘) + V1 (𝑘) (20)

Here,𝐻∗1 (𝑘) = [𝐻1(𝑘), 𝐼].
For the augmented state system (19), (20), the estimate of

the augmented state can be given by

𝑥∗1 (𝑘 | 𝑘) = [𝑥1 (𝑘 | 𝑘)𝑓1 (𝑘 | 𝑘)]
= 𝑥∗0 (𝑘 | 𝑘)
+ 𝐾∗1 (𝑘) (𝑧1 (𝑘) − 𝐻∗1 (𝑘) 𝑥∗0 (𝑘 | 𝑘))

(21)

and the corresponding covariance of the estimation error is

𝑃∗1 (𝑘 | 𝑘) = [𝑃1 (𝑘 | 𝑘) 0
0 𝑃1,𝑓 (𝑘 | 𝑘)]

= (𝐼 − 𝐾∗1 (𝑘)𝐻∗1 (𝑘)) 𝑃∗0 (𝑘 | 𝑘)
(22)

In (21)-(22),

𝑥∗0 (𝑘 | 𝑘) = [ 𝑥0 (𝑘 | 𝑘)𝑓1 (𝑘 − 1 | 𝑘 − 1)]

𝑃∗0 (𝑘 | 𝑘) = [𝑃0 (𝑘 | 𝑘) 0
0 𝑃1,𝑓 (𝑘 − 1 | 𝑘 − 1)]

+ [𝑄 (𝑘, 𝑘 − 1) 00 0]
𝐾∗1 (𝑘) = 𝑃∗0 (𝑘 | 𝑘) (𝐻∗1 (𝑘))𝑇
⋅ (𝐻∗1 (𝑘) 𝑃 (𝑘 | 𝑘 − 1) (𝐻∗1 (𝑘))𝑇 + 𝑅 (𝑘))−1

(23)

𝑓0(𝑘 | 𝑘) is the initial estimate of sensor bias fault and 𝑃0,𝑓(𝑘 |𝑘) is the initial estimation error covariance.

If Sensor 1 is detected as fault free, the system state can be
estimated by the traditional Kalman filter; namely,

𝑥1 (𝑘 | 𝑘) = 𝑥0 (𝑘 | 𝑘) + 𝐾1 (𝑘)
⋅ (𝑧1 (𝑘) − 𝐻1 (𝑘) 𝑥0 (𝑘 | 𝑘))

𝑃1 (𝑘 | 𝑘) = (𝐼 − 𝐾1 (𝑘)𝐻1 (𝑘)) 𝑃0 (𝑘 | 𝑘)
𝐾1 (𝑘) = 𝑃0 (𝑘 | 𝑘)𝐻𝑇1 (𝑘)
⋅ (𝐻1 (𝑘) 𝑃0 (𝑘 | 𝑘)𝐻𝑇1 (𝑘) + 𝑅1 (𝑘))

(24)

When the measurement sampled by Sensor 𝑖 (𝑖 =2, 3, . . . , 𝑁) reaches the fusion center, the sensor bias fault can
be detected by the detection standard as in (14)-(17), where
the time subscript is 𝑖 (𝑖 = 2, 3, . . . , 𝑁) but not 1, on the basis
of 𝑥𝑖−1(𝑘 | 𝑘), 𝑃𝑖−1(𝑘 | 𝑘).

If Sensor 𝑖 is detected with bias fault, the fault-tolerant
estimation is similar to (21)-(23). Denote

𝑥∗𝑖 (𝑘 | 𝑘) = [𝑥𝑖 (𝑘 | 𝑘)𝑓𝑖 (𝑘 | 𝑘)] ,

𝑃∗𝑖 (𝑘 | 𝑘) = [𝑃𝑖 (𝑘 | 𝑘) 0
0 𝑃𝑖,𝑓 (𝑘 | 𝑘)]

(25)

The sensor bias fault and the system state can be estimated
simultaneously and optimally in the sense of MMSE.

𝑥∗𝑖 (𝑘 | 𝑘) = 𝑥∗𝑖−1 (𝑘 | 𝑘) + 𝐾∗𝑖 (𝑘)
⋅ (𝑧𝑖 (𝑘) − 𝐻∗𝑖 (𝑘) 𝑥∗𝑖−1 (𝑘 | 𝑘))

𝑃∗𝑖 (𝑘 | 𝑘) = (𝐼 − 𝐾∗𝑖 (𝑘)𝐻∗𝑖 (𝑘)) 𝑃∗𝑖−1 (𝑘 | 𝑘)
𝐾∗𝑖 (𝑘) = 𝑃∗𝑖−1 (𝑘 | 𝑘) (𝐻∗𝑖 (𝑘))𝑇
⋅ (𝐻∗𝑖 (𝑘) 𝑃∗𝑖−1 (𝑘 | 𝑘) (𝐻∗𝑖 (𝑘))𝑇 + 𝑅 (𝑘))−1

𝑥∗𝑖−1 (𝑘 | 𝑘) = [𝑥𝑖−1 (𝑘 | 𝑘)𝑓𝑖,0 (𝑘 | 𝑘)]
𝐻∗𝑖 (𝑘) = [𝐻𝑖 (𝑘) , 𝐼]
𝑃∗𝑖−1 (𝑘 | 𝑘) = [𝑃𝑖−1 (𝑘 | 𝑘) 0

0 𝑃𝑖,0,𝑓 (𝑘 | 𝑘)]

(26)

in which 𝑓𝑖,0(𝑘 | 𝑘) = 𝑓𝑖(𝑘 − 1 | 𝑘 − 1), 𝑃𝑖,0,𝑓(𝑘 | 𝑘) = 𝑃𝑖,𝑓(𝑘 −1 | 𝑘 − 1), if Sensor 𝑖 is also detected with bias fault at k-
1. Otherwise, 𝑓𝑖,0(𝑘 | 𝑘), 𝑃𝑖,0,𝑓(𝑘 | 𝑘) is the initial estimate
of sensor bias fault and the corresponding estimation error
covariance.
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If Sensor 𝑖 is detected as fault free, the system state can be
estimated by

𝑥𝑖 (𝑘 | 𝑘) = 𝑥𝑖−1 (𝑘 | 𝑘) + 𝐾𝑖 (𝑘)
⋅ (𝑧𝑖 (𝑘) − 𝐻𝑖 (𝑘) 𝑥𝑖−1 (𝑘 | 𝑘))

𝑃𝑖 (𝑘 | 𝑘) = (𝐼 − 𝐾𝑖 (𝑘)𝐻𝑖 (𝑘)) 𝑃𝑖−1 (𝑘 | 𝑘)
𝐾𝑖 (𝑘) = 𝑃𝑖−1 (𝑘 | 𝑘)𝐻𝑇𝑖 (𝑘)
⋅ (𝐻𝑖 (𝑘) 𝑃𝑖−1 (𝑘 | 𝑘)𝐻𝑇𝑖 (𝑘) + 𝑅𝑖 (𝑘))−1

(27)

When all the measurements sampled at k reach the fusion
center, the global optimal fusion estimate can be given by

𝑥 (𝑘 | 𝑘) = 𝑥𝑁 (𝑘 | 𝑘) ,
𝑃 (𝑘 | 𝑘) = 𝑃𝑁 (𝑘 | 𝑘) (28)

To sum up, in the sequential fusion frame, a fusion
estimation method is given by (27) to estimate the sensor bias
fault and the system state simultaneously and optimally, in
which 𝑖 = 1, 2, . . . ,𝑁.

Remark 9. It is noted that the fault detection index can also
be establish for the centralized fusion estimation method in
Lemma5.However, the centralized fusion estimationmethod
converts all the measurements sampled at k into an aug-
mented measurement. When there are errors in individual
sensors, they are may be submerged in the influence of
augmented measurement noise on the observation process.
Therefore, it is difficult to detect the sensor bias fault quickly.
What ismore, even if the fault is detected, it is oftendifficult to
determine the number and the locations of the faulty sensors.
The sequential fault-tolerant fusion estimation method given
in this section not only avoids the high-dimensional matrix
operations in the centralized fusion estimation method, but
also can detect and estimate the bias fault of each sensor in
real time.

5. Sequential Fault-Tolerant Fusion
Estimation II

In the last section, a sequential fault-tolerant fusion esti-
mation method is presented to simultaneously estimate the
sensor bias fault and the system state, if the sensor is detected
with bias fault. In this section, an alternate fault-tolerant
fusion estimation method is proposed to alternately estimate
the sensor fault and the system state. If Sensor 𝑖 is detected
with bias fault, the bias fault is estimated firstly, then the
measurement sampled by Sensor 𝑖 can be compensated. And
the system state can be estimated by using the compensated
measurement.

5.1. Bias Fault Estimation. The bias fault of Sensor 𝑖 at 𝑘 can
be estimated by

𝑓𝑖,𝑘 (𝑘 | 𝑘) = 𝑓𝑖,𝑘−1 (𝑘 − 1 | 𝑘 − 1) + 𝐾𝑖,𝑓 (𝑘) (𝑧𝑖 (𝑘)
− 𝐻𝑖 (𝑘) 𝑥𝑖−1 (𝑘 | 𝑘) − 𝑓𝑖,𝑘−1 (𝑘 − 1 | 𝑘 − 1)) (29)

in which𝑓𝑖,𝑘−1(𝑘−1 | 𝑘−1) is the bias fault estimate of Sensor𝑖 at 𝑘 − 1, if Sensor 𝑖 is also detected with bias fault at k-1.
Otherwise, 𝑓𝑖,𝑘−1(𝑘 − 1 | 𝑘 − 1) is the initial estimate of the
bias fault of Sensor 𝑖.

The corresponding estimation gain and estimate error
covariance, respectively, are

𝐾𝑖,𝑓 (𝑘) = 𝑃𝑖,𝑘−1,𝑓 (𝑘 − 1 | 𝑘 − 1) (𝑅 (𝑘)
+ 𝑃𝑖,𝑘−1,𝑓 (𝑘 − 1 | 𝑘 − 1)
+ 𝐻𝑖 (𝑘) 𝑃𝑖−1 (𝑘 | 𝑘)𝐻𝑇𝑖 (𝑘))−1

𝑃𝑖,𝑘,𝑓 (𝑘 | 𝑘) = (𝐼 − 𝐾𝑖,𝑓 (𝑘)) 𝑃𝑖,𝑘−1,𝑓 (𝑘 − 1 | 𝑘 − 1)
(30)

5.2. Faulty Measurement Compensation. The measurement
sampled by Sensor 𝑖 can be compensated by utilizing the
estimate shown in (29).

𝑧∙𝑖 (𝑘) = 𝑧𝑖 (𝑘) − 𝑓𝑖,𝑘 (𝑘 | 𝑘) (31)

5.3. Fault-Tolerant Estimation. The fault-tolerant estimate of
the system state can be given by

𝑥∙𝑖 (𝑘 | 𝑘)
= 𝑥∙𝑖−1 (𝑘 | 𝑘) + 𝐾∙𝑖 (𝑘) (𝑧∙𝑖 (𝑘) − 𝐻𝑖 (𝑘) 𝑥∙𝑖−1 (𝑘 | 𝑘))

𝑀 (𝑘)
= 𝐻𝑖 (𝑘) 𝑃∙𝑖−1 (𝑘 | 𝑘)𝐻𝑇𝑖 (𝑘) + 𝑃𝑖,𝑘−1,𝑓 (𝑘 | 𝑘)
+ 𝑅 (𝑘)

𝑃∙𝑖 (𝑘 | 𝑘)
= 𝑃∙𝑖−1 (𝑘 | 𝑘)
− 𝑃∙𝑖−1 (𝑘 | 𝑘)𝐻𝑇𝑖 (𝑘)𝑀−1 (𝑘)𝐻𝑖 (𝑘) 𝑃∙𝑖−1 (𝑘 | 𝑘)

𝐾∙𝑖 (𝑘) = 𝑃∙𝑖−1 (𝑘 | 𝑘)𝐻𝑇𝑖 (𝑘)𝑀−1 (𝑘) (𝐼 − 𝐾𝑖,𝑓 (𝑘))−1

(32)

Theorem 10. 	e sequential fusion fault-tolerant estimation
algorithm based on augmented state (sequential fault-tolerant
estimation fusion algorithm I) has the same estimation accu-
racy as the alternate fault-tolerant fusion estimation algorithm
(sequential fault-tolerant estimation fusion algorithm II).

Proof. Themain difference between the two sequential fusion
fault-tolerant estimation algorithms is mainly reflected in the
different processing methods for the measurement sampled
by the sensor with bias fault. Therefore, the proof of the above
theorem is focused on the equivalence of (26) and (32).
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In (28)

𝐾∗𝑖 (𝑘) = 𝑃∗𝑖−1 (𝑘 | 𝑘) (𝐻∗𝑖 (𝑘))𝑇
⋅ (𝑅 (𝑘) + 𝐻∗𝑖 (𝑘) 𝑃∗𝑖−1 (𝑘 | 𝑘) (𝐻∗𝑖 (𝑘))𝑇)−1

= [𝑃𝑖−1 (𝑘 | 𝑘)𝐻𝑇𝑖 (𝑘)𝑀−1𝑃𝑖,0,𝑓 (𝑘 | 𝑘)𝑀−1 ]
(33)

Then the estimate of the system state at 𝑘 and the correspond-
ing estimation error covariance can be described by

𝑥𝑖 (𝑘 | 𝑘) = 𝑥𝑖−1 (𝑘 | 𝑘) + 𝑃𝑖−1 (𝑘 | 𝑘)𝐻𝑇𝑖 (𝑘)
⋅ 𝑀−1 (𝑧𝑖 (𝑘) − 𝐻𝑖 (𝑘) 𝑥𝑖−1 (𝑘 | 𝑘) − 𝑓𝑖,0 (𝑘 | 𝑘))

𝑃𝑖 (𝑘 | 𝑘) = 𝑃𝑖−1 (𝑘 | 𝑘) − 𝑃𝑖−1 (𝑘 | 𝑘)𝐻𝑇𝑖 (𝑘)𝑀−1𝐻𝑖 (𝑘)
⋅ 𝑃𝑖−1 (𝑘 | 𝑘)

(34)

The innovation of the measurement compensated by (33)
is given by

𝑧̃∙𝑖 (𝑘) = 𝑧𝑖 (𝑘) − 𝑓𝑖,𝑘 (𝑘 | 𝑘) − 𝐻𝑖 (𝑘) 𝑥∙𝑖−1 (𝑘 | 𝑘)
= 𝐻𝑖 (𝑘) 𝑥∙𝑖−1 (𝑘 | 𝑘) + 𝑓𝑖,𝑘 (𝑘 | 𝑘) + V𝑖 (𝑘) = (𝐼
− 𝐾𝑖,𝑓 (𝑘)) (𝐻𝑖 (𝑘) 𝑥∙𝑖−1 (𝑘 | 𝑘) + V𝑖 (𝑘)
+ 𝑓𝑖,𝑘−1 (𝑘 − 1 | 𝑘 − 1))

(35)

Substituting it into (32),

𝑥∙𝑖 (𝑘 | 𝑘) = 𝑥∙𝑖−1 (𝑘 | 𝑘) + 𝐾∙𝑖 (𝑘) (𝑧∙𝑖 (𝑘)
− 𝐻𝑖 (𝑘) 𝑥∙𝑖−1 (𝑘 | 𝑘)) = 𝑥∙𝑖−1 (𝑘 | 𝑘) + 𝐾∙𝑖 (𝑘) (𝐼
− 𝐾𝑖,𝑓 (𝑘)) (V𝑖 (𝑘) + 𝐻𝑖 (𝑘) 𝑥∙𝑖−1 (𝑘 | 𝑘)
+ 𝑓𝑖,𝑘−1 (𝑘 − 1 | 𝑘 − 1)) = 𝑥∙𝑖−1 (𝑘 | 𝑘) + 𝑃∙𝑖−1 (𝑘 | 𝑘)
⋅ 𝐻𝑇𝑖 (𝑘)𝑀−1 (𝑘) (𝑧𝑖 (𝑘) − 𝐻𝑖 (𝑘) 𝑥𝑖−1 (𝑘 | 𝑘)
− 𝑓𝑖,𝑘−1 (𝑘 − 1 | 𝑘 − 1))

(36)

If 𝑥∙𝑖−1(𝑘 | 𝑘) = 𝑥𝑖−1(𝑘 | 𝑘), 𝑃∙𝑖−1(𝑘 | 𝑘) = 𝑃𝑖−1(𝑘 | 𝑘), 𝑓𝑖,𝑘−1(𝑘 −1 | 𝑘 − 1) = 𝑓𝑖,0(𝑘 | 𝑘), then
𝑥∙𝑖 (𝑘 | 𝑘) = 𝑥𝑖 (𝑘 | 𝑘) (37)

Remark 11. Although the sequential fault-tolerant fusion
estimation method I given in Section 4 could estimate that
bias fault and obtain the fault-tolerant fusion estimate of
the system state, it is noted that the estimation result of
this method is an estimate of the augmented state matrix
which is constituted of the bias fault and the system state,
when the bias fault is detected. It is implied that the fusion

center needs the augmented matrix computation ability.
While the sequential fault-tolerant fusion estimation method
II proposed in this section estimates the bias fault and
the system state alternately, which need not to deal with
the augmented matrix. What is more, the alternate fault-
tolerant fusion estimation method is more accessible. The
same estimate accuracy of the two sequential fault-tolerant
fusion estimation methods proves the effectiveness of the
alternate fault-tolerant fusion estimation method. Namely,
there is no accuracy-loss in the two alternate estimation
processes.

6. Simulation

In this section, two simulation examples are utilized to prove
the effectiveness and feasibility of the two sequential fault-
tolerant fusion estimation methods proposed in this paper.
The first one is for the CVmotion model, and the second one
is for the hydrological data assimilation

6.1. Simulation I. Consider the following CV motion model:

𝑥 (𝑘) = [1 𝑇
0 1] 𝑥 (𝑘 − 1) + 𝑤 (𝑘, 𝑘 − 1) (38)

where𝑇 = 1𝑠 is the fusion period and the covariance of𝑤(𝑘−1) is

𝑄(𝑘 − 1) = [[[
[

𝑇33 𝑇22𝑇22 𝑇
]]]
]
⋅ 𝑞 (39)

and 𝑞 = 0.15.
There are two sensors utilized to observe the target. The

measurement functions are given by

𝑧𝑖 (𝑘) = 𝐻𝑖 (𝑘) 𝑥 (𝑘) + V𝑖 (𝑘) , 𝑖 = 1, 2 (40)

in which the covariance of k𝑖(𝑘𝑖), 𝑖 = 1, 2 are 𝑅1(𝑘1) = 1 and𝑅2(𝑘2) = 0.81. And the measurement matric are 𝐻1(𝑘1) =[1, 0.5] and𝐻2(𝑘2) = [0.5, 1].The initial state estimate is 𝑥0 =[1, 1], and the corresponding estimation error covariance is𝑃0 = diag{1, 1}.
Assume Sensor 1 appear bias fault at 50, and the bias fault

is

𝑓 (𝑘) = {{{
10 𝑘 ≥ 50
0 𝑘 < 50 (41)

The simulation results are shown as in Figures 1–4.
As illustrated in Figures 1–4, the sequential fault-tolerant

fusion estimation methods presented in this paper could
detect the bias faults of Sensor 1 in real time and fault-
tolerant could estimate the system state. The centralized
fusion estimation method cannot determine the order of the
sensor with bias fault, so its estimates are obtained by taking
all the measurements as normal ones. Therefore, the tracking
accuracy of the centralized fusion estimation method turns
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Figure 1: The real state and estimate curves of position.
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Figure 2:The real state and estimate curves of speed.

worse when the bias fault appears in Sensor 1, as shown in
Figures 1 and 2. Note that the centralized fusion estimation
method is optimal for normalmeasurements. Combinedwith
the above simulation results, the optimality and feasibility
of the presented sequential fault-tolerance fusion estimation
methods are proved before the fault occurs. It is illustrated
in the time interval (0, 49] in Figures 3 and 4. After Sensor
1 is detected with the bias fault, the alternate fault-tolerant
fusion estimation method can estimate the system states on
the basis of the effective estimation of sensor bias fault, which
obtains the same accuracy with the sequential fault-tolerant
fusion estimation method based on augmented state, which
also verifies the theorem in Section 5.
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Figure 3: The absolute estimation error curves of position.

6.2. Simulation II. The Muskingum method is one of the
most important kinds of hydrological data assimilation Tech-
nologies [14, 15]. The Muskingum method is a river flow
calculation model, in which the river reach is divided intom
sections, and the flow rate of the Section i at k is denoted as
Q𝑖(𝑘). According to the Muskingum method,

[[[[[[
[

𝑎1 0 ⋅ ⋅ ⋅ 0
𝑏2 𝑎2 ⋅ ⋅ ⋅ 0
... ... d

...
0 ⋅ ⋅ ⋅ 𝑏𝑚 𝑎𝑚

]]]]]]
]

[[[[[[
[

Q1 (𝑘)
Q2 (𝑘)...
Q𝑚 (𝑘)

]]]]]]
]

=
[[[[[[
[

𝑐1 0 ⋅ ⋅ ⋅ 0
𝑑2 𝑐2 ⋅ ⋅ ⋅ 0
... ... d

...
0 ⋅ ⋅ ⋅ 𝑑𝑚 𝑐𝑚

]]]]]]
]

[[[[[[
[

Q1 (𝑘 − 1)
Q2 (𝑘 − 1)...
Q𝑚 (𝑘 − 1)

]]]]]]
]

+
[[[[[[
[

u1 (𝑘 − 1)
u2 (𝑘 − 1)...
u𝑚 (𝑘 − 1)

]]]]]]
]

(42)

where 𝑎𝑖 = 𝐾𝑖(1 − 𝑥𝑖)/2 + Δ𝑡/2, 𝑏𝑖 = 𝐾𝑖𝑥𝑖 − Δ𝑡, 𝑐𝑖 =𝐾𝑖(1 − 𝑥𝑗) − Δ𝑡/2, 𝑑𝑖 = 𝐾𝑖𝑥𝑗 + Δ𝑡/2, and 𝐾𝑖 and 𝑥𝑖 are
the Muskingum parameters. Δ𝑡 is the sampled period, and
u𝑖(𝑘 − 1), 𝑖 = 1, 2, . . . , 𝑚, denotes the local inflow.

A flood process is considered in this simulation, the
Muskingum parameters are given by𝐾𝑖 = 25, 𝑥𝑖 = 0.3. There
are 3 sections all sampled by 2 kinds of flow meters every 5
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Figure 4: The absolute estimation error curves of position.

minutes. In this river reach, local inflows have little effect.
Therefore, the measurement functions can be given by

[[
[
𝑎1 0 0
𝑏2 𝑎2 0
0 𝑏3 𝑎3

]]
]
[[
[
Q1 (𝑘)
Q2 (𝑘)
Q3 (𝑘)

]]
]

= [[
[
𝑐1 0 0
𝑑2 𝑐2 0
0 𝑑3 𝑐3

]]
]
[[
[
Q1 (𝑘 − 1)
Q2 (𝑘 − 1)
Q3 (𝑘 − 1)

]]
]
+ [[
[
𝑤1 (𝑘 − 1)𝑤2 (𝑘 − 1)𝑤3 (𝑘 − 1)

]]
]

𝑦𝑖,𝑗 (𝑘) = Q𝑖 (𝑘) + V𝑖,𝑗 (𝑘) , 𝑖 = 1, 2, 3; 𝑗 = 1, 2

(43)

500 minutes of the flood process is shown in the simulation
results, in which the first flow meter is assumed to be bias
fault after 300 minute. 𝑓𝑖,1(𝑘) = 8, 𝑖 = 1, 2, 3; 𝑘 > 300. In this
simulation, the centralized fusion estimation method and the
two sequential fault-tolerant fusion estimation methods are
compared for the hydrological data assimilation of the 500
minutes of the flood process.The simulation results are given
by Figures 5 and 6

In Figures 5 and 6, it is noted that the centralized
fusion estimation method and the two sequential fusion
estimation methods proposed in this paper could obtain
accurate estimates of the flow rate before 300 minutes. Then,
the first flowmeter is faulty; the centralized fusion estimation
method cannot determine which flow meter is fault. The two
sequential fusion estimation methods proposed in this paper
could detect and determine the faulty flow meter. Then, the
bias fault is estimated by different methods. On this basis, the
same fault-tolerant fusion estimates and flow rate correction
errors illustrate the theorem in Section 5.
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Figure 5: The flow rate of its estimates of three methods.
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Figure 6: The correction errors of the flow rate.

7. Conclusion

The centralized fusion estimation method is usually difficult
to locate the faulty sensor when the sensor fault is detected,
which makes it impossible to further estimate the fault. In
order to simultaneously detect, locate, and estimate sensor
bias faults, two sequential fault-tolerant fusion estimation
methods are presented in this paper. The system state and
the sensor bias faults are simultaneously estimated in the
first presented method, while they are alternatively estimated
in the second method. The performance equivalence of the
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two presented sequential fault-tolerant fusion estimation
methods is both proved in theory and in simulation.

Note that the bias faults in this paper are considered as
constant faults of sensors. For the time-varying bias faults
[16, 17], the two proposed sequential fault-tolerant fusion
estimation methods are not suitable. And this problem is an
open question for our further research.
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