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A new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM) with the discrete fractional
difference is proposed. We observe the bifurcation behaviors and draw the bifurcation diagrams, the largest Lyapunov exponent
plot, and the phase portraits of the proposed map, respectively. On the application side, we apply the proposed discrete fractional
map into image encryption with the secret keys ciphered by Menezes-Vanstone Elliptic Curve Cryptosystem (MVECC). Finally,
the image encryption algorithm is analysed in four main aspects that indicate the proposed algorithm is better than others.

1. Introduction

Nowadays, image encryption plays a significant role with the
development of security technology in the areas of network,
communication, and cloud service. Multifarious chaos-based
image encryption algorithms have been developed up to now,
such as in [1–6]; however a few of them have referred to
the image encryption algorithm based on fractional discrete
chaotic map accompanied with Elliptic Curve Cryptography
(ECC).

The theory of the fractional difference has been developed
for decades [7–13]. Recently, Wu et al. [14–16] made a
contribution to the application of the discrete fractional
calculus (DFC) on an arbitrary time scale, and the theories of
delta difference equations were utilized to reveal the discrete
chaos behavior.

ECC is a widely used technology in data security and
communication security; it can achieve the same level of
security with smaller key sizes and higher computational
efficiency [17]. Many famous public-key algorithms, such as
Diffie-Hellman, EIGamal, and Schnorr, can be implemented

bymeans of elliptic curves over finite fields.MVECC is one of
the popular elliptic curve public-key cryptosystems [18] and
we adopt it in our cryptosystem.

Many encryptionmethods based on fractional derivatives
have been proposed in recent time, like fractional logistic
maps [19], fractional-order chaos systems [20], and fractional
form of hyperchaotic system [21].

In [22], a new image encryption algorithm based on one-
dimensional fractional chaotic time series within fractional-
order difference has been proposed; however, the two-
dimensional discrete chaotic map has seldom been used in
image encryption except [23, 24].

Ourmain purpose is to introduce a new two-dimensional
discrete chaoticmap based on fractional-order difference and
apply it in image encryption. The rest of this paper is orga-
nized as follows. In Section 2, the definitions and the prop-
erties of the DFC are introduced. After that, the definitions
and operation of ECC are given. Then, the working principle
of MVECC is described in the next section. In Section 5,
we give the fractional 2D-TFCDM on time scales from the
discrete integral expression.Thebifurcation diagrams and the

Hindawi
Discrete Dynamics in Nature and Society
Volume 2018, Article ID 4585083, 24 pages
https://doi.org/10.1155/2018/4585083

http://orcid.org/0000-0003-0663-9887
http://orcid.org/0000-0001-8235-0319
https://doi.org/10.1155/2018/4585083


2 Discrete Dynamics in Nature and Society

phase portraits of the map are presented while the difference
orders and the coefficients are changing; the largest Lyapunov
exponent plots are also displayed. Afterwards, we apply
the proposed map into image encryption and show several
examples. In Section 7, the performance of the proposed
image encryption method is analysed systematically. Finally,
we have come to some conclusions.

2. Preliminaries

The definitions of the fractional sum and difference are given
as follows. Let N𝑎 denote the isolated time scale and N𝑎 ={𝑎, 𝑎+1, 𝑎+2, . . .} (𝑎 ∈ R fixed).Within theDFC, the function𝑓(𝑡) is changed as a sequence 𝑓(𝑛). The difference operator Δ
is defined as Δ𝑓(𝑛) = 𝑓(𝑛 + 1) − 𝑓(𝑛).
Definition 1 (see [25]). Let 𝑢: N𝑎 → R and 0 < ] be given.
The ]th fractional sum is defined by

Δ−]𝑎 𝑢 (𝑡) fl 1
Γ (])
𝑡−]∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)]−1 𝑢 (𝑠) , 𝑡 ∈ N𝑎+]. (1)

Note that 𝑎 is the starting point; 𝑡(]) is the falling function
defined as

𝑡(]) = Γ (𝑡 + 1)
Γ (𝑡 + 1 − ]) . (2)

Definition 2 (see [26]). For 0 < ], ] ∉ N, and 𝑢(𝑡) defined on
N𝑎, the ]-order Caputo fractional difference is defined by
𝐶Δ]
𝑎𝑢 (𝑡) fl Δ−(𝑚−])𝑎 Δ𝑚𝑢 (𝑡)

= 1
Γ (𝑚 − ])

𝑡−(𝑚−])∑
𝑠=𝑎

(𝑡 − 𝑠 − 1)(𝑚−]−1) Δ𝑚𝑢 (𝑠) ,
𝑡 ∈ N𝑎+𝑚−], 𝑚 = []] + 1.

(3)

Theorem 3 (see [27]). For the delta fractional difference equa-
tion

𝐶Δ]
𝑎𝑢 (𝑡) = 𝑓 (𝑡 + ] − 1, 𝑢 (𝑡 + ] − 1)) ,

Δ𝑘𝑢 (𝑎) = 𝑢𝑘, 𝑚 = []] + 1, 𝑘 = 0, . . . , 𝑚 − 1 (4)

the equivalent discrete integral equation is

𝑥 (𝑛) = 𝑢0 (𝑡) + 1
Γ (])

𝑡−]∑
𝑠=𝑎+𝑚−]

(𝑡 − 𝑠 − 1)(]−1)

× 𝑓 (𝑠 + ] − 1, 𝑢 (𝑠 + ] − 1)) , 𝑡 ∈ N𝑎+𝑚,
(5)

where

𝑢0 (𝑡) =
𝑚−1∑
𝑘=0

(𝑡 − 𝑎)(𝑘)
𝑘! Δ𝑘𝑢 (𝑎) . (6)

The complex difference equation with long-term memory is
obtained here. It can reduce to the integer order one with the
difference order ] = 1 but the integer one does not hold the
discrete memory. From (3) to (5), the domain is shifted from
N𝑎+𝑚−] toN𝑎+𝑚 and the function 𝑢(𝑡) is preserved to be defined
on the isolated time scale N𝑎 in the fractional sums.

3. Introduction to Elliptic Curve

Definition 4. An elliptic curve (EC) 𝐸 over a prime field 𝐹𝑝
denoted by 𝐸(𝐹𝑝) refers to the set of all points (𝑥, 𝑦) that
satisfy the equation

𝐸 : 𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 (mod𝑝) , (7)

together with a special point 𝑂 at infinity, where 𝑎, 𝑏 ∈ 𝐹𝑝,𝑝 ̸= 2, 3 and 4𝑎3 + 27𝑏2 ̸= 0 [28, 29].
3.1. Elliptic Curve Operations. If 𝑃 = (𝑥1, 𝑦1), 𝑄 = (𝑥2, 𝑦2) ∈𝐸(𝐹𝑝); then if 𝑥1 = 𝑥2 but 𝑦1 ̸= 𝑦2, 𝑃 + 𝑄 = 𝑂; that is, 𝑄 =−𝑃 = (𝑥1, −𝑦1) [29].

𝑃 + 𝑄 = {{{
𝑅 = (𝑥3, 𝑦3) , 𝑃 ̸= −𝑄,
𝑂, 𝑃 = −𝑄, (8)

where

𝑥3 ≡ (𝜆2 − 2𝑥1) (mod𝑝) ,
𝑦3 ≡ (𝜆 (𝑥1 − 𝑥3) − 𝑦1) (mod𝑝) ,

𝜆 =
{{{{{{{{{

(𝑦2 − 𝑦1)(𝑥2 − 𝑥1) , 𝑃 ̸= 𝑄,
3𝑥21 + 𝑎2𝑦1 , 𝑃 = 𝑄.

(9)

The scalar multiplication over 𝐸(𝐹𝑝) is defined by

𝑘𝑃 = 𝑃 + 𝑃 + ⋅ ⋅ ⋅ + 𝑃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘 times

, (10)

where 𝑘 is an integer.

Definition 5. The order of an EC is defined by the number of
points that lie on the EC denoted by #𝐸 [29].

Definition 6. Set 𝑃 ∈ 𝐸(𝐹𝑝), and then 𝑃 is called a generator
point if ord(𝑃) = #𝐸 (ord(𝑃) is the smallest positive integer 𝑛
that makes 𝑛𝑃 = 𝑂) [29].
4. Menezes-Vanstone Elliptic Curve
Cryptosystem (MVECC)

MVECC is one of most significant extensions of ECC; the
working principle of MVECC is as follows.

If Andy wants to encrypt and send themessage𝑀 to Bob,
they should do the step as mentioned hereunder:(1)Andy and Bobmake an agreement on an elliptic curve𝐸(𝐹𝑝) and the base point 𝛼.(2)Bob firstly selects a private key 𝑘 to compute the public
key 𝛾 = 𝑘 ⋅ 𝛼 (0 ≦ 𝑘 < ord(𝛼)).(3) If Andy wants to send a message𝑀 = (𝑥1, 𝑥2) ∈ Z∗𝑝 ×
Z∗𝑝 to Bob, he firstly chooses a random private key 𝑑 (0 ≦ 𝑑 <
ord(𝛼)) and then computes his public key 𝛽 = 𝑑 ⋅ 𝛼. On the
other hand, Andy calculates the secret key (𝑐1, 𝑐2) by

(𝑐1, 𝑐2) = 𝑑 ⋅ 𝛾 = 𝑑 ⋅ 𝑘 ⋅ 𝛼 = 𝑘 ⋅ 𝛽. (11)
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Figure 1: The bifurcation diagram of the 2D-TFCDM of variable 𝑘1
for ] = 1.

He should compute the ciphered message afterwards by

𝑦1 = 𝑥1 ∗ 𝑐1 mod𝑝,
𝑦2 = 𝑥2 ∗ 𝑐2 mod𝑝. (12)

(4)Then the ciphertext {𝛾, (𝑦1, 𝑦2)} is sent to Bob. When
Bobwants to get the plaintext (𝑥1, 𝑥2), firstly, he computes the
secret key (𝑐1, 𝑐2) = 𝑘 ⋅ 𝛽 = 𝑘 ⋅ 𝑑 ⋅ 𝛼, and then he computes𝑀 = (𝑥1, 𝑥2) by

𝑥1 = 𝑦1 ∗ 𝑐−11 mod𝑝,
𝑥2 = 𝑦2 ∗ 𝑐−12 mod𝑝, (13)

to get the plaintext [18].
Any adversary that only has 𝛽 and 𝛾 without the private

keys 𝑑 and 𝑘 very difficultly breaks the MVECC to get the
plaintext 𝑀. What is more, if #𝐸 have only one big prime
divisor, the EC is called a safe EC [29]; then, the MVECC can
become an more efficient and secure cryptosystem.

5. Fractional 2D-TFCDM

From [14–16], we notice the application of the DFC in frac-
tional generalizations of the discrete chaotic maps. Recently
[30], the following 2D-TFCDM was proposed:

𝑥𝑛+1 = 𝑘1 cos (𝑥𝑛 + 𝑦𝑛) , 𝑘1 = 8,
𝑦𝑛+1 = 𝑘2 sin (𝑥𝑛 − 𝑦𝑛) , 𝑘2 = 0.5. (14)

Now, consider the fractional generalization of 𝑥(𝑛); the map
was also studied in [31]:
𝐶Δ]
𝛼𝑥 (𝑡) = 𝑘1 cos (𝑥 (𝑡 + ]) + 𝑦 (𝑡 + ])) − 𝑥 (𝑡 + ]) ,

0 < ] < 1, 𝑡 ∈ 𝑁𝑎+1−],
𝑦𝑛+1 = 𝑘2 sin (𝑥𝑛 − 𝑦𝑛) , 𝑘2 = 0.5.

(15)
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Figure 2: The bifurcation diagram of the fractional 2D-TFCDM of
variable 𝑘1 for ] = 0.8.

From Theorem 3, we have the following equivalent discrete
numerical formula for the variable 𝑘1: (𝑘2 = 0.5) with 0 <
] < 1:

𝑥 (𝑛) = 𝑥 (0) + 1
Γ (])

𝑛∑
𝑗=1

Γ (𝑛 − 𝑗 + ])
Γ (𝑛 − 𝑗 + 1)

⋅ [𝑘1 cos (𝑥 (𝑗 − 1) + 𝑦 (𝑗 − 1)) − 𝑥 (𝑗 − 1)] ,
𝑦 (𝑛) = 𝑘2 sin (𝑥 (𝑛 − 1) − 𝑦 (𝑛 − 1)) , 𝑘2 = 0.5.

(16)

Let ] = 1, 𝑥(0) = 0.19, 𝑦(0) = 0.06, 𝑛 = 200, and 𝑘1
be fixed. In what follows, Figure 1 is the bifurcation diagram
where the step size of 𝑘1 is 0.002. Figure 2 is the same
bifurcation diagram except for ] = 0.8.

In Figures 3 and 4, the largest Lyapunov exponent plots
are drawn by use of the Jacobian matrix algorithm proposed
in [32]. The largest Lyapunov exponent LE is positive some-
where; it is corresponding to the chaotic intervals in Figures
1 and 2.

By choosing 101 different initial values we can plot 𝑦(𝑛)
versus 𝑥(𝑛) in one figure. The phase portraits of the integer
map are derived from Figure 5. The cases of ] = 0.8 and ] =0.6 are plotted in Figures 6 and 7, respectively.

6. Applications

The fractionalized chaotic map can be applied in image
encryption. Exploit (16) into an algorithm, and set the initial
values 𝑥0, 𝑦0, the order ], and the coefficients 𝑘1, 𝑘2 of chaotic
system as keys. In this paper, we propose the encryption
algorithm and divide it into 3 parts.

6.1. Generation of New Keys Based on Elliptic Curve in a Finite
Field. Setting 𝑎 = 1, 𝑏 = 6, and 𝑝 = 9996887 in (7), we
can get 𝐸(𝐹9996887). Since #𝐸 = 10000721 is a prime number,
according to [29], 𝐸(𝐹9996887) is a safe EC. Let 𝛼 = (2, 4),
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randomly select 𝑑 = 9134417, 𝑘 = 1269960 ∈ [1, #𝐸]; then𝛽 = 𝑑𝛼 = (6020909, 7282175), 𝛾 = 𝑘𝛼 = (7495358, 7052635),
and (𝑐1, 𝑐2) = 𝑘𝛽 = (3049362, 3915118) = 𝑑𝛾. The initial key

] = 0.6026331, 𝑥0 = 4.107532, ]01 = ] × 107 = 6026331, and𝑥01 = 𝑥0 × 106 = 4107532.
Calculate

]01 = 𝑐1 ∗ ]01 mod𝑝 = 3049362 ⋅ 6026331 mod 9996887 = 7123456 mod 9996887,
𝑥01 = 𝑐2 ⋅ 𝑥01 mod𝑝 = 3915118 ⋅ 4107532 mod 9996887 = 190000 mod 9996887. (17)

Then, the ciphertext is ((7495358, 7052635), 7123456, 190000),
the enciphered key is ] = ]01/107 = 0.7123456, and 𝑥0 =𝑥01/106 = 0.19.

Make 𝑦0 = 3.650991, 𝑘1 = 0.897029, and 𝑘2 = 0.434264,
and compute𝑦01 = 𝑦0×106, 𝑘01 = 𝑘1×106, and 𝑘02 = 𝑘2×106;
then

𝑦01 = 𝑐1 ⋅ 𝑦01 mod𝑝 = 3049362 ⋅ 3650991 mod 9996887 = 60000 mod 9996887,
𝑘01 = 𝑐2 ⋅ 𝑘01 mod𝑝 = 3915118 ⋅ 897029 mod 9996887 = 8000000 mod 9996887,
𝑘02 = 𝑐1 ⋅ 𝑘02 mod𝑝 = 3049362 ⋅ 434264 mod 9996887 = 500000 mod 9996887.

(18)

Set 𝑦0 = 𝑦01/106 = 0.06, 𝑘1 = 𝑘01/106 = 8, 𝑘2 =𝑘02/106 = 0.5, and then 𝑥0, 𝑦0, ], 𝑘1, 𝑘2 are taken as the keys
of Section 6.2.

6.2. Permutation Procedure Based on Fractional 2D-TFCDM.
Taking advantage of (16) with the initial values 𝑥0, 𝑦0, ], 𝑘1,
and 𝑘2 generated in the last section, we can encrypt the image.
The next step of encryption is permutation; it is subdivided
into 4 steps:(1) Set 𝑥0 as 𝑥(1); iterate (16) for𝑀𝑁−1 times to generate
the one-dimensional real number chaotic sequence 𝑥(𝑖), 𝑖 =1, 2, . . . ,𝑀𝑁; here𝑀 and 𝑁 denote the length and width of
the original image 𝑉, respectively.(2) Reorder 𝑥(𝑘) by the bubble sort and get 𝑥(𝑘), and
record the change of the subscript of 𝑥(𝑘) as 𝑧(𝑘).(3)Change𝑀×𝑁 original image𝑉 into 1×𝑀𝑁 sequence
V(𝑘), and rearrange V(𝑘) according to 𝑧(𝑘) to get the new
sequence V(𝑘).(4) Reshape V(𝑘) into 𝑀 × 𝑁 image as 𝑉; 𝑉 is the
permutated image we needed.

Reversing the above 4 steps, we can remove the effect of
permutation to get the original image.

6.3. Encryption Method Based on Fractional 2D-TFCDM. (1)
In Section 6.2 we get the chaotic sequence 𝑥(𝑖) and image𝑉.
Reshape𝑀×𝑁 image 𝑉 into 1 ×𝑀𝑁 sequence 𝑢(𝑖); that is𝑖 = 𝑁(𝑚 − 1) + 𝑛, (𝑚 = 1, 2, . . . ,𝑀, 𝑛 = 1, 2, . . . , 𝑁). Another𝑀 × 𝑁 image is used as a key image (K-image). Change the
K-image also into 1 ×𝑀𝑁 sequence 𝑤(𝑖).(2) Set 𝑖 = 0.(3) Round 𝑥(𝑖) × 108 as 𝑥1(𝑖), do modulus operation to𝑥1(𝑖) in (19), and get 𝑥2(𝑖):

𝑥2 (𝑖) = mod (𝑥1 (𝑖) , 256) . (19)

(4) Do the following operation and get 𝑢(𝑖):
𝑢 (𝑖) = 𝑢 (𝑖) ⊕mod (𝑤 (𝑖) + 𝑥2 (𝑖) , 256) , (20)

where ⊕ refers to the Xor operation, and 𝑢(𝑖) is the encrypted
pixel value.

The inverse form of (20) is

𝑢 (𝑖) = 𝑢 (𝑖) ⊕mod (𝑤 (𝑖) + 𝑥2 (𝑖) , 256) . (21)

(5) Compute the iteration times 𝑘(𝑖) according to
𝑘 (𝑖) = 1 +mod (𝑢 (𝑖) , 256) . (22)

Then, iterate (16) for 𝑘(𝑖) times to get 𝑥(𝑖+1), circle from step(3) to step (5), until getting 𝑥(𝑀𝑁).(6) Change 𝑢(𝑖) into 𝑀 × 𝑁 image as 𝑉, which is the
finally encrypted figure we need.

The decryption procedure is including 2 parts:(1) Do all steps in encryption process except (20) which
is replaced by (21).(2) Reverse the procedure in Section 6.2. Then the
decryption procedure is done.

Figure 8 shows the encryption process described in
Sections 6.2 and 6.3 in a flow chart, and Figure 9 illustrates
the iteration procedure of S box.

The original, encrypted, and decrypted images are shown
in Figures 10–18. The proposed algorithm can encrypt any
rectangular image.

The adopted cryptosystem in Section 6.1 is asymmetric;
however, the ones in Sections 6.2 and 6.3 are symmetric.

7. Analysis of Results in Applications

7.1. Key Space. In the proposed algorithm, the initial values𝑥0, 𝑦0, the order ], and the coefficients 𝑘1, 𝑘2 are taken as the
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Figure 5: The phase portraits of the 2D-TFCDM for 𝑘1 = 8, 𝑘2 = 0.5, and ] = 1.
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Figure 6: The phase portraits of the fractional 2D-TFCDM for 𝑘1 = 8, 𝑘2 = 0.5, and ] = 0.8.
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Figure 7: The phase portraits of the fractional 2D-TFCDM for 𝑘1 = 8, 𝑘2 = 0.5, and ] = 0.6.
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(a) The original figure (b) The encrypted figure (c) The decrypted figure

Figure 10: Cameraman.

(a) The original figure (b) The encrypted figure (c) The decrypted figure

Figure 11: Lena.

secret keys; consequently there are 5 keys. Assume the preci-
sion of 𝑥0, 𝑦0, ], 𝑘1, and 𝑘2 are 10−16, 3 × 10−17, 10−16, 10−15,
and 10−16, respectively; then the key’s space is 1/3 × 1080 ≈1.12 × 2264. If the size of the plaintext is 512 × 512, then
the key space of K-image is also 512 × 512 × 28 =226. The total key space of the proposed algorithm is 1.12×2290.

7.2. Statistics Analysis. The quality against any statistical
attack is important for a well-designed encryption method;
it include 3 aspects as follows.

7.2.1. Correlation of the Plain- and Cipher-Images. In an ordi-
nary image, the adjacent pixels are related; therefore the cor-
relation coefficient of adjacent pixels is usually high. A good
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(a) The original figure (b) The encrypted figure (c) The decrypted figure

Figure 12: Peppers.

(a) The original figure (b) The encrypted figure (c) The decrypted figure

Figure 13: Lake.

(a) The original figure (b) The encrypted figure (c) The decrypted figure

Figure 14: Dollar.

(a) The original figure (b) The encrypted figure (c) The decrypted figure

Figure 15: Columbia.
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(a) The original figure (b) The encrypted figure (c) The decrypted figure

Figure 16: Lax.

(a) The original figure (b) The encrypted figure (c) The decrypted figure

Figure 17: Boat.

(a) The original figure (b) The encrypted figure (c) The decrypted figure

Figure 18: Aerial.

encryption algorithm should make the correlation coeffi-
cients of encrypted image nearly equal to zero. The closer to
zero the correlation coefficients is, the better the encryption
algorithm is. Formulas (23) calculate the correlation coeffi-
cient. The correlations along the 𝑥 direction of both original
and encrypted images are displayed in Figures 19–27 from
Cameraman to Aerial. The correlation coefficients are dis-
played in Table 1.

𝑟𝑥𝑦 =
cov (𝑥, 𝑦)

√𝐷 (𝑥)√𝐷 (𝑦)

cov (𝑥, 𝑦) = 1
𝑁
𝑁∑
𝑖=1

(𝑥𝑖 − 𝐸 (𝑥)) (𝑦𝑖 − 𝐸 (𝑦))

𝐸 (𝑥) = 1
𝑁
𝑁∑
𝑖=1

𝑥𝑖

𝐷 (𝑥) = 1
𝑁
𝑁∑
𝑖=1

(𝑥𝑖 − 𝐸 (𝑥))2 .
(23)
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Figure 21: Peppers.
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Figure 22: Lake.
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Figure 23: Dollar.

With the sharp contrast of data between original image
and encrypted image, Table 1 indicates that the encryption
process make pixels of the encrypted image almost indepen-
dentwith each other. Consequently, the encryption algorithm
is good at pixel value randomization.

Compared with other algorithm, we can observe that
most correlation coefficients of encrypted image are nearer to
0 in Table 2. As a consequence of this, the proposed encryp-
tion algorithm is superior to others.

7.2.2.Histogram. Histogram reflects the distribution of colors
inside the image. The adversary can get some effective
information from the regularity of histogram. Therefore, a
well-designed image encryption method should make the
pixel value of encrypted image distribute uniformly. Fig-
ure 28 shows the histogram of Cameraman. Similarly, the

histograms of the other 8 cases are drawn in Figures 29–36. It
is illustrated that the proposed encryptionmethod has a good
effect on pixel value distribution uniformization.

7.2.3. Information Entropy. Information entropy defines the
randomness and the unpredictability of information in an
image. It is defined by

𝐻(𝑚) = 2
𝑛−1∑
𝑖=0

𝑝 (𝑚𝑖) log2 1
𝑝 (𝑚𝑖) . (24)

Here𝑝(𝑚𝑖) is the probability of𝑚𝑖; 𝑛 is the number of bits that
is required to represent the symbol 𝑚𝑖. For the pixels values
of the image are 0∼255, according to (24) the information
entropy is 8 bits for an ideally random image. Therefore,
the closer to 8 bits the information entropy is, the better
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Figure 24: Columbia.
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Figure 25: Lax.

Table 1: Correlation coefficients of image.

Image Original image Encrypted image
Horizontal Diagonal Vertical Horizontal Diagonal Vertical

Cameraman 0.9276 0.9120 0.9597 0.0119 −0.0021 −0.0025
Lena 0.9722 0.9527 0.9860 −0.0140 −0.0086 −0.0034
Peppers 0.9667 0.9382 0.9694 −0.0088 0.0080 −0.0054
Lake 0.9768 0.9544 0.9748 −0.0155 0.0101 −0.0088
Dollar 0.8035 0.6952 0.6938 0.0131 −0.0183 0.0263
Columbia 0.9727 0.9403 0.9705 0.0060 −0.0104 −0.0093
Lax 0.7889 0.7151 0.8483 −0.0107 0.0147 0.0107
Boat 0.9407 0.9158 0.9545 0.0169 −0.0074 −0.0077
Aerial 0.9135 0.7952 0.8677 0.0084 −0.0123 −0.0133
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Figure 26: Boat.
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Figure 27: Aerial.

the encryption algorithm is. The information entropy of the
9 cases is gotten in Table 3; it indicates that the encrypted
images are very close to the random images.

From Table 4, we can observe that the information
entropy of proposed algorithm is nearer to 8 bits than other
algorithms.

7.3. Sensitivity Analysis. The different range between two
images is measured by two criteria: number of pixels change
rate (NPCR) and unified average changing intensity (UACI).
They are defined as follows:

𝐷(𝑖, 𝑗) = {0, 𝑇1 (𝑖, 𝑗) = 𝑇2 (𝑖, 𝑗) ,1, 𝑇1 (𝑖, 𝑗) ̸= 𝑇2 (𝑖, 𝑗) ,

NPCR = ∑𝑊𝑖=1∑𝐻𝑗=1𝐷(𝑖, 𝑗)
𝑊 × 𝐻 × 100%

UACI = ∑𝑊𝑖=1∑𝐻𝑗=1 𝑇1 (𝑖, 𝑗) − 𝑇2 (𝑖, 𝑗)
255𝑊 ×𝐻 × 100%.

(25)

Here𝑊 and𝐻 are the width and the height of 𝑇1 and 𝑇2.
7.3.1. Key Sensitivity. We encrypt the image by the keys 𝑥0 =0.19, 𝑦0 = 0.06, ] = 0.7123456, 𝑘1 = 8, and 𝑘2 = 0.5.
Figure 37(a) is the decrypted image with the correct keys.
Figure 37(b) represents the decrypted image under 10−16
adding to 𝑥0 with other keys unchanged. Similarly, the secret
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Figure 28: Cameraman.

Table 2: Comparison of correlation coefficients of image.

Algorithm Image Original image Encrypted image
Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Proposed Lena 0.9722 0.9527 0.9860 −0.0140 −0.0086 −0.0034
[1] Lena 0.9503 0.9755 0.9275 −0.0226 0.0041 0.0368
[2] Lena 0.927970 0.926331 0.839072 −0.010889 −0.018110 −0.006104
[5] Lena 0.946 0.973 0.921 −0.0055 −0.0075 0.0026
[6] Lena 0.9569 0.9236 0.9019 0.0042 −0.0043 0.0163

keys 𝑦0, ], 𝑘1, 𝑘2 are added as 3×10−17, 10−16, 10−15 and 10−16
to decrypt the images separately with other keys unchanged.
The results are shown in Figures 37(c)–37(f).The comparison
of key space is shown in Table 5 and the NPCR and UACI
between Figures 37(a) and 37(b)–37(f) are calculated in
Table 6.

In contrast with other algorithm, the key space of pro-
posed algorithm is larger than others.

Most NPCR are near to 99.61% and most of UACI are
higher than 30% in Table 6. We cannot recognize the man
inside from Figures 37(b)–37(f); therefore the encryption
method is sensitive to the keys.

7.3.2. Plaintext Sensitivity. By encrypting two same images
with only one pixel difference, the attackers can obtain
effective information by comparing the two encrypted
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Figure 29: Lena.

Table 3: Information entropy.

Image Original image Encrypted image
Cameraman 7.0097 7.9974
Peppers 7.5739 7.9976
Dollar 6.9785 7.9992
Lax 6.8272 7.9993
Aerial 6.9940 7.9992
Lena 7.2185 7.9993
Lake 7.4845 7.9993
Columbia 7.2736 7.9992
Boat 6.9391 7.9972

images. Therefore an encryption method designed against
differential attack should ensure that the two encrypted

Table 4: Comparison of information entropy.

Algorithm Image Original image Encrypted image
Proposed Lena 7.2185 7.9993
[1] Lena 7.2072 7.9973
[4] Lena Undefined 7.9972
[19] Lena Undefined 7.987918
[20] Lena 7.447144 7.988847

Table 5: Comparison of key spaces.

Algorithm Proposed [2] [4] [6]
Key spaces 2.23 × 1087(1.12 × 2290) 2128 ≈2273 2276

images are completely different even if there is only a pixel
difference in the original image.
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Figure 30: Peppers.

Table 6: NPCR and UACI between Figures 37(a) and 37(b)–37(f).

Image NPCR and UACI
NPCR (%) UACI (%)

Figure 37(b) 99.61 31.26
Figure 37(c) 97.02 30.23
Figure 37(d) 99.60 31.03
Figure 37(e) 99.61 31.01
Figure 37(f) 99.62 31.27

In Table 7, Figure 10(a)(𝑥, 𝑦) is the same as Figure 10(a)
except for a pixel locating (𝑥, 𝑦). After that, the 2 images
are encrypted with the same keys and the NPCR and UACI
between the 2 ciphertext images are calculated. Similarly, the
data of other 8 cases are obtained in Tables 8–15.

From Table 16, the NPCR and UACI of proposed algo-
rithm after 2-round encryption are nearer to the ideal values
99.61% and 33.46% [33] than others. Therefore the proposed
method is better.

7.4. Resistance to Known-Plaintext and Chosen-Plaintext
Attacks. In Section 6.3, the iteration times of the next round
are decided by the encrypted pixel value of present round.
In (20), 𝑥2(𝑖), generated from the fractional 2D-TFCDM, is
dependent on 𝑘(𝑖 − 1) and determines 𝑘(𝑖). Therefore, the
corresponding keystream is different when different plaintext
is encrypted. For the resultant information is related to the
chosen-images, the attacker cannot get useful information
after encrypting some special images. As a result, the attacks
proposed in [34–41] become ineffective for our scheme. In
a word, the proposed scheme can primely resist the known-
plaintext and the chosen-plaintext attacks.
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Figure 31: Lake.

Table 7: NPCR and UACI between cipher-images with slightly different plain-images.

Image NPCR and UACI of Cameraman
NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 10(a)(30, 30) 4.84 1.64 99.57 33.61
Figure 10(a)(50, 50) 81.43 27.39 99.62 33.56
Figure 10(a)(80, 80) 80.87 27.19 99.59 33.51
Figure 10(a)(100, 100) 6.82 2.28 99.59 33.46

Table 8: NPCR and UACI between cipher-images with slightly different plain-images.

Image NPCR and UACI of Lena
NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 11(a)(30, 30) 1.21 0.41 99.59 33.39
Figure 11(a)(50, 50) 95.06 31.93 99.59 33.53
Figure 11(a)(80, 80) 94.90 31.93 99.60 33.48
Figure 11(a)(100, 100) 1.71 0.58 99.63 33.40
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Figure 32: Dollar.

Table 9: NPCR and UACI between cipher-images with slightly different plain-images.

Image NPCR and UACI of Peppers
NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 12(a)(30, 30) 4.83 1.64 99.56 33.44
Figure 12(a)(50, 50) 81.44 27.35 99.62 33.50
Figure 12(a)(80, 80) 6.12 2.03 99.57 33.42
Figure 12(a)(100, 100) 6.83 2.32 99.60 33.50

Table 10: NPCR and UACI between cipher-images with slightly different plain-images.

Image NPCR and UACI of Lake
NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 13(a)(30, 30) 1.21 0.41 99.61 33.46
Figure 13(a)(50, 50) 95.09 31.88 99.61 33.42
Figure 13(a)(80, 80) 94.92 31.89 99.60 33.46
Figure 13(a)(100, 100) 1.71 0.58 99.59 33.47
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Figure 33: Columbia.

Table 11: NPCR and UACI between cipher-images with slightly different plain-images.

Image NPCR and UACI of Dollar
NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 14(a)(30, 30) 1.21 0.41 99.64 33.42
Figure 14(a)(50, 50) 95.08 32.00 99.60 33.49
Figure 14(a)(80, 80) 94.90 31.93 99.61 33.48
Figure 14(a)(100, 100) 1.71 0.57 99.61 33.41

Table 12: NPCR and UACI between cipher-images with slightly different plain-images.

Image NPCR and UACI of Columbia
NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 15(a)(30, 30) 94.83 31.96 99.61 33.47
Figure 15(a)(50, 50) 93.48 31.40 99.48 33.36
Figure 15(a)(80, 80) 0.96 0.32 99.60 33.45
Figure 15(a)(100, 100) 1.11 0.38 99.61 33.51
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Figure 34: Lax.

Table 13: NPCR and UACI between cipher-images with slightly different plain-images.

Image NPCR and UACI of Lax
NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 16(a)(30, 30) 1.21 0.40 99.62 33.39
Figure 16(a)(50, 50) 95.06 31.99 99.61 33.49
Figure 16(a)(80, 80) 94.92 31.87 99.58 33.41
Figure 16(a)(100, 100) 1.70 0.58 99.62 33.48

Table 14: NPCR and UACI between cipher-images with slightly different plain-images.

Image NPCR and UACI of Boat
NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 17(a)(30, 30) 4.83 1.60 99.59 33.47
Figure 17(a)(50, 50) 81.46 27.45 99.62 33.59
Figure 17(a)(80, 80) 80.82 27.24 99.58 33.48
Figure 17(a)(100, 100) 6.82 2.32 99.62 33.61
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Figure 35: Boat.

Table 15: NPCR and UACI between cipher-images with slightly different plain-images.

Image NPCR and UACI of Aerial
NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 18(a)(30, 30) 1.21 0.41 99.61 33.49
Figure 18(a)(50, 50) 95.06 31.93 99.62 33.43
Figure 18(a)(80, 80) 94.91 31.88 99.61 33.53
Figure 18(a)(100, 100) 1.71 0.57 99.61 33.52

8. Conclusions

Fractional 2D-TFCDM is obtained from the 2D-TFCDM.
After that, we found new chaotic dynamics behaviors from
the fractionalized map. Moreover, the map can be converted
into image encryption algorithm as an application. Finally,
the encryption effect is analysed in 4 main aspects; we find

the proposed scheme is superior to others almost anywhere
in comparison. As far as we know, the proposed image
encryption algorithm has never been reported before.
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Figure 36: Aerial.

(a) The correct keys (b) 𝑥0 + 10
−16 (c) 𝑦0 + 3 × 10

−17

(d) V + 10−16 (e) 𝑘1 + 10
−15 (f) 𝑘2 + 10

−16

Figure 37: The test of key sensitivity.
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Table 16: Comparison of NPCR and UACI of image.

Algorithm Image NPCR (%) UACI (%)
Proposed Lena 99.60 33.48
[1] Lena 99.61 33.53
[2] Lena 99.6429 33.3935
[3] Lena 99.6304 33.5989
[5] Lena 99.932 39.520
[19] Lena 75.62561 34.84288
[20] Lena 99.6091 33.5038
[21] Lena 99.6330 34.1319
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