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We propose a hybrid discrete greywolf optimizer (HDGWO) in this paper to solve theweapon target assignment (WTA)problem, a
kind of nonlinear integer programming problems. Tomake the original grey wolf optimizer (GWO), which was only developed for
problems with a continuous solution space, available in the context, we first modify it by adopting a decimal integer encoding
method to represent solutions (wolves) and presenting a modular position update method to update solutions in the discrete
solution space. By this means, we acquire a discrete grey wolf optimizer (DGWO) and then through combining it with a local
search algorithm (LSA), we obtain the HDGWO. Moreover, we also introduce specific domain knowledge into both the encoding
method and the local search algorithm to compress the feasible solution space. Finally, we examine the feasibility of the HDGWO
and the scalability of the HDGWO, respectively, by adopting it to solve a benchmark case and ten large-scale WTA problems. All
of the running results are compared with those of a discrete particle swarm optimization (DPSO), a genetic algorithm with greedy
eugenics (GAWGE), and an adaptive immune genetic algorithm (AIGA).Thedetailed analysis proves the feasibility of theHDGWO
in solving the benchmark case and demonstrates its scalability in solving large-scale WTA problems.

1. Introduction

As a classic military operational problem, the purpose of
weapon target assignment (WTA) is to find an optimal or a
satisfactory assignment solution, which determines the target
attacked by each weapon, so as to maximize the total damage
expectancy of hostile targets or minimize the loss expectancy
of own-force assets. Since first proposed in the 1950s to
support operation planning, command officers training, and
weapon selection and acquisition [1], the WTA problem has
attracted the attention of relevant researchers for decades.
From the mathematical point of view, it is essentially an NP-
complete problem [2] with nonlinear objective functions,
discrete decision variables and multiple constraints. These
intricate features indicate that seeking out the optimal solu-
tion for small-scale WTA problems is relatively realistic, but
becomes impracticable for large-scale ones. This means in
such circumstances searching for a satisfactory or suboptimal
solution may be more efficient.

In the WTA study, the process of solving WTA prob-
lems can generally be divided into two phases, establishing
a WTA model, and finding an optimal or a suboptimal
solution for the model through an appropriate algorithm.
In modeling, a variety of factors need to be considered,
such as the type and quantity of equipment involved, the
combat capability of each equipment, the characteristics of
the battlefield, and the focus of the commander. In addition,
for the convenience of modeling, certain assumptions may
be made. Conventional WTA models include up to three
types of entities, platforms, weapons, and targets. However,
considering that weapons are increasingly dependent on
the information provided by sensors in modern warfare,
Bogdanowicz et al. [3, 4] believed that sensors should be
considered in WTAmodels and established the sensor-WTA
(S-WTA)model for the first time.They simplified the S-WTA
problem through the sensor/target/weapon decomposition
to the following scenario, each sensor-weapon pair can be
assigned to at most one target, and each target can be engaged
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by at most one sensor-weapon pair. Furthermore, through
the sensor/weapon/target augmentation, they translated the
derived problem into a symmetric optimization problemwith
an input consisting of the same numbers of sensors, weapons,
and targets, along with the benefit matrix, and presented
the Swt-opt algorithm derived from the auction algorithm
to optimally assign sensors and weapons to targets. Since
then, the S-WTA problem has been successively studied by
some scholars. Li et al. [5, 6] proposed an improved Swt-
opt algorithm to solve the same problem by combining the
consensus algorithm, so that the shortcoming of the Swt-
opt algorithm, i.e., highly depending on perfect network
topologies, can be overcome. Later, they put forward a
decentralized cooperative auction algorithm for a similar S-
WTA problemwhere the number of targets that can be struck
varied in different operational phases [7]. Chen et al. [8]
proposed a particle swarm optimization based on genetic
operators to solve the S-WTAproblemwhere each sensor can
guide only one weapon once and each target can be engaged
bymultiple weapons once.Mu et al. [9] proposed amultiscale
quantum harmonic oscillator algorithm to solve the S-WTA
problem in intelligent minefields considering the probability
of detection and killing. Xin et al. [10] constructed an efficient
marginal-return-based heuristic to solve the S-WTAproblem
considering the situation where multiple sensors/weapons
can be assigned to one target, but each sensor can detect only
one target at the same time and each weapon can shoot only
one target simultaneously. The proposed heuristic exploited
the marginal return of each sensor-weapon-target triplet and
dynamically updated the threat value of all targets. It relied
only on simple lookup operations to choose each assignment
triplet, thus resulting in very low computational complexity.

Both the conventional WTA model and the S-WTA
model can be classified as follows. For ease of presentation,
the two models will not be distinguished, both called the
WTA model. A WTA model is called to be dynamic [10–12],
if the operational process is time related. This indicates there
are always several operational stages or new situations usually
arise during operation. Otherwise, the model is static [3–
6, 8, 9, 13–16]. If two or more objectives, such as maximizing
the damage expectancy of hostile targets and minimizing the
consumption of own ammunition and mission completion
time, are considered, the WTA model is multiobjective [17,
18]. If there is only one objective, it is single-objective [3–
11, 19]. Depending on the type of combat scenario, the
WTA model may be asset-based [11] or target-based [17]. In
defensive missions, the asset-based model is often established
to minimize the loss expectancy of own-force assets, while in
offensive missions, the target-based model is always adopted
to maximize the total damage expectancy of hostile targets.
In addition to modeling, another research aspect for WTA
is to develop algorithms to solve the problem optimally in
the least possible time. These algorithms can be generally
divided into two categories: exact algorithms and heuristic
algorithms. Exact algorithms are developed according to the
specific mathematical properties of WTA problems and can
gradually eliminate the nonlinearity of the problem through
transformation, decomposition, and other processing means
[16]. By this way, the model is translated to a linear one,

and then classical operations research methods can apply,
such as the dynamic programming method [12], the branch
and bound method [20, 21], the branch and price method
[22], the mixed integer linear program (MILP) algorithm
[17], and the Lagrange relaxationmethod [14].Thesemethods
have demonstrated the feasibility and effectiveness on solving
static and dynamic WTA problems but may become difficult
to apply when a large number of weapons and targets are
involved [23].

With the rapid development of heuristic algorithms,more
complex WTA problems are able to be well solved. Most
research to date on solving WTA problems by heuristic
algorithms either constructs some specific search rules based
on the properties of the problem to achieve solutions rapidly
or introduces some local searchmechanisms into the original
algorithms to improve the solution quality. These algorithms,
including auction algorithms [3–6, 15], improved genetic
algorithms [18, 24–26], clonal selection algorithms [27, 28],
particle swarm algorithms [8, 13, 29], tabu search algorithms
[30], rule-based constructive heuristic algorithms [10, 31],
and other intelligent optimization algorithms, have shown
evident advantages over traditional methods in terms of
computation time and solution accuracy and however still
suffer from some drawbacks, such as easily falling into pre-
mature convergence and local optimum [32]. Furthermore,
considering the variability of the battlefield environment,
decisions always need to be made immediately; that is, WTA
problems need to be resolved in a very short time. Therefore,
we propose in this paper a hybrid discrete greywolf optimizer
(HDGWO), which is an integration of a discrete grey wolf
optimizer (DGWO) with a local search algorithm (LSA).
Moreover, in order to enhance the efficiency of the algorithm,
we introduce the specific domain knowledge into the encode
methods and the LSA.

The rest of this paper is organized as follows. The math-
ematical model of a typical WTA problem for an offensive
mission is formulated in Section 2. Section 3 is a brief
introduction to the original grey wolf optimizer (GWO)
presented in [33], and Section 4 is a detailed introduction
to the proposed HDGWO. In Section 5, we first analyze the
feasibility of HDGWO in solving small-scale WTA problems
by comparing itwith the discrete particle swarmoptimization
(DPSO) [13], the genetic algorithm with greedy eugenics
(GAWGE) [24], and the adaptive immune genetic algorithm
(AIGA) [32] and then investigate the scalability of HDGWO
by solving ten different scale WTA problems. Finally, we
make a conclusion and look ahead to the future research in
Section 6.

2. Problem Formulation

In general, a typical WTA problem for an offensive mission
can be formulated as the following nonlinear integer pro-
gramming model [13, 32]:

max 𝑓 (𝑥)
= 𝑁∑
𝑗=1

V𝑗 [1 − 𝑀∏
𝑖=1

(1 − 𝑝𝑖𝑗 ⋅ 𝑒𝑖𝑗)𝑥𝑖𝑗]
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Table 1: Symbol declaration.

Symbols Explanations
M: The number of weapon platforms that can launchmissiles (e.g. fighters);
N : The number of targets;𝐹𝑖, 𝑇𝑗: The ith weapon platform and the jth target, 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑀, 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑁;𝑞𝑖: The number of air-to-groundmissiles available for 𝐹𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑀;
V𝑗: The value of 𝑇𝑗, 𝑗 = 1, 2, ⋅ ⋅ ⋅𝑁;𝑝𝑖𝑗: The kill probability of missiles on 𝐹𝑖 against 𝑇𝑗, 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑀, 𝑗 = 1, 2, ⋅ ⋅ ⋅𝑁;𝑥𝑖𝑗: The decision variable indicating the number of missiles launched by 𝐹𝑖 against 𝑇𝑗, 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑀, 𝑗 = 1, 2, ⋅ ⋅ ⋅𝑁;

𝑒𝑖𝑗: The engagement constraint factor indicating whether 𝐹𝑖 is able to attack 𝑇𝑗. When one attack is feasible, 𝑒𝑖𝑗 = 1, otherwise,𝑒𝑖𝑗 = 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑀, 𝑗 = 1, 2, ⋅ ⋅ ⋅𝑁;𝑟𝑗,𝐺𝑗(𝑥): The penalty factor and the penalty function, 𝐺𝑗(𝑥) = min{0, 𝑔𝑗(𝑥)}, 𝑔𝑗(𝑥) = ∑𝑀𝑖=1 𝑥𝑖𝑗 − 1, 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑁;𝑁𝑝: The population size of the proposed HDGWO;

󳨀→𝑆 (𝑡): A solution in the tth iteration, 󳨀→𝑆 (𝑡) = [󳨀→𝑠 1(𝑡), 󳨀→𝑠 2(𝑡), ⋅ ⋅ ⋅ , 󳨀→𝑠 𝑀(𝑡)], where 󳨀→𝑠 𝑖(𝑡) (𝑖 = 1, 2, ⋅ ⋅ ⋅𝑀) is the assignment scheme of 𝐹𝑖.
The first three best solutions are denoted by 󳨀→𝑆 𝛼(𝑡), 󳨀→𝑆 𝛽(𝑡) and 󳨀→𝑆 𝛿(𝑡) in turn.𝑎: The control parameter determining which rule will be adopted to update solutions;𝑇max: The maximum iteration number;𝜂: The elitist retention proportion;Δ 𝑝: The perturbation value, used to modify the value of decision variables in local search;𝜆: The selection probability, determining whether a solution is to be selected for local search;

+ 𝑁∑
𝑗=1

𝑟𝑗 ⋅ 𝐺𝑗 (𝑥) ,
(1)

subject to

𝑁∑
𝑗=1

𝑥𝑖𝑗 ≤ 𝑞𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑀, (2)

𝑀∑
𝑖=1

𝑥𝑖𝑗 ≥ 1, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑁, (3)

𝑥𝑖𝑗 ∈ 𝑁,
𝑥𝑖𝑗 ≥ 0,

𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑀, 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑁,
(4)

𝑥𝑖𝑗 ⋅ (1 − 𝑒𝑖𝑗) = 0,
𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑀, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁. (5)

The symbols in the model are explained in Table 1. For clarity,
we also list the symbols employed in the following in this
table.

In the above model, the objective is to maximize the
damage expectancy of all targets. Thus, we construct the
above objective function (1), which consists of two parts
connected by a plus sign. The part before the plus sign
represents the total expectancy of the eliminated value from
all targets, and the latter part indicates the penalty for the
solution that violates the constraint set (3). If a solution
violates the constraint set (3), then the value of the latter

part will become negative, which reduces the objective value.
Thus, the solution will be very likely to be discarded in
the next iteration. The constraint set (2) limits the number
of missiles launched by each weapon platform to no more
than the available number. The constraint set (4) means that
decision variables are nonnegative integers. The constraint
set (5) reflects the feasibility of engagement between weapon
platforms and targets. When 𝐹𝑖 is unable to attack 𝑇𝑗, i.e.,𝑒𝑖𝑗 = 0, it should not launch any missiles to 𝑇𝑗, i.e., 𝑥𝑖𝑗 =0.
3. Grey Wolf Optimizer (GWO)

The grey wolf optimizer (GWO) is a swarm intelligence
algorithm first proposed in 2014 by Seyedali Mirjalili et al.
andmimics the leadership hierarchy and hunting mechanism
of grey wolves in nature [33]. There are four types of wolves
from top to bottom, denoted by 𝛼, 𝛽, 𝛿, and 𝜔, respectively,
in the leadership hierarchy. The former three types of wolves,𝛼, 𝛽, and 𝛿, guide the hunting process, which is followed by
the 𝜔 wolves. The GWO algorithm employs two operators to
achieve optimization: (1) encircling prey and (2) hunting, as
introduced below [33].

3.1. Encircling Prey. Greywolveswill first encircle prey during
the hunting process. The encircling behavior is modeled by
formulas (6)-(7) as follows:

󳨀→𝐷 = 󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝐶 ⋅ 󳨀→𝑋𝑝 (𝑡) − 󳨀→𝑋 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨 , (6)

󳨀→𝑋 (𝑡 + 1) = 󳨀→𝑋 (𝑡) − 󳨀→𝐴 ⋅ 󳨀→𝐷, (7)
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Figure 1: The position update process in GWO [33].

where t indicates the current iteration, 󳨀→𝑋𝑝(𝑡) and 󳨀→𝑋(𝑡) are,
respectively, the position vector of the prey and the position
vector of a grey wolf in the current iteration, 󳨀→𝑋(𝑡 + 1) is the
position vector of the grey wolf in the next iteration, and 󳨀→𝐴
and 󳨀→𝐶 are coefficient vectors.

The vectors 󳨀→𝐴 and 󳨀→𝐶 are calculated as follows:󳨀→𝐴 = 2󳨀→𝑎 ⋅ 󳨀→𝑟 1 − 󳨀→𝑎 , (8)󳨀→𝐶 = 2 ⋅ 󳨀→𝑟 2, (9)

where elements of 󳨀→𝑎 are linearly decreased from 2 to 0
throughout the iteration process and 󳨀→𝑟 1 and 󳨀→𝑟 2 are random
vectors in [0, 1].
3.2. Hunting. In the GWO algorithm, the 𝛼, 𝛽, and 𝛿 wolves
are supposed to have more knowledge about the potential
location of prey. Therefore, the first three best solutions
obtained so far (i.e., the 𝛼, 𝛽 and 𝛿 wolves in the current
iteration) are saved and employed to assist the other wolves
in updating their positions. The process is mathematically
described by formulas (10)-(12) as follows:󳨀→𝐷𝛼 = 󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝐶1 ⋅ 󳨀→𝑋𝛼 − 󳨀→𝑋󵄨󵄨󵄨󵄨󵄨󵄨 ,󳨀→𝐷𝛽 = 󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝐶2 ⋅ 󳨀→𝑋𝛽 − 󳨀→𝑋󵄨󵄨󵄨󵄨󵄨󵄨 ,󳨀→𝐷𝛿 = 󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝐶3 ⋅ 󳨀→𝑋𝛿 − 󳨀→𝑋󵄨󵄨󵄨󵄨󵄨󵄨 ,

(10)

󳨀→𝑋1 = 󳨀→𝑋𝛼 − 󳨀→𝐴1 ⋅ 󳨀→𝐷𝛼,󳨀→𝑋2 = 󳨀→𝑋𝛽 − 󳨀→𝐴2 ⋅ 󳨀→𝐷𝛽,
󳨀→𝑋3 = 󳨀→𝑋𝛿 − 󳨀→𝐴3 ⋅ 󳨀→𝐷𝛿,

(11)

󳨀→𝑋 (𝑡 + 1) = (󳨀→𝑋1 + 󳨀→𝑋2 + 󳨀→𝑋3)3 , (12)

where 󳨀→𝑋𝛼,
󳨀→𝑋𝛽, and

󳨀→𝑋𝛿 are the position vectors of 𝛼, 𝛽, and
𝛿, respectively, 󳨀→𝐶1, 󳨀→𝐶2, and 󳨀→𝐶3 are random vectors, and 󳨀→𝑋 is
the position vector of a greywolf.The position update process
according to 𝛼, 𝛽, and 𝛿 in a 2D search space is shown in
Figure 1. The 𝛼, 𝛽, and 𝛿 wolves first estimate the position
of the prey, and then other wolves update their positions
randomly around the prey [33].

From formulas (6)-(12), we find that vectors 󳨀→𝐴 and 󳨀→𝐶 are
two parameters to control the exploration and exploitation
ability of the GWO algorithm. When |𝐴| > 1, the algorithm
devotes half of the iterations to explore the search space; when|𝐴| < 1, the rest of the iterations are dedicated to exploitation
[34]. As can be seen in formula (9), elements of 󳨀→𝐶 are in
the interval [0, 2], which provide random weights for prey in
order to stochastically emphasize (𝐶 > 1) or deemphasize
(𝐶 < 1) the effect of prey in determining the distance in
formula (6). This mechanism gives the GWO algorithm a
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Figure 2: The decimal integer encoding method for position vectors [32].

better random search ability throughout the optimization
process, which is beneficial to exploration and local optimum
avoidance [33].

4. Hybrid Discrete Grey Wolf Optimizer
(HDGWO) for WTA

The two operators introduced above are originally developed
for solving continuous optimization problems. Thus, we
cannot directly employ the GWO algorithm to address WTA
problems, because the search space is discrete and decision
variables are nonnegative integers. And in the field of WTA
research, the application of GWO has not yet been found.
For the above reasons, we first modify the original GWO to a
discrete one by a decimal interencoding method and a novel
position update method and then combine it with a local
search algorithm (LSA). Thus, we propose a hybrid discrete
grey wolf optimizer (HDGWO). The details of the HDGWO
are described in the following subsections.

4.1. Decimal Integer Encoding Method. The encoding method
is an important procedure before applying the proposed
HDGWO to a particular problem. It constructs a bridge
between solution space of the considered problem and
the search space of the search process. Therefore, design-
ing an appropriate encoding method is a very essen-
tial issue that affects the performance of the algorithm
[35].

Considering that all decision variables are decimal non-
negative integers (see constraint (4) in Section 2), we adopt
the decimal integer encoding method in [32] to represent the
position vector of a grey wolf (in the following sections we
will use the term “solution” instead of “position vector”). For
the ith weapon platform 𝐹𝑖, we use a vector containing N
elements to represent its assignment scheme, where the jth
element corresponds to the number ofmissiles launched by𝐹𝑖
to𝑇𝑗. So forM weapon platforms, we haveM similar vectors.
Then, we connect these vectors head to tail in the order of the
assignment scheme of𝐹1 to the assignment scheme of𝐹𝑀 and
obtain a solution, as shown in Figure 2 [32].

During the construction of an initial solution, the con-
straint sets (2), (4), and (5) will be handled, so the search
space could be effectively compressed.Wedo not consider the
constraint set (3) here, because on one hand, we have taken
into account it when constructing the objective function
(1); on the other hand the initialization method would
become very complicated if the constraint set (3) should be
satisfied. Although we cannot guarantee that all the solutions

generated are feasible, the penalty function in the objective
function (1) can help to eliminate the solution that violates the
constraint set (3) throughout the iteration process. In addi-
tion, to improve the quality of initial solutions, we introduce
the specific domain knowledge that available missiles should
be first assigned to the target with the largest probability to
be destroyed. The pseudocode of the initialization method is
shown in Algorithm 1.

4.2. Fitness Function. The fitness function is used to evaluate
the goodness of a solution with respect to the original objec-
tive function. For the convenience of solution comparison, we
set the fitness function as the same as the objective function
introduced in Section 2. The fitness value of solution 𝑆 is
computed as follows:

𝑓 (𝑆) = 𝑁∑
𝑗=1

V𝑗 [1 − 𝑀∏
𝑖=1

(1 − 𝑝𝑖𝑗 ⋅ 𝑒𝑖𝑗)𝑥𝑖𝑗(𝑆)]

+ 𝑁∑
𝑗=1

𝑟𝑗 ⋅ 𝐺𝑗 (𝑆)
(13)

4.3. Searching for Prey. On the basis of the encoding method,
the initialization method, and the fitness function, we can
evaluate the goodness of each solution (wolf) and seek out the
first three best solutions (the𝛼,𝛽 and 𝛿wolves).Then the next
core procedure is to search for prey. In HDGWO, taking into
account the constraints in Section 2 and the characteristics
of the encoding method, we propose a novel position update
method, namely, the modular position update method. In
addition, we also adopt the elitist retention mechanism
which is usually used in the genetic algorithm, and present
a local search algorithm (LSA) to avoid local optimum.
The details are successively introduced in the subsequent
sections.

4.3.1. Modular Position Update Method. The search process
of the HDGWO is also guided by the first three best solutions

(wolves), denoted by 󳨀→𝑆 𝛼, 󳨀→𝑆 𝛽, and 󳨀→𝑆 𝛿. However, the specific
position update mechanism is much different from that of
the original GWO. Here we propose a modular position
update method, which treats the assignment scheme of each
weapon platform as a module. We first define the concept of
a module as the assignment scheme of one weapon platform
and then denote a solution in the tth iteration by 󳨀→𝑆 (𝑡) =[󳨀→𝑠 1(𝑡), 󳨀→𝑠 2(𝑡), ⋅ ⋅ ⋅ , 󳨀→𝑠𝑀(𝑡)], where 󳨀→𝑠 𝑖(𝑡) (𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑀)
is the ith module of 󳨀→𝑆 (𝑡) (i.e., the assignment scheme of
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Input: Combat scenario parameters, includingM, N,Q = [𝑞𝑖]1×𝑀, V = [V𝑗]1×𝑁, P = [𝑝𝑖𝑗]𝑀×𝑁, and E = [𝑒𝑖𝑗]𝑀×𝑁,
and the population size𝑁𝑝.

Output: The initial solutions.
Procedures: for 𝑛𝑝 = 1 󳨀→ 𝑁𝑝

Set the initial value of the npth solution to a zero-vector [0]1×𝑀𝑁.
for i=1󳨀→M
Sort all targets in descending order according to P(i,:). Denote the index vector by IN.
Set q max= 𝑞𝑖;
for j=1󳨀→N
if q max<=0 // determine if all weapons of 𝐹𝑖 have been assigned
break // terminates the execution of the for loop, i.e. for j=1󳨀→N

endif
if E(i, IN(j))==1 // 𝐹𝑖 can attack 𝑇IN(𝑗)

Generate a random integer, denoted by n rand, between 1 and q max;
Assign n rand weapons to 𝑇IN(𝑗);
Update q max= q max-n rand;

endif
endfor

endfor
endfor

Algorithm 1: Pseudo-code of the initialization method.

𝐹𝑖). Based on this, the modular position update method is
formulated as follows:󳨀→𝑠 𝑖 (𝑡 + 1)

= {{{
󳨀→𝑠 𝛼𝑖 (𝑡) or 󳨀→𝑠 𝛽𝑖 (𝑡) or 󳨀→𝑠 𝛿𝑖 (𝑡) , if 𝑟𝑎𝑛𝑑 ≤ 𝑎
󳨀→𝑠 𝑅𝑖 (𝑡) , otherwise

(14)

where 󳨀→𝑠 𝑖(𝑡 + 1) is the ith module of 󳨀→𝑆 (𝑡 + 1) (i.e., the
assignment scheme of 𝐹𝑖 in the (t+1)th iteration), 󳨀→𝑠 𝛼𝑖 (𝑡),󳨀→𝑠 𝛽𝑖 (𝑡), and 󳨀→𝑠 𝛿𝑖 (𝑡), are respectively, the ith module of 󳨀→𝑆 𝛼(𝑡),󳨀→𝑆 𝛽(𝑡), and 󳨀→𝑆 𝛿(𝑡), 󳨀→𝑠 𝑅𝑖 (𝑡) is a reassignment scheme of 𝐹𝑖, 𝑟𝑎𝑛𝑑
is a random number in (0, 1), and 𝑎 is a control parameter.
The mechanism of the modular position update method is
illustrated in Figure 3, and the pseudocode of the method is
described in Algorithm 2.

As can be seen from Figure 3 and Algorithm 2, the
proposed HDGWO generates 󳨀→𝑠 𝑖(𝑡 + 1) according to two
different rules. When 𝑟𝑎𝑛𝑑 ≤ 𝑎, the roulette wheel selection
method is employed to select one module among 󳨀→𝑠 𝛼𝑖 (𝑡),󳨀→𝑠 𝛽𝑖 (𝑡), and 󳨀→𝑠 𝛿𝑖 (𝑡) to be󳨀→𝑠 𝑖(𝑡 +1) according to the fitness value
of 󳨀→𝑆 𝛼(𝑡), 󳨀→𝑆 𝛽(𝑡), and 󳨀→𝑆 𝛿(𝑡). This means that 󳨀→𝑠 𝛼𝑖 (𝑡) acquires
the largest probability to be selected, followed by 󳨀→𝑠 𝛽𝑖 (𝑡) and
finally 󳨀→𝑠 𝛿𝑖 (𝑡). In this case, the assignment scheme of 𝐹𝑖 in the
tth iteration, whether 󳨀→𝑠 𝛼𝑖 (𝑡), 󳨀→𝑠 𝛽𝑖 (𝑡), or 󳨀→𝑠 𝛿𝑖 (𝑡), is treated as a
whole and thuswill not bemodified.When 𝑟𝑎𝑛𝑑 > 𝑎,󳨀→𝑠 𝑖(𝑡+1)
is generated through a reassignment method, which is similar
to the initialization method in Section 4.1 and is also based on
the constraint sets (2), (4), and (5). Unlike the initialization
method, the reassignment method directly assigns a random
number of missiles to each target in the order of 𝑇1 to 𝑇𝑁.

Whether 󳨀→𝑠 𝑖(𝑡 + 1) is generated through the roulette wheel
selection method or the reassignment method, the constraint
sets (2), (4), and (5) are always satisfied during the position
update process.

In the proposed HDGWO, the control parameter 𝑎
determines which rule will be adopted. Based on the search
mechanism of the original GWO in the continuous solution
space, we set 𝑎 as follows [35]:

𝑎 = 1 − 𝑡𝑇max
(15)

where 𝑡 and 𝑇max are the current iteration number and the
maximum iteration number, respectively. It can be seen that
as 𝑡 increases, 𝑎 linearly decreases from 1 to 0. Therefore,
the modular position update method generates 󳨀→𝑠 𝑖(𝑡 + 1)
mainly through the roulette wheel selection method in the
first half of the iterations and thus obliges other solutions

to quickly approach 󳨀→𝑆 𝛼(𝑡), 󳨀→𝑆 𝛽(𝑡), and 󳨀→𝑆 𝛿(𝑡). Then in the
second half, the modular position update method acquires
a larger probability to generate 󳨀→𝑠 𝑖(𝑡 + 1) through the reas-
signment method, hence giving other solutions an increasing
probability to diverge from the prey. In summary, throughout
the process of searching for prey, the proposed HDGWO
mainly focuses on exploitation in the first half of the iterations
(when 0.5 ≤ 𝑎 ≤ 1), and the second half of the iterations is
mainly devoted to exploring the search space (when 0 ≤ 𝑎 ≤0.5).
4.3.2. Elitist Retention Mechanism. The elitist retention
mechanism is employed to select a certain proportion,
denoted by 𝜂, of the best solutions (wolves) in the current
iteration to be a part of the next iteration directly without
their positions updated. By this means, excellent solutions
(wolves) are able to be preserved during the iterations
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Figure 3: The mechanism of the modular position update method.
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and thus the convergence speed of the algorithm gets
enhanced.

4.3.3. Local Search Algorithm (LSA). In the proposed
HDGWO, we proposed a local search algorithm (LSA) based
on a perturbation operator [36] to exploit the neighborhood
of a solution. The mechanism of the perturbation operator
is illustrated in Figure 4. Firstly randomly select a solution
to be modified, denoted by 𝑆𝑏𝑎𝑠𝑒. Secondly randomly select
one weapon platform 𝐹𝑖 from the total M ones, of which
the assignment scheme will be adjusted. Thirdly, randomly
choose two of its targets 𝑇𝑘 and 𝑇𝑙 (𝑘, 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝑁; 𝑘 ̸= 𝑙),
satisfying 𝑒𝑖𝑘 = 𝑒𝑖𝑙 = 1 and 𝑥𝑖𝑙, 𝑥𝑖𝑘 > 0. Finally, perform
the perturbation operation. If 𝑝𝑖𝑘 ≥ 𝑝𝑖𝑙, modify 𝑥𝑖𝑙 to𝑥𝑖𝑙 − Δ𝑝 and 𝑥𝑖𝑘 to 𝑥𝑖𝑘 + Δ𝑝, and vice versa. Note that Δ𝑝
is called the perturbation value, used to adjust the value
of decision variables, and is set as 1 in this paper. After the
perturbation operation, we obtain a new solution 𝑆𝑘𝑙𝑖 based
on 𝑆𝑏𝑎𝑠𝑒.

Considering that local search is relatively time consum-
ing, and the search process in HDGWO is guided by the

𝛼, 𝛽 and 𝛿 solutions (wolves), we just apply the LSA to
these three solutions with a selection probability 𝜆 that
determines whether a solution is to be selected as the base
solution 𝑆𝑏𝑎𝑠𝑒. The pseudocode of the LSA is described in
Algorithm 3.

4.4. Programming Procedures. The pseudocode of the pro-
posed algorithm is specified in Algorithm 4.

5. Simulation Results and Analysis

This section aims to validate HDGWO in solving WTA
problems and includes two parts. In the first part, we
adopt the instance in [32], an asset-based defensive WTA
problem with four weapon platforms and five targets, as
a benchmark case, and then compare the HDGWO with
the discrete particle swarm optimization (DPSO) [13], the
genetic algorithm with greedy eugenics (GAWGE) [24], and
the adaptive immune genetic algorithm (AIGA) [32] by
solving this benchmark case, so that the feasibility of the
HDGWO to solve WTA problems could be demonstrated.
To evaluate the solution quality, we also solve the case
by the global solver of Lingo 11.0, a professional software
package for nonlinear programming problems, and use the
running result as a reference. In the second part, in order to
examine the scalability ofHDGWO,wefirst employ the above
four algorithms to solve ten different scale WTA problems
produced by a test case generator, and then compare the
results of all algorithms from three aspects, that is, the
comparison of the solution quality, the comparison of the
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Input: Combat scenario parameters, includingM, N,Q = [𝑞𝑖]1×𝑀, V = [V𝑗]1×𝑁, and E = [𝑒𝑖𝑗]𝑀×𝑁.
The first three best solutions in the tth iteration, 󳨀→𝑆 𝛼(𝑡), 󳨀→𝑆 𝛽(𝑡) and 󳨀→𝑆 𝛿(𝑡).
The control parameter a.

Output: The assignment scheme of 𝐹𝑖 in the (t+1)th iteration, 󳨀→𝑠 𝑖(𝑡 + 1)
Procedures: Generate a random number between (0,1), denoted by rand

if rand ≤ a // the roulette wheel selection method

Calculate the fitness value of 󳨀→𝑆 𝛼(𝑡), 󳨀→𝑆 𝛽(𝑡) and 󳨀→𝑆 𝛿(𝑡), denoted by 𝑓𝛼, 𝑓𝛽 and 𝑓𝛿 in turn;
Calculate𝑤𝑙 = 𝑓𝑙/(𝑓𝛼 + 𝑓𝛽 + 𝑓𝛿), (𝑙 = 𝛼, 𝛽, 𝛿);
Set cum=0.
Generate a random number between (0,1), denoted by r0
for l=𝛼, 𝛽, 𝛿

cum= cum + 𝑤𝑙
if r0 ≤ cum󳨀→𝑠 𝑖(𝑡 + 1) = 󳨀→𝑠 𝑙𝑖(𝑡);

break
endif

endfor
else // the reassignment method

Set q max= 𝑞𝑖;
for j=1󳨀→N

if q max<=0 // determine if all weapons of 𝐹𝑖 have been assigned
break // terminates the execution of the for loop, i.e. for j=1󳨀→N

endif
if E(i, j))==1 // 𝐹𝑖 can attack 𝑇𝑗

Generate a random integer, denoted by n rand, between 1 and q max;
Assign n rand weapons to 𝑇𝑗;
Update q max= q max-n rand;

endif
endfor

endif

Algorithm 2: Pseudo-code of the modular position update method.

Input: Combat scenario parameters, includingM, N, V = [V𝑗]1×𝑁, P = [𝑝𝑖𝑗]𝑀×𝑁 and E = [𝑒𝑖𝑗]𝑀×𝑁.
The first three best solutions in the tth iteration, 󳨀→𝑆 𝛼(𝑡), 󳨀→𝑆 𝛽(𝑡) and 󳨀→𝑆 𝛿(𝑡).
The selection probability 𝜆.

Output: 󳨀→𝑆 𝛼(𝑡), 󳨀→𝑆 𝛽(𝑡) and 󳨀→𝑆 𝛿(𝑡)
Procedures: for ls=𝛼, 𝛽, 𝛿

Generate a random number between (0,1), denoted by rand;
if rand ≤ 𝜆 // execute the LSA

𝑆𝑏𝑎𝑠𝑒 =󳨀→𝑆 𝑙𝑠(𝑡);
Generate a new solution 𝑆𝑘𝑙𝑖 based on the perturbation operator;
Calculate the fitness value of 𝑆𝑏𝑎𝑠𝑒 and 𝑆𝑘𝑙𝑖 , denoted by 𝑓𝑏𝑎𝑠𝑒 and 𝑓𝑛𝑒𝑤 respectively;
if 𝑓𝑏𝑎𝑠𝑒 < 𝑓𝑛𝑒𝑤
Replace 𝑆𝑏𝑎𝑠𝑒 with 𝑆𝑘𝑙𝑖 , 𝑆𝑏𝑎𝑠𝑒 = 𝑆𝑘𝑙𝑖 ;

endif

Update 󳨀→𝑆 𝑙𝑠(𝑡) = 𝑆𝑏𝑎𝑠𝑒;
endif

endfor

Algorithm 3: Pseudo-code of the local search algorithm.
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Input: Combat scenario parameters, includingM, N,Q = [𝑞𝑖]1×𝑀, V = [V𝑗]1×𝑁, P = [𝑝𝑖𝑗]𝑀×𝑁, E = [𝑒𝑖𝑗]𝑀×𝑁.
Necessary parameters of HDGWO, including the population size𝑁𝑝, the maximum iteration number 𝑇max, the
elitist retention proportion 𝜂, the penalty factor vector R = [𝑟𝑗]1×𝑁, the perturbation value Δ 𝑝 and the selection
probability 𝜆.

Output: The optimal or suboptimal assignment scheme.
Procedures: Step 1. Set t =0;

Step 2. Initialize the solutions in the first iteration;
Step 3. Calculate the fitness value of all solutions in the tth iteration by formula (13), and sort solutions in

descending order according to their fitness value, denoted by 󳨀→𝑆 (1)(𝑡), 󳨀→𝑆 (2)(𝑡), . . ., 󳨀→𝑆 (𝑁𝑝)(𝑡).
Step 4. Define three solution sets,

𝑆𝑏𝑒𝑠𝑡(𝑡) = {󳨀→𝑆 𝛼(𝑡), 󳨀→𝑆 𝛽(𝑡), 󳨀→𝑆 𝛿(𝑡)} = {󳨀→𝑆 (1)(𝑡), 󳨀→𝑆 (2)(𝑡), 󳨀→𝑆 (3)(𝑡)},
𝑆𝑒𝑙𝑖𝑠𝑡(𝑡) = {󳨀→𝑆 (𝑖)(𝑡) | 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝜂𝑁𝑝}, and𝑆𝜔(𝑡) = {󳨀→𝑆 (𝑗)(𝑡) | 𝑗 = 𝜂𝑁𝑝 + 1, 𝜂𝑁𝑝 + 2, ⋅ ⋅ ⋅ ,𝑁𝑝}.

Step 5. Update 𝑆𝜔(𝑡) to 𝑆𝜔(𝑡 + 1) by the modular position update method;
Step 6. Perform the local search on 𝑆𝑏𝑒𝑠𝑡(𝑡), and obtain 𝑆𝑏𝑒𝑠𝑡(𝑡 + 1);
Step 7. Select the first𝑁𝑝 best solutions set 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡 + 1) as the current solutions from𝑆𝑏𝑒𝑠𝑡(𝑡 + 1) ∪ 𝑆𝑒𝑙𝑖𝑠𝑡(𝑡) ∪ 𝑆𝜔(𝑡 + 1);
Step 8. Update t =t+1. If 𝑡 < 𝑇max, return to Step 3; otherwise, continue.
Step 9. Return the solution with the best fitness value in 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡 + 1).

Algorithm 4: Pseudo-code of HDGWO.

computation time and the comprehensive comparison based
on a modified performance index (MPI). In this part, we also
use the running results of Lingo 11.0 after 10000 iterations as
references. All algorithms are coded inMatlab R2015a and all
experimental tests are implemented on a computer with Intel
Core i7-4790, 3.6 GHz, 8 GB RAM, Windows 7 operating
system.

5.1. Analysis of Feasibility. Although the combat scenario
in [32] is a ground-based air defensive one, the WTA
model in math is essentially the same as that introduced
in Section 2. The parameters to describe the combat
scenario are the number of weapon platforms is M=4,
the number of targets is N=5, the missile number vec-
tor is Q=[4, 3, 2, 5], the value vector of targets is V=[3,1, 5, 4, 8], the engagement constraint factor matrix is E= [1,1, 0, 1, 0; 1, 0, 1, 1, 1; 0, 1, 1, 1, 0; 1, 1, 1, 0, 1], and the lethality
probability matrix is P= [0.2, 0.6, 0.1, 0.9, 0.7; 0.8, 0.5, 0.5,0.7, 0.3; 0.3, 0.7, 0.8, 0.6, 0.5; 0.7, 0.5, 0.4, 0.2, 0.9]. The nec-
essary input parameters of the HGDWO, the DPSO, the
GAWGE, and the AIGA are shown in Table 2. Note that, in
Table 2, we only list part of input parameters of the DPSO,
the GAWGE, and the AIGA; the parameters specific to these
three algorithms (i.e., the inertia weight of the DPSO, the
crossover probability of the GAWGE, etc.) are consistent with
those in the corresponding references and will not be listed in
this paper.

We independently run each algorithm above for 100
trials and record the maximum fitness value in each trial, as
illustrated in Figure 5. Then we solve the benchmark case by
the global solver of Lingo 11.0. After iterating 37869 times in
13s, the global solver found the global optimal solution, as
illustrated in Figure 6.The corresponding objective value was
20.736.

Table 2: The necessary input parameters of the HDGWO, the
DPSO, the GAWGE, and the AIGA.

𝑁𝑝 𝑇max 𝜂 r Δ 𝑝 𝜆
HDGWO 100 500 0.02 [1, 1, 1, 1, 1] 1 0.6
DPSO 100 500 - [1, 1, 1, 1, 1] - -
GAWGE 100 500 - [1, 1, 1, 1, 1] - -
AIGA 100 500 0.02 [1, 1, 1, 1, 1] - -

Table 3: The reference solution (assignment scheme).

Target1 Target2 Target3 Target4 Target5
Weapon Platform1 0 2 0 2 0
Weapon Platform2 2 0 1 0 0
Weapon Platform3 0 0 2 0 0
Weapon Platform4 1 1 0 0 3

In this paper, we take the solution and the corresponding
objective value obtained by Lingo 11.0 as the reference
solution and the reference objective value, as shown in Table 3
and Figure 6, respectively. Then we define the successful
trials of each algorithm as the trials which can obtain the
reference objective value, as shown in Figure 7. Table 4 gives
three statistical indicators: the average value of the maximum
fitness value (AVMFV) of each algorithm for 100 trials with
its standard deviation, the average value of the computation
time (AVCT) of each algorithm for 100 trials with its standard
deviation, and the number of the successful trials (NST).

It can be inferred from Figures 5 and 6 that the maximum
fitness value is 20.736, which is consistent with that in [32]. As
reflected in Figure 7 and Table 4, among the four algorithms,
the proposed HDGWO wins the second largest AVMFV
and NST with the least AVCT, indicating that the proposed
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Figure 5:The maximum fitness value in each trial of the HDGWO, the DPSO, the GAWGE, and the AIGA.

Figure 6: The running result of the global solver of Lingo 11.0.

Table 4: Three statistical indicators: the AVMFV, the AVCT, and the NST.

HDGWO DPSO GAWGE AIGA
AVMFV±std. 20.7356±0.0018 20.7360±0.0000 20.7356±0.0018 20.7345±0.0032
AVCT±std. (s) 2.3760±0.0070 19.9010±0.0290 34.8689±0.1894 3.6253±0.0170
NST 95 100 95 81

algorithm is able to obtain a relatively good solution in
the least computation time. To be specific, in terms of the
solution quality, the AVMFV of the HDGWO is, respectively,
-0.002%, 0, and 0.005% higher than those of the DPSO,
the GAWGE, and the AIGA. Here the negative sign “-”
means the HDGWO is inferior to the DPSO. The similar
superiority and inferiority can also be reflected in the NST
of all algorithms. Furthermore, regarding the computation
time, the AVCT of the HDGWO is about 88.1%, 93.2%, and
34.5% less than those of the DPSO, the GAWGE, and the
AIGA, respectively. Therefore, it can be concluded that the
HDGWO is narrowly inferior to the DPSO in terms of the
solution quality, but has a great advantage over the DPSO in

terms of the computation time. Therefore, we can conclude
that the HDGWO proposed in this paper achieves a better
trade-off between the solution quality and the computation
time than the DPSO, the GAWGE, and the AIGA, and thus is
feasible to solve small-scale WTA problems.

5.2. Analysis of Scalability. In this subsection, we analyze the
scalability of theHDGWOby employing it to solve large-scale
WTA problems and compare the running results with those
of the DPSO, the GAWGE, and the AIGA. For this purpose,
we first develop a test case generator to produce ten cases as
introduced as follows.
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Figure 7: The number of successful trials of the HDGWO, the
DPSO, the GAWGE, and the AIGA.

5.2.1. Test Case Generator

(1) Generate the number of air-to-ground missiles avail-
able for the ith weapon platform 𝐹𝑖 as 𝑞𝑖 =𝑟𝑎𝑛𝑑𝑖(𝑞max), 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑀. The function randi(x),
where x is a positive integer, returns a pseudorandom
scalar integer between 1 and x. In this paper, we set𝑞max as 8.

(2) Generate the value of the jth target 𝑇𝑗 as V𝑗 =𝑟𝑎𝑛𝑑𝑖(Vmax), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁. Here Vmax is equal to 10.
(3) Generate the kill probability of missiles on 𝐹𝑖 against𝑇𝑗 as 𝑝𝑖𝑗 = 𝑝𝑙 + (𝑝𝑢 − 𝑝𝑙) ∗ 𝑟𝑎𝑛𝑑, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀,𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁. The function rand returns a single

uniformly distributed randomnumber between 0 and
1, and this ensures 𝑝𝑖𝑗 between the lower bound 𝑝𝑙 and
the upper bound 𝑝𝑢 of the lethality probability. We set𝑝𝑙 = 0.1 and 𝑝𝑢 = 0.9.

(4) Generate the engagement constraint factor as 𝑒𝑖𝑗 =[sign(𝑟𝑎𝑛𝑑 − 𝑓𝑒) + 1]/2, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀, 𝑗 = 1, 2 ⋅ ⋅ ⋅ , 𝑁.
The function sign(𝑥) returns 1 if x is a positive
number, and -1 otherwise. 𝑓𝑒 denotes the probability
that 𝑒𝑖𝑗 is equal to 0, and is set as 0.2.

Ten test cases, denoted by Case 1 (M=20, N=20), Case
2 (M=40, N=40), Case 3 (M=60, N=60), Case 4 (M=80,
N=80), Case 5 (M=100, N=100), Case 6 (M=120, N=120),
Case 7 (M=140, N=140), Case 8 (M=160, N=160), Case 9
(M=180, N=180), and Case 10 (M=200, N=200) are then
generated. To reduce the computation time and improve the
analysis efficiency, for all algorithms, the population size,
the maximum iteration number, and the elitist retention
proportion are set as 100, 500, and 0.02, respectively, while
the other parameters remain unchanged.

5.2.2. Comparison of Solution Quality. We execute each algo-
rithm for 50 trials for each case independently. Based on the
running results, we then calculate the following indicators, as
shown in Table 5, for the comparison of the solution quality:
the average value of the maximum fitness value (AVMFV)

of each algorithm for 50 trials with its standard deviation
and the task completion ratio (TCR), and the improvement
ratio of the solution quality (IRSQ) of one algorithm to that
of another algorithm. TCR and IRSQ are defined as formula
(16) and formula (17), respectively. In fact, in formula (16),
the denominator should be the fitness value of the optimal
solution, but it is too difficult to obtain for large-scale WTA
problems. Therefore, we use the objective bounds obtained
by the B-and-B (branch and bound) solver of Lingo 11.0 after
10000 iterations instead, denoted by Lingo ref, which will
not affect the ranking of the four algorithms on the TCR
indicator. The objective bounds for each case are shown in
Table 5. In addition, it may be noted that in this paper our
purpose is to compare the HDGWO with the DPSO, the
GAWGE, and the AIGA, so we only need to analyze the IRSQ
of the HDGWO.

𝑇𝐶𝑅 = 𝐴𝑉𝑀𝐹𝑉𝐿𝑖𝑛𝑔𝑜 𝑟𝑒𝑓 ⋅ 100%. (16)

𝐼𝑆𝑅𝑄1 = 𝐴𝑉𝑀𝐹𝑉𝐻𝐷𝐺𝑊𝑂 − 𝐴𝑉𝑀𝐹𝑉𝐷𝑃𝑆𝑂𝐴𝑉𝑀𝐹𝑉𝐷𝑃𝑆𝑂 ⋅ 100%
𝐼𝑆𝑅𝑄2 = 𝐴𝑉𝑀𝐹𝑉𝐻𝐷𝐺𝑊𝑂 − 𝐴𝑉𝑀𝐹𝑉𝐺𝐴𝑊𝐺𝐸𝐴𝑉𝑀𝐹𝑉𝐺𝐴𝑊𝐺𝐸 ⋅ 100%.
𝐼𝑆𝑅𝑄3 = 𝐴𝑉𝑀𝐹𝑉𝐻𝐷𝐺𝑊𝑂 − 𝐴𝑉𝑀𝐹𝑉𝐴𝐼𝐺𝐴𝐴𝑉𝑀𝐹𝑉𝐴𝐼𝐺𝐴 ⋅ 100%

(17)

We can see from Table 5 that the proposed HDGWO lags
behind the DPSO and the GAWGE and thus achieves the
third ranking on both the AVMFV and TCR indicators in
all ten cases, which indicates that it is inferior to the DPSO
and the GAWGE, but superior to the AIGA in terms of the
solution quality. Then we analyze the disadvantage of the
HDGWO relative to the DPSO and the GAWGE though
ISRQ1 and ISRQ2. The AVMFV of the HDGWO was only
3.07% and 5.81% smaller than those of the DPSO and the
GAWGE in the worst case (i.e., in Case 10, ISRQ1=-3.07%,
ISRQ2=-5.81%), respectively. And in all ten cases, the average
values of ISRQ1 and ISRQ2 are separately -1.55% and -
3.76%, indicating that the solution quality of the HDGWO
is 1.55% and 3.76% worse than those of the DPSO and the
GAWGE on average, respectively. Furthermore, we find that
the TCR indicator of HDGWO in all cases exceeds 90% and
averages 95.76%, which means that the solution obtained by
the HDGWO is of satisfactory quality, even in Case 10 which
involves 200 weapon platforms and 200 targets. Therefore,
based on the above analysis a conclusion can be made that
the proposed HDGWO has a relatively good scalability to
provide a satisfactory solution for large-scale WTAproblems,
even though it is a little inferior to the DPSO and the
GAWGE.

5.2.3. Comparison of Computation Time. Another indicator
for evaluating the performance of an algorithm is related to
the computation time. In this paper, we calculate the average
value of the computation time (AVCT) of each algorithm
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for 50 trials in all ten cases and the reduction ratio of the
computation time (RRCT) of one algorithm to that of another
algorithm by formula (18), as shown in Table 6. Considering
our purpose in this paper, we only calculate the RRCT of the
HDGWO.

As reflected in Table 6, on the AVCT indicator, the
HDGWO is ranked second, just behind the AIGA in the
first five cases (from Case 1 to Case 5), while it achieves the
first ranking in the last five cases (from Case 6 to Case 10).
This means that, in the aspect of the computation time, the
HDGWO is inferior to the AIGA in the first five cases, but
is superior to the AIGA in the last five cases and both the
DPSO and the GAWGE in all cases. Since the HDGWO is
inferior to both the DPSO and the GAWGE in terms of the
solution quality, then we mainly investigate the advantage
of the HDGWO over the DPSO and the GAWGE in the
aspect of the computation time in this subsection. Note that
a negative RRCT indicates HDGWO is less time consuming.
By analyzing RRCT1 and RRCT2 we can easily find that the
AVCT of the HDGWO is at least 75% smaller than those
of the DPSO and the GAWGE, and on average it is 82.87%
and 89.07% smaller, respectively. Thus, it can be inferred
that on average the HDGWO consumes less than one-fifth
of the computation time of the DPSO and one-ninth of
the computation time of the GAWGE, but only reduces the
solution quality by 1.55% and 3.76%, respectively. This means
that the advantage of the HDGWO over the DPSO and the
GAWGE in terms of the computation time is much more
significant than the advantages of the DPSO and the GAWGE
over the HDGWO in the aspect of the solution quality.

𝑅𝑅𝐶𝑇1 = 𝐴𝑉𝐶𝑇𝐻𝐷𝐺𝑊𝑂 − 𝐴𝑉𝐶𝑇𝐷𝑃𝑆𝑂𝐴𝑉𝐶𝑇𝐷𝑃𝑆𝑂 ⋅ 100%
𝑅𝑅𝐶𝑇2 = 𝐴𝑉𝐶𝑇𝐻𝐷𝐺𝑊𝑂 − 𝐴𝑉𝐶𝑇𝐺𝐴𝑊𝐺𝐸𝐴𝑉𝐶𝑇𝐺𝐴𝑊𝐺𝐸 ⋅ 100%.
𝑅𝑅𝐶𝑇3 = 𝐴𝑉𝐶𝑇𝐻𝐷𝐺𝑊𝑂 − 𝐴𝑉𝐶𝑇𝐴𝐼𝐺𝐴𝐴𝑉𝐶𝑇𝐴𝐼𝐺𝐴 ⋅ 100%

(18)

5.2.4. Comprehensive Comparison Based on MPI. In this
subsection, we make a comprehensive comparison based on
the modified performance index (MPI), which is derived
from the performance index (PI) defined by Bharti [37]. The
PI can be used to test the relative performance of different
algorithms. Later, Mohan and Deep et al. [38–41] adopted the
indicator to compare the performance of algorithms in their
research. The PI of an algorithm is calculated as follows:

𝑃𝐼
= {{{{{

1𝑛𝑢𝑚 𝑝
𝑛𝑢𝑚 𝑝∑
𝑗=1

(𝑘1 𝑆𝑟𝑗𝑇𝑟𝑗 + 𝑘2
𝑀𝑡𝑗𝐴𝑡𝑗 + 𝑘3𝑀𝑓𝑗𝐴𝑓𝑗 ) if 𝑆𝑟𝑗 > 0

0 if 𝑆𝑟𝑗 = 0,
(19)

where 𝑛𝑢𝑚 𝑝 is the total number of problems solved by
the algorithm, 𝑆𝑟𝑗 is the number of successful runs of the
jth problem, 𝑇𝑟𝑗 is the total number of runs of the jth
problem, 𝑀𝑡𝑗 is the minimum of the average computation
time used by all algorithms in obtaining the solution for

jth problem, 𝐴𝑡𝑗 is the average computation time used by
an algorithm in obtaining the solution for the jth problem,𝑀𝑓𝑗 is the minimum of the average number of function
evaluations of successful runs used by all algorithms in
obtaining the solution for the jth problem, 𝐴𝑓𝑗 is the average
number of function evaluations of successful runs used by
the algorithms in obtaining the solution for the jth problem,
and 𝑘1, 𝑘2, and 𝑘3 (𝑘1 + 𝑘2 + 𝑘3 = 1 and 0 ≤ 𝑘1, 𝑘2, 𝑘3 ≤1) are the weights assigned to the percentage of success,
the computation time, and the average number of function
evaluations of successful runs, respectively.

Since it is too difficult to obtain the optimal solutions
for large-scale WTA problems, the number of successful
runs of the jth problem 𝑆𝑟𝑗 is equal to 0, indicating that PI
is equal to 0. Therefore, the original PI cannot be directly
used to compare the performance of the four algorithms.
Considering that the performance of an algorithm needs to
be comprehensively evaluated in terms of both the solution
quality and the computation time, we modify the original
PI from the perspective of multiattribute decision making,
where the solution quality is a benefit-type attribute and the
computation time is a cost-type attribute. Then we normalize
the values of the two attributes to the [0, 1] interval and
aggregate the normalized values in the way similar to the
formula (19). The modified performance index (MPI) of the
ith algorithm is calculated as follows:

𝑀𝑃𝐼𝑖 = 1𝑛𝑢𝑚 𝑝
𝑛𝑢𝑚 𝑝∑
𝑗=1

(𝑘1 𝐴𝑉𝑀𝐹𝑉𝑗𝑖 − 𝐴𝑉𝑀𝐹𝑉−(𝐴𝑉𝑀𝐹𝑉+ − 𝐴𝑉𝑀𝐹𝑉−)
+ 𝑘2 (𝐴𝑉𝐶𝑇

+ − 𝐴𝑉𝐶𝑇𝑗𝑖 )(𝐴𝑉𝐶𝑇+ − 𝐴𝑉𝐶𝑇−)) ,
(20)

where 𝐴𝑉𝑀𝐹𝑉+ = max𝑖{𝐴𝑉𝑀𝐹𝑉𝑗𝑖 }, 𝐴𝑉𝑀𝐹𝑉− =
min𝑖{𝐴𝑉𝑀𝐹𝑉𝑗𝑖 }, 𝐴𝑉𝐶𝑇+ = max𝑖{𝐴𝑉𝐶𝑇𝑗𝑖 }, 𝐴𝑉𝐶𝑇− =
min𝑖{𝐴𝑉𝐶𝑇𝑗𝑖 }, 𝑛𝑢𝑚 𝑝 is the total number of problems solved
by the ith algorithm, 𝐴𝑉𝑀𝐹𝑉𝑗𝑖 is the 𝐴𝑉𝑀𝐹𝑉 of the ith
algorithm in solving the jth problem, 𝐴𝑉𝐶𝑇𝑗𝑖 is the 𝐴𝑉𝐶𝑇
of the ith algorithm in solving the jth problem, and 𝑘1 and 𝑘2
are the weights of the solution quality and the computation
time, satisfying 𝑘1 + 𝑘2 = 1 and 0 ≤ 𝑘1, 𝑘2 ≤ 1. Note that𝐴𝑉𝑀𝐹𝑉 and 𝐴𝑉𝐶𝑇 are the average value of the maximum
fitness value and the average value of the computation time,
respectively, as defined in Sections 5.2.2 and 5.2.3.

We set 𝑘1 = 𝑤 and 𝑘2 = 1−𝑤, and then evaluate the MPIs
of all algorithms for𝑤=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
and 1, as shown in Figure 8.

It can be seen from Figure 8 that as the weight of
the solution quality 𝑤 increases, both the MPIs of the
HDGWO and the AIGA decrease while those of the DPSO
and the GAWGE increase. These trends are consistent with
our previous analysis. The larger the weight of the solution
quality 𝑤, the more obvious the advantages of the DPSO
and the GAWGE over the HDGWO and the AIGA in terms
of the solution quality. Since no algorithms can keep the
first ranking on the MPI indicator under different 𝑤, then
we further calculate the average value and the standard
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Figure 8: The MPIs of the HDGWO, the DPSO, the GAWGE, and
the AIGA.

Table 7: The avg. and the std. of the MPI for the HDGWO, the
DPSO, the GAWGE, and the AIGA.

HDGWO DPSO GAWGE AIGA
avg. 0.73 0.55 0.50 0.48
std. 0.17 0.10 0.33 0.32

deviation of the MPI for each algorithm. The average value
of the MPI reflects the overall performance of the algorithm
under different weights, and the standard deviation of the
MPI measures the stability of the overall performance of the
algorithm as the weight changes. The average value and the
standard deviation of the MPI for each algorithm are shown
in Table 7.

As reflected in Table 7, the average value of the MPI of
the HDGWO is the largest and the corresponding standard
deviation is the second smallest, only larger than that of
the DPSO. This means that, from an overall point of view,
the HDGWO has better performance than the other three
algorithms and has the ability to maintain the performance
at a relatively stable level, as the weight changes. Therefore,
when the weight of the solution quality is unknown, the
HDGWO should be recommended first among the four
algorithms. But when the weight of the solution quality has
been specified, the algorithm is recommended according to
the following rules: the HDGWO is preferred if 0 ≤ 𝑤 <0.6533; otherwise, the GAWGE is preferred.

6. Conclusion and Future Research

In this paper, we present the hybrid discrete grey wolf
optimizer (HDGWO) to effectively solve WTA problems
on the basis of the original grey wolf optimizer (GWO),
whichwas developed only for optimizing the problems with a
continuous solution space. TomakeGWOavailable, we adopt
the decimal integer encoding method to represent solutions
and propose the modular position update method to update
solutions in the discrete solution space. Thus, we obtain the

discrete greywolf optimizer (DGWO) and then by combining
it with the local search algorithm (LSA), we acquire the
HDGWO. To evaluate the feasibility of HDGWO in solving
WTA problems, we first employ it to solve the benchmark
case in [32] and compare the running results with those of the
DPSO, the GAWGE, and the AIGA. To analyze the scalability
of the HDGWO, we compare three kinds of indicators that,
respectively, measure the solution quality, the computation
time, and the comprehensive performance of algorithms
based on the running results of the HDGWO, the DPSO, the
GAWGE, and the AIGA in solving ten different scale WTA
problems produced by the test case generator.The simulation
results prove the feasibility of the HDGWO in solving small-
scale WTA problems and demonstrate the scalability of the
HDGWO in solving large-scale WTA problems. In addition,
the rules for selecting the best one among the four algorithms
are also provided based on the comparison of the modified
performance index.

We only implement the proposed HDGWO for the static
WTA problems in the current work. In future research, we
will concentrate on applyingHDGWOto solvemore complex
WTA problems, such as the dynamic problems and consider
more constraints in modeling, such as the necessary damage
degree to targets, dynamic engagement feasibility factors, etc.
Furthermore, we will also consider to employ the HDGWO
to optimize similar resource assignment problems in other
areas, such as industrial production and transportation, etc.
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