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A new formulation on seismic risk assessment for structureswith both randomanduncertain-but-bounded variables is investigated
in this paper. Limit thresholds are regarded as random variables.Themedian of random variables is described through an improved
multidimensional parallelepiped (IMP) convex model, in which the uncertain domain of the dependent bounded variables can be
explicitly expressed.The corresponding Engineering Demand Parameters are taken to be dependent and follow amultidimensional
lognormal distribution.Throughmatrix transformation, a given performance function is transformed into the regularized one. An
effective method based on active learning Kriging model (ALK) is introduced to approximate the performance function in the
region of interest rather than in the overall uncertain space. Based on ALK model, the failure probabilities for different limit states
are calculated by using Monte Carlo Simulation (MCS). Further, the failure probabilities for different limit states in 50 years can
be obtained through coupling the seismic failure probability with the groundmotion hazard curve. A six-story reinforced concrete
building subjected to ground motions is investigated to the efficiency and accuracy of the proposed method. The interstory drift
and the acceleration as two responses of the case study are, respectively, obtained by utilizing Incremental Dynamic Analysis and
nonlinear history analysis.

1. Introduction

Recent earthquake hazards have caused serious economic
and social loss [1, 2]. Currently, a number of academics [3–
7] have emphasized the importance of performance-based
seismic design (PBSD). A large amount of approaches for
reliability analysis of structures has been proposed in recent
years. Limit state fragility curves as considerable decision-
making tools have been proposed to assess the reliability of
RC structures [8–14]. The well-known Cornell’s three ana-
lytical seismic risk formulae have been widely used to carry
out structural seismic reliability analysis [15, 16]. For instance,
Eads et al. [17] used these analytical risk formulations to esti-
mate collapse risk of a four-story office building. In Lu et al.
[18, 19] the structural seismic hazard analysis could be studied

by combining an improved cloud method and the analytical
formulation of the damage hazard. Lü et al. [20] also applied
Cornell’s three analytical seismic risk formulae to evaluate the
seismic reliability of Chinese code-conforming buildings. In
Wu et al. [21] the seismic risk assessment of RC buildings
subjected to near-fault and far-fault ground motions was
investigated using Cornell’s three analytical formulations.
Moreover, the finite element reliability module based on the
first-order reliability method (FORM) and MVFOSM has
been proposed for seismic reliability problems [18, 19, 22, 23].
Song et al. [24] developed a component reliability method to
identify the most probable failure members of RC buildings
subjected to strong ground motions. Then the probability of
a progressive collapse of the damaged structures could be
calculated by the integral reliability method. Lü et al. [25]
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proposed a semi-analysis approach integrating the improved
point method and moment method to analyze the nonlinear
seismic reliability of a specific structure. The applicability
of the reliability methodologies such as FORM, SORM, and
HOMM was elaborated by Song [26] and Lu et al. [27].
Note that all of these reliability methods were based on the
framework of performance-based seismic design (PBSD).

However, the above-mentioned contributions are usually
based on specific probability distributions of uncertain vari-
ables, which may be imprecise for some uncertain parame-
ters because of insufficient experimental data. Unreasonable
assumptions may cause misleading results in probabilistic
reliability analysis [28, 29], if a probabilistic model is adopted.
Therefore, the nonprobabilistic convex model was presented
to describe the uncertain parameters with the limited avail-
able information. In the last several years, the structural reli-
ability analysis methods based on the nonprobabilistic con-
vex models have been intensively investigated [30–33] and
they have provided effective supplements to traditional prob-
abilistic reliability analysis. Moreover, the structural hybrid
reliability analysis with both random uncertainty and bound-
ed uncertainty has been proposed in recent years [34–36].

Guo and Du [37] developed a unified reliability analysis
framework to deal with both random and interval variables
in multidisciplinary systems. Jiang et al. [38] constructed
an algorithm with high efficiency and robust convergence
performance to compute the hybrid reliability with both
random and interval variables. Recently, an improved uni-
fied analysis approach [39] for structural hybrid reliability
has been developed based on FORM. Moreover, sensitivity
analysis for hybrid reliability with both probabilistic and
convex variables was investigated in Guo and Du [34, 40],
Wang et al. [41], and Zhang et al. [42, 43]. In Luo et al.
[35], a probability and convex set mixed reliability model was
proposed. Subsequently, the minimum reliability index was
used as the constraint in reliability-based design optimization
(RBDO) when both random and convex variables were con-
sidered. Yang et al. [44, 45] demonstrated that if performance
functions were highly nonlinear or had multiple design
points, the existing algorithms [38, 46] (Xiao et al., 2006)
would be very inaccurate. To overcome the above problems, a
number of scholars presented an active learningKrigingmod-
el (ALK) for hybrid reliability analysis [43–45, 47, 48]. When
the Kriging model is constructed, the performance function
need not be approximated throughout the uncertain space,
but only in some region of interest.

It is noteworthy that traditional convex models such as
interval model and ellipsoidal model are found not capable
of dealing with complex “multisource uncertainty” problems.
Therefore, a more general convex model, namely, “multi-
dimensional parallelepiped (MP) model”, was proposed in
recent work [49–51].This kind of convex model can take into
account the independent and dependent uncertain param-
eters in a unified framework. To remedy the scarcity of the
existing MP model, Ni et al. [52] presented an improved MP
(IMP)model, inwhich the uncertainty domain of the interval
variables could be explicitly expressed by a matrix inequality.

In conclusion, based on the framework of PBSD, the
reliability analysis of a givenRC structure subjected to ground

motions should be discussed with a combination of probabil-
ity and IMP convex models. This means that a more general
hybrid reliability analysis (MGHAR) for complex seismic
engineering problems is developed in this paper. Limit
thresholds are considered as randomvariables.Themedian of
random variables is expressed by using the IMP model. The
structural responses are taken to be dependent and follow
a multidimensional lognormal distribution. Through matrix
transformation, the performance function ismapped into the
normalized performance function. A method based on ALK
model namedALK-MGHAR is proposed.The reason is that a
surrogate only rightly predicting the sign of the performance
function is found capable of satisfying the precision require-
ment of MGHAR. Then Monte Carlo Simulation (MCS) is
efficiently performed based on ALK-MGHAR. Further, the
failure probabilities in 50 years can be computed by combin-
ing seismic failure probability and the ground motion hazard
curve. This procedure is called ALK-MGHAR-MCS. A six-
story RC building is used to demonstrate the efficiency and
accuracy of ALK-MGHAR.The interstory drift and the accel-
eration are selected as two-dimensionalEngineeringDemand
Parameters (EDPs), which are, respectively, calculated by
Incremental Dynamic Analysis (IDA) and nonlinear history
analysis (NHA).

2. MGHAR with MCS Method

2.1. Seismic Risk Formulation with Probabilistic Model. When
only random variables are involved in an uncertain structure,
the reliability in conjunction with the PBSD approach can be
evaluated by traditional probabilistic reliability method. The
limit state function or performance function is expressed as𝐺(X), with the vector of random variables X = {𝑥1,𝑥2, ...,
𝑥𝑚}. The reliability is denoted as the probability that the
structural response exceeds the specified damage level under
a given ground motion intensity. In probabilistic reliability
theory, therefore, the failure probability of a structure for a
specific limit state can be defined as follows:

𝑃f = Pr {𝐺 (X) < 0} = ∫
𝐺(X)<0

∫ ⋅ ⋅ ⋅ ∫𝑓 (X) dX (1)

where 𝑃f is the structural failure probability under a damage
state, Pr{∙} represents the probability of an event, and 𝑓(X) is
the joint probability density function (PDF) of random vari-
ables X. For normal random variables, X can be transformed
into standard normal random variables u through a linear
transformation, as follows:

𝑢𝑖 = 𝑥𝑖 − 𝜇𝑖𝜎𝑖 , (𝑖 = 1, 2, . . . 𝑚) (2)

where 𝜇𝑖 and 𝜎𝑖 are mean and standard deviation of random
variables 𝑥𝑖, respectively.

For nonnormal random variables, numerous available
techniques, such as Nataf transformation [57] and Rosen-
blatt’s transformation [58], can transform the variables into
approximately equivalent normal variables. Through such a
treatment, the well-known FORM can be carried out for
solving the structural reliability in (1).
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In order to evaluate the reliability of RC buildings, the
familiar Cornell approach [16] is adopted in this paper. The
mean annual frequency (MAF) of exceeding a specified limit
state per year is normally defined as

𝜆EDP (LS) = ∫
𝐼𝑀
𝑃EDP|𝐼𝑀 (LS | 𝑖𝑚) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨d𝐻𝐼𝑀 (𝑖𝑚)d𝑖𝑚 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 d𝑖𝑚 (3)

where𝑃EDP|𝐼𝑀(LS | 𝑖𝑚) is the structural failure probability for
a specific limit state and can be solved through (1).𝐻𝐼𝑀(𝑖𝑚) =𝑃[𝐼𝑀 ≥ 𝑖𝑚] is the ground motion hazard function and de-
notes the MAF of a specific earthquake event (𝐼𝑀 ≥ 𝑖𝑚); 𝐼𝑀
is the intensity measure (peak ground acceleration, spectral
acceleration, etc.).

For specific site conditions, a simplified model proposed
by Cornell et al. [15] can be used to carry out the ground
motion hazard analysis, expressed as

𝐻𝑆𝑎 (𝑥) = 𝑃 [𝑆𝑎 > 𝑥] = 𝑘0 ⋅ 𝑥−𝑘 (4)

where 𝑘0 is a constant depending on the groundmotion char-
acteristics, k is the slope of the seismic hazard curve in loga-
rithmic coordinates, and 𝑆𝑎 is spectral acceleration.

When earthquake occurrences in time are assumed to be
a Poisson process [59], the failure probabilities for different
limit states in 50 years are calculated by using the following
expression:

𝑃EDP = 1 − (1 − 𝜆EDP)50 (5)

2.2. Seismic Risk FormulationwithBothRandomandBounded
Variables. When both random variables and IMP convex
variables appear in an uncertain structure, the performance
function can be denoted as 𝐺(X,Y), where Y = {𝑦1, 𝑦2, ...,𝑦𝑚} denotes the vector of marginal intervals and will be
expounded in Section 3.2. The IMP convex variables are
actually uncertain-but-bounded quantities. Due to the coex-
istence of random and bounded variables, the limit state𝐺(X,
Y) = 0 produces a cluster of limit state surfaces in the sto-
chastic space. The minimum limit state, min𝐺(X,Y), which
denotes the worst case of a given structure, is the most
concerned in this study. A stringent reliability requirement
can be satisfied only when the worst case is taken into
account. For problems with both random and bounded vari-
ables, the failure probability of a structure for a specific limit
state is defined as

𝑃U
f = Pr{min

𝑌

G (X,Y) < 0}
= ∫

min𝑌𝐺(X,Y)<0
∫ ⋅ ⋅ ⋅ ∫𝑓 (X) dX (6)

where 𝑃U
f is the maximum failure probability when the

minimum limit state is considered.
The reliability analysis of RC structures with both random

and IMP variables can be investigated using (6). When
the interstory drift and the acceleration are simultaneously
considered, the performance function further elaborated in
Section 3 is expressed as 𝐺((Δ, 𝛿), (D,A)). In this perfor-
mance function, threshold capacity values corresponding to

the two EDPs are described as random variables. Themedian
of random variables is represented by the IMP variables. The
failure probability of structures subjected to earthquakes is
expressed as

𝑃U
f = ∬

min𝜇𝛼𝐺((Δ,𝛿),(D,A))
𝑓 (𝐷,𝐴 | 𝑆𝑎 = 𝑥) d𝐷 d𝐴 (7)

where 𝑃U
f is the maximum failure probability corresponding

to the minimum limit state min𝐺((Δ, 𝛿), (D,A)), 𝑓(⋅) is the
bivariate PDF, D is the interstory drift, A is the acceleration,
and Δ and 𝛿 are threshold capacity values of the interstory
drift and the acceleration, respectively.

For convenience, this subsection uses M(w) to
replace the minimum value of the performance function
min𝐺((Δ, 𝛿), (D,A)). Then, the MAF of exceeding the two
specific limit states per year is defined as

𝜆𝐷,𝐴 (Δ, 𝛿)
= ∫∬

M(w)
𝑓 (𝐷,𝐴 | 𝑆𝑎 = 𝑥) d𝐷 d𝐴 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨d𝐻𝑆𝑎 (𝑥)d (𝑥) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 |d (𝑥)|

= ∫∬
M(w)

𝑓 (𝐷,𝐴 | 𝑆𝑎 = 𝑥) d𝐷 d𝐴 󵄨󵄨󵄨󵄨󵄨ℎ𝑆𝑎 (𝑥)󵄨󵄨󵄨󵄨󵄨 |d (𝑥)|
(8)

where𝐻𝑆𝑎(⋅) is the ground motion hazard function of the site
derived from PHSA and 𝑆𝑎 is the spectral acceleration. In
this paper, MCS as the benchmark of ALK-MGHAR can be
implemented to obtain an accurate result. Two steps required
here are detailed as follows.

Step 1. A great deal of random samples involved in the per-
formance function 𝐺((Δ, 𝛿), (D,A)) is generated.
Step 2. An optimization problem elaborated in Section 4 is
performed at each of the simulated samples. Subsequently, a
failure indictor can be obtained at the corresponding sample.

Based on the above-mentioned two steps, (8) can be re-
written as𝜆𝐷,𝐴 (Δ, 𝛿)

= ∫∬
M(w)

𝑓 (𝐷,𝐴 | 𝑆𝑎 = 𝑥) d𝐷 d𝐴 󵄨󵄨󵄨󵄨󵄨ℎ𝑆𝑎 (𝑥)󵄨󵄨󵄨󵄨󵄨 |d (𝑥)|
= ∫ 1𝑁MCS

𝑁∑
𝑗=1

𝐼𝐹 (w(𝑗)) 󵄨󵄨󵄨󵄨󵄨ℎ𝑆𝑎 (𝑥)󵄨󵄨󵄨󵄨󵄨 |d (𝑥)|
(9)

where 𝐼𝐹(w) is the failure indictor function and it can be ex-
pressed as

𝐼𝐹 (w) = {{{
1 M (w) ≥ 00 M (w) < 0 (10)

where M(w) is the minimum value of the performance
function which can be elaborated in Section 3. In this paper,
it should be noted that M(w) ≥ 0 represents the failure region
of a given structure and M(w) < 0 denotes the safe region.
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Remark 1. (i) The failure probabilities in 50 years can be cal-
culated by (5). (ii) Since the uncertainties in both responses
originated from the same source of uncertainties, the two
EDPs are taken to be dependent and follow a bivariate log-
normal distribution.Thebivariate PDF is expressed as follows
[7]:

𝑓 (𝐷,𝐴 | 𝑆𝑎 = 𝑥) = 12𝜋𝐷𝐴𝜎𝐷|𝑥𝜎𝐴|𝑥 (1 − 𝜌2)1/2
∗ {exp− 12 (1 − 𝜌2) ∗ [( ln𝐷 − 𝜇𝐷|𝑥𝜎𝐷|𝑥 )2

+ ( ln𝐴 − 𝜇𝐴|𝑥𝜎𝐴|𝑥 )2

− 2𝜌( ln𝐷 − 𝜇𝐷|𝑥𝜎𝐷|𝑥 )( ln𝐴 − 𝜇𝐴|𝑥𝜎𝐴|𝑥 )]}

(11)

where𝜇𝐷|𝑥 and 𝜎𝐷|𝑥 are log-mean and log-standard deviation
of the maximum interstory drift, respectively; 𝜇𝐴|𝑥 and 𝜎𝐴|𝑥
are log-mean and the log-standard deviation of the accelera-
tion, respectively; 𝜌 is the correlation coefficient between ln 𝐷
and ln𝐴.

Themean vector 𝜇T and covarianceΣ of the bivariate PDF
are expressed as follows:

𝜇
T
D,A = [𝜇𝐷|𝑥, 𝜇𝐴|𝑥]
Σ = [ 𝜎2𝐷|𝑥 𝜌𝜎𝐷|𝑥𝜎𝐴|𝑥𝜌𝜎𝐷|𝑥𝜎𝐴|𝑥 𝜎2𝐴|𝑥 ] (12)

𝜌 can be estimated by the following expression:

𝜌 = (1/𝑛)∑𝑛𝑖=1 [(ln𝐷𝑖) ⋅ (ln𝐴 𝑖)] − 𝜇𝐷|𝑖𝑚 ⋅ 𝜇𝐴|𝑖𝑚𝜎𝐷|𝑖𝑚 ⋅ 𝜎𝐴|𝑖𝑚 (13)

where 𝜌 is the estimator of the correlation coefficient 𝜌; n is
the number of ground inputs; 𝜇𝐷|𝑖𝑚 and 𝜎𝐷|𝑖𝑚 are the estima-
tors of log-mean and log-standard deviation of the maximum
interstory drift, respectively; 𝜇𝐴|𝑖𝑚 and �̂�𝐴|𝑖𝑚 are the estima-
tors of log-mean and log-standard deviation of acceleration,
respectively.

3. Two-Dimensional Performance
Limit State Function

3.1. Performance Function of Both Limit States. The perfor-
mance function of both limit states, which allows consider-
ing the relationship between EDPs and limit thresholds, is
defined as follows [7, 60]:

𝐺 ((Δ(𝜇Δ,𝜎Δ),Z(𝜇Z,𝜎Z)) , (D,A))
= ( A

Z(𝜇Z,𝜎Z)
)𝑁1 + ( D

Δ(𝜇Z,𝜎Z)
)𝑁2 − 1 (14)

where D is the vector of the maximum interstory drift, Δ is
the vector of the maximum interstory drift threshold,A is the
vector of the acceleration, Z is the vector of the acceleration
threshold, 𝜇Δ and 𝜎Δ are mean and standard deviation of
the interstory drift threshold, respectively, and 𝜇Z and 𝜎Z are
mean and standard deviation of the acceleration threshold,
respectively. D and A are considered as random variables
and follow the bivariate lognormal distribution. Δ and Z are
assumed to be lognormally distributed. 𝜇Δ and 𝜇Z are de-
scribed by the IMP variables.

The desired performance function can guarantee that the
two peak EDPs stay below their respective critical values over
a specified duration. When𝑁1 = 1, a sector/triangle accept-
able region is generated to realize the equivalent between the
notion of the performance function and treatment of joint
probability density function (JPDF) of the two dependent
EDPs. Therefore, (14) can be simplified as

𝐺 ((Δ(𝜇Δ,𝜎Δ),Z(𝜇Z,𝜎Z)) , (D,A))
= ( A

Z(𝜇Z,𝜎Z)
) + ( D
Δ(𝜇Δ,𝜎Δ)

)𝑁2 − 1 (15)

When the simplest case withN2 = 1 is considered, the per-
formance function is written as

𝐺 ((Δ(𝜇Δ,𝜎Δ),Z(𝜇Z,𝜎Z)) , (D,A))
= DZ(𝜇Z,𝜎Z) + AΔ(𝜇Δ,𝜎Δ)
Δ(𝜇Δ,𝜎Δ)Z(𝜇Z,𝜎Z)

− 1 (16)

3.2. The IMP Model. Recent work [49, 50] indicated that the
MP model could deal with the problems where correlated
variables and independent variables coexist. However, Ni et
al. [52] and Jiang et al. [51] stated the main deficiencies of
the existing MP model and then proposed an IMP model.
The correlation coefficient between uncertain-but-bounded
variables in the IMP model can be easily calculated and the
uncertainty domain of the bounded variables can be explic-
itly expressed through a matrix inequality. When a two-
dimensional problem with bounded variables 𝜇Δ and 𝜇Z is
considered, the IMPmodel degenerates into a parallelogram.
The marginal intervals of the two variables 𝜇Δ and 𝜇Z are
denoted as 𝜇𝐼

Δ
and 𝜇𝐼

𝑍
, respectively. The two marginal inter-

vals 𝜇𝐼
Δ
and 𝜇𝐼

𝑍
are defined as

𝜇𝐼
Δ
= [𝜇𝐿
Δ
, 𝜇𝑅
Δ
] ,

𝜇𝐶
Δ
= (𝜇𝐿
Δ
+ 𝜇𝑅
Δ
)2 ,

𝜇𝑊
Δ
= (𝜇𝑅
Δ
− 𝜇𝐿
Δ
)2

(17)
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Figure 1: The IMP convex model with a two-dimensional problem.

𝜇𝐼
𝑍
= [𝜇𝐿𝑍, 𝜇𝑅𝑍] ,

𝜇𝐶𝑍 = (𝜇𝐿𝑍 + 𝜇𝑅𝑍)2 ,
𝜇𝑊𝑍 = (𝜇𝑅𝑍 − 𝜇𝐿𝑍)2

(18)

where 𝜇𝐿
Δ
and 𝜇𝑅

Δ
are the lower bound and upper bound of𝜇𝐼

Δ
; 𝜇𝐿𝑍 and 𝜇𝑅𝑍 are the lower bound and upper bound of 𝜇𝐼

𝑍
;𝜇𝐶

Δ
and 𝜇𝐶𝑍 represent the midpoints of 𝜇𝐼

Δ
and 𝜇𝐼

𝑍
; 𝜇𝑊
Δ

and𝜇𝑊𝑍 represent interval radii of the two marginal intervals. If
bounded variables 𝜇Δ and 𝜇Z are independent of each other,
the uncertainty domain of the two variables will become a
rectangular domain [𝜇𝐿

Δ
, 𝜇𝑅
Δ
] × [𝜇𝐿𝑍, 𝜇𝑅𝑍], expressed as Ωr. If

the two bounded variables are dependent, the uncertainty
domain will form a parallelogram domain Ωp, as shown
in Figure 1. According to the principles proposed by Ni et
al. [52], the uncertainty domain in the IMP model can be
constructed.

It can be observed from Figure 1 that the center of the
parallelogram coincides with that of the rectangular domain.
Moreover, the shape of the parallelogram can exhibit the
degree of correlation between 𝜇𝐼

Δ
and 𝜇𝐼

𝑍
(Ni et al. [52] have

completed the proof). In the IMP model, a quadrilateral side
need not be set to be parallel to the abscissa axis. From
Figure 1, it can be seen that f represents the semi-axis length
in the direction 󳨀󳨀→𝐻𝐷 and e represents the semi-axis length
in the direction 󳨀󳨀→𝐻𝐶. A new correlation coefficient between
uncertain-but-bounded variables can be defined as

𝜌ΔZ = 𝑒 − 𝑓𝑒 + 𝑓 (19)

where 𝜌ΔZ has the range [−1 1], 𝜌ΔZ = 𝜌ZΔ and 𝜌ΔΔ = 𝜌ZZ =1. When 𝑚 = 0 and 𝜌ΔZ = 1, the bounded variables 𝜇Δ
and 𝜇Z are linearly and positively dependent. When 𝑒 = 0
and 𝜌ΔZ = −1, the two bounded variables are linearly and
negatively dependent. When 𝑒 = 𝑓 and 𝜌ΔZ = 0, the two
bounded variables are independent. When 0 < 𝑓 < 𝑒 and𝜌ΔZ > 0, the two bounded variables are positively dependent.
When 0 < 𝑒 < 𝑓 and 𝜌ΔZ < 0, the two variables are negatively

dependent. Then, the symmetrical correlation matrix 𝜌 can
be defined as

𝜌 = [𝜌ΔΔ 𝜌Δ𝑍𝜌𝑍Δ 𝜌𝑍𝑍] = [ 1 𝜌Δ𝑍𝜌𝑍Δ 1 ] (20)

Subsequently, the uncertainty domain established by the
IMP model can be explicitly expressed by the following
matrix inequality [51, 52]:

−e ≤ 𝜌−1T−1R−1 (𝜇 − 𝜇C) ≤ e (21)

where the diagonal matrices T, R and the vectors e, 𝜇, 𝜇C are
defined as

T = diag (w1,w2) , w𝑖 = 1∑2𝑗=1 󵄨󵄨󵄨󵄨𝜌 (𝑖, 𝑗)󵄨󵄨󵄨󵄨 , 𝑖 = 1, 2
R = diag (𝜇𝑊

Δ
, 𝜇𝑊𝑍 ) ,

e = (1 1)T ,
𝜇 = (𝜇Δ 𝜇𝑍)T ,
𝜇
C = (𝜇𝐶

Δ
𝜇𝐶𝑍)T

(22)

in which diag (w1,w2) represents the diagonal elements w1
and w2 of the diagonal matrix and 𝜌(𝑖, 𝑗) represents the
element in the ith row and the jth column of the correlation
matrix 𝜌. Further, a Shape Matrix C can be defined as [51, 52]

C = RT𝜌 (23)

Equation (21) can be rewritten as follows:󵄨󵄨󵄨󵄨󵄨C−1 (𝜇 − 𝜇C)󵄨󵄨󵄨󵄨󵄨 ≤ e (24)

Note that when the interval radius 𝜇𝑊
Δ
is equal to 𝜇𝑊𝑍 , the

parallelogram is a rhomb.The IMP domain can be expressed
as Ωp = {𝜇 | 󵄨󵄨󵄨󵄨󵄨C−1 (𝜇 − 𝜇C)󵄨󵄨󵄨󵄨󵄨 ≤ e} (25)

Consider a general n-dimensional problemwithmarginal
intervals 𝜇𝐼

𝑖
, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, of uncertain variables. In such

circumstances, the uncertain domain is a multidimensional
parallelepiped. Analogous to the definition of (20), the cor-
relation between any two uncertain-but-bounded variables𝜇𝑖 and 𝜇𝑗 can be expressed by the correlation coefficient 𝜌𝑖𝑗.
Then, the correlation matrix 𝜌 for all of bounded variables
can be defined as [51, 52]

𝜌 = [[[[[[[

1 𝜌12 ⋅ ⋅ ⋅ 𝜌1𝑛𝜌21 1 ⋅ ⋅ ⋅ 𝜌2𝑛
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ d

...𝜌𝑛1 𝜌𝑛2 ⋅ ⋅ ⋅ 1
]]]]]]]

(26)

where 𝜌 is an 𝑚 × 𝑚 symmetric matrix. The analytical
expression of the multidimensional parallelepiped uncertain
domain can be derived in the similar way from the two-
dimensional case, and the detailed process is omitted.
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Remark 2. (i) When creating a new IMP model, we need the
marginal intervals of all bounded variables and the corre-
lation between any two variables. Assume that there are n-
dimensional uncertain variables 𝜇𝑖, i=1,2,. . .,n, and m test
samples 𝜇(𝑟), r=1,2,. . .,m, then the detailed procedure of
building the IMP convex model could be found in Jiang et al.
[49, 50] andNi et al. [52]. Formultidimensional problems, the
IMP model can be efficiently developed through decompos-
ing the complicated n-dimensional problems into 𝑛(𝑛 + 1)/2
sample two-dimensional problems.

3.3. Normalization of the Uncertainty Domain Ωp. To trans-
form the IMPmodel into a regular interval (bounded)model,
a regularization method will be performed in this section.
Then, the parallelepiped uncertainty domain Ωp can become
a multidimensional cube after the regularization method is
adopted. Introduce the following transformation:

𝛿 = C−1 (𝜇 − 𝜇C) (27)

The uncertain-but-bounded variables 𝜇 can be mapped
into the𝛿 space and then the uncertainty domainΩp becomes
an n-dimensional cubeΩ∗, denoted as

Ω∗ = {𝛿 | |𝛿| ≤ e} (28)

where 𝛿 = {𝛿1, 𝛿2, . . . , 𝛿𝑛}.
The semi-axis length e and f can be solved when only

translation, scaling, and rotation are required in the above
process. Thus, this regularization method can be categorized
as affine transformation proposed by Jiang et al. [49, 51]. By
using the transformation, the uncertainty domain Ωp be-
comes a standard cube center and the length of each side is
2 in 𝛿 space. Meanwhile, the bounded variables are indepen-
dent of each other in 𝛿 space.

4. Application to Reliability Analysis

The performance limit state equation (15) defines the failure
mode of the RC structure and it plays an important role
in the reliability assessment. For convenience of expression,
the vectors D, A, Δ, Z are uniformly expressed as X={D, A,
Δ, Z}. Through the regularization of the uncertain variables
X and 𝜇 into u and 𝛿 elaborated in Section 3, the limit
state function G(X, 𝜇) can be mapped into the regularized
limit state function G(u, 𝛿). Since the random and bounded
variables coexist, correspondingly, the limit state G(u, 𝛿)
constitutes a cluster of limit state surfaces in the standard u
space. In the whole u-spaceΩu, a safe region of the limit state
function G(u, 𝛿) is denoted as Ωs = {u | min𝛿 𝐺(u, 𝛿) < 0}
and a critical region is expressed as Ωc = {u | 𝐺(u, 𝛿) = 0}.
Then a failure region can be denoted as Ωf = Ω \ (Ωs ∪Ωc). Therefore, the failure probability with both random and
bounded variables can be defined as

𝑃U
f = Pr {M (u) = min

𝛿

𝐺 (u, 𝛿) > 0 | 𝛿 ∈ Ω∗} (29)

where M(u) is the minimization of the limit state function
and can be solved by the following optimization problem:

min
𝛿

𝐺 (u, 𝛿)
s.t. |𝛿| ≤ e

(30)

In this paper, a global optimization algorithm called as
DIRECT algorithm [61] is used to realize the global optimum.
Then, (8) can be rewritten as

𝜆 = ∫Pr {M (u) = min
𝛿

𝐺 (u, 𝛿) > 0 | 𝛿 ∈ Ω∗}
⋅ 󵄨󵄨󵄨󵄨󵄨ℎ𝑆𝑎 (𝑥)󵄨󵄨󵄨󵄨󵄨 |d (𝑥)| (31)

Note that the failure probabilities in 50 years can be ob-
tained by substituting (31) into (5).

If the FORM method is used to solve (29), (29) can be
obtained by using the following double-loop optimization:

𝛽∗ = min
u

uTu

s.t. min
𝛿

𝐺 (u, 𝛿) = 0
|𝛿| ≤ e

(32)

where 𝛽∗ is the minimum reliability index. A mathematical
programming method (MPM) and a single-loop iterative
(SLI) method [35] were proposed to solve the above double-
loop optimization problem. Subsequently, the maximum fail-
ure probability of a structure can be approximately calculated
by the following expression:

𝑃U
f = Φ (−𝛽∗) = 1 − ∫𝛽∗

−∞

1√2𝜋 exp(−u22 ) du (33)

Geometrically, 𝛽∗ is the shortest distance from the origin
to the region Ωc in the standard u-space Ω. Some literatures
[38, 62, 63] showed that the reliability of a structure with both
random and convex variables could be evaluated using the
minimum reliability index. However, 𝛽∗ could not accurately
measure the reliability of a structure when the performance
function was nonlinear or had multiple design points [64,
65]. Therefore, an efficient method based on active learning
Kriging model (ALK) will be used to predict (30).

5. ALK-MGHAR for the Reliability Analysis

5.1. Fundamental Theory. To reduce the computational cost,
an ALK method [43, 47, 48, 66–68] is introduced to approxi-
mate the performance in the region of interest rather than
throughout the overall space. Based on the Kriging model,
then, the failure probability 𝑃U

f can be calculated through
MCS method. When the Kriging model is built, the perfor-
mance function need not be approximated throughout the
whole uncertainty space, but only in the region of interest. An
imitated EfficientGlobal Optimization (EGO) for global opti-
mization is usually required in ALKmodels. When searching
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the minimum value within global optimization, we require
selecting the points at which the value of the objective func-
tion𝐺(u, 𝛿)has themaximumexpectation value to be smaller
than the current least value. Therefore, a learning function
called Expected Improvement Function (EIF) proposed by
Jones et al. [69] was employed in EGO. For the problems
with both random and bounded variables, a right predication
for the sign of the objective function 𝐺(u, 𝛿) rather than
the specific value of 𝐺(u, 𝛿) can be adopted in the Kriging
model. In order to greatly enhance the prediction for the
sign of 𝐺(u, 𝛿), the point at which the sign of 𝐺(u, 𝛿) has the
maximumrisk value to bewrongly predicted should be added
into the DoE. Moreover, an active learning function termed
as Expected Risk Function (ERF) [43, 44] is used to recognize
this point. The reason why a Kriging model providing a right
prediction for the sign of 𝐺(u, 𝛿) can satisfy the precision
requirement of MGHAR is given by the following corollary.
Note that the proposed corollary is based on the existing
properties [45, 64]. Therefore, the proof of the corollary is
omitted.

Corollary 3. If a Kriging model can rightly predict the sign of𝐺(u, 𝛿), then the sign of min𝛿 𝐺(u, 𝛿) is the same as that of
min𝛿 𝐺(u, 𝛿). Sequentially, the optimization problem defined
by (30) can be replaced by the following optimization:

min
𝛿

𝐺 (u, 𝛿)
s.t. |𝛿| ≤ e

(34)

5.2. Revisiting KrigingModel. For the sake of convenience, we
use the vector Θ to replace (A,D,Z,Δ). The Kriging model
G(Θ) can be denoted as

G (Θ) = 𝐹 (Θ,𝛽) + 𝑧 (Θ) (35)

where 𝐹(Θ,𝛽) is the polynomial regression part and 𝛽 is the
vector of regression coefficients. 𝑧(Θ) is a Gaussian random
process whose mean and covariance are expressed as

𝐸 [𝑧 (Θ)] = 0
cov [𝑧 (a) , 𝑧 (b)] = 𝜎2 [R (𝜃, a,b)] (36)

where 𝜎 is the standard deviation of the Gaussian process, a
and b are two arbitrary points, andR(⋅) is a correlation func-
tion with parameters 𝜃, a, and b. Here, the Gaussian func-
tion is selected and it can be expressed as

R (𝜃, 𝑐,𝑑) = exp[− 𝑛∑
𝑖=1

𝜃𝑖 (𝑐𝑖 − 𝑑𝑖)2] (37)

where 𝑛 is the number of sample points and 𝜃𝑖, 𝑐𝑖, and 𝑑𝑖 are
the ith component of 𝜃, 𝑐, and 𝑑, respectively.

The Kriging model needs a DoE to define its statistical
parameters and then predictions for𝐺(Θ) at unknown points
can be implemented. Given a DoE: [Θ(1),Θ(2), ⋅ ⋅ ⋅ ,Θ(𝑚)]𝑇
with Θ(𝑖) the ith training points and a vector of the perfor-
mance function 𝐺 = [𝐺(Θ(1)),𝐺(Θ(2)), ⋅ ⋅ ⋅ ,𝐺(Θ(𝑚))]𝑇 with

𝐺(Θ(𝑖)) the ith function value. In this study, ordinary Kriging
model [70] is utilized to simplify (35) which means that𝐹(Θ,𝛽) can be replaced by a constant 𝛽. Therefore, the pre-
dicted value 𝐺(Θ) and the predicted variance 𝑠2(Θ) are, re-
spectively, represented by

𝐺 (Θ) = 𝛽 + r𝑇 (Θ)R (𝐺 − 1𝛽) (38)

𝑠2 (Θ)
= 𝜎2 [[1 − 𝑟𝑇 (Θ)R𝑟 (Θ) +

(1 − 1𝑇R−1𝑟 (Θ))2
1𝑇R−11

]]
(39)

In (38)-(39),

𝛽 = (1𝑇R−11)−1 1𝑇R−1𝐺 (40)

𝜎2 = 1𝑚 (𝐺 − 𝛽1)𝑇 R−1 (𝐺 − 𝛽1) (41)

𝑟 (Θ) = [R (𝜃,Θ,Θ(1)) ,R (𝜃,Θ,Θ(2)) ,
⋅ ⋅ ⋅R (𝜃,Θ,Θ(𝑚))] (42)

In (38)-(39), R is an𝑚×𝑚matrix whose element is given
by

𝑅𝑖𝑗 = R (𝜃,Θ(𝑖),Θ(𝑗)) (43)

In (38)-(42), 1 denotes m-dimensional unit vector and
𝑟(Θ) is the correlation vector between Θ and ith training
point.

The parameter 𝜃 in (42)-(43) can be solved through the
unconstrained optimization problem, expressed as

𝜃
opt = arg min

𝜃

(|R|1/𝑚 𝜎2) (44)

Because only the Kriging model with the global optimum
parameter 𝜃opt can provide the most exact predictions for
the performance function 𝐺(Θ), the optimal parameter 𝜃opt
should be solved through global optimization strategy and
themodifiedDIRECT algorithm [71] is adopted in this paper.

The Kriging model provides a predicted value 𝐺(Θ) for
the performance function 𝐺(Θ) at an unknown point Θ.
Nevertheless, there exist some uncertainties in this prediction
process because a Gaussian random variate 𝐺(Θ) ∼ 𝑁(𝐺(Θ),𝑠2(Θ)). It should be noted that 𝐺(Θ) is only an approximate
value rather than an actual value of 𝐺(Θ). Therefore, there
exists a risk that the sign of 𝐺(Θ) is wrongly predicted. To
implement the prediction for the sign of 𝐺(Θ), the point
at which the sign of 𝐺(Θ) has the largest risk value to be
wrongly predicted needs to be identified. Then this point
should be added into DoE and the sign prediction of 𝐺(Θ)
is significantly improved. To identify the aforesaid point and
build an ALK model, a learning function named ERF is
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introduced to provide a precise sign prediction and it is ex-
pressed as

𝐸 [𝑅 (Θ)]
= −sign (𝐺 (Θ))𝐺 (Θ)Φ(−sign (𝐺 (Θ)) 𝐺 (Θ)𝑠 (Θ) )
+ 𝑠 (Θ) 𝜙(𝐺 (Θ)𝑠 (Θ) )

(45)

in which sign(⋅) is the sign function andΦ(⋅) and 𝜙(⋅) are the
cumulative distribution function (CDF) and the PDF of the
standard normal distribution, respectively. If a point is able
to maximize ERF, the sign of 𝐺(Θ) at this point will have the
largest risk being wrongly predicted. Subsequently, this point
is added into DoE. The procedure of combining MCS and
ALK-MGHARnamed ALK-MGHAR-MCSwill be presented
in Section 5.3.

5.3. Summary of ALK-MGHAR-MCS for Reliability Analysis

Step 1 (selection of recorded ground motions). Thirty real
earthquake records (M=6.0-7.0, R=15-20km) are chosen
whose response shapes are similar to the shape of the target
response spectrum, according to the selection of ground
motion inputs elaborated by Liu et al. [7].

Step 2 (analysis of the structure subjected to each of the
ground motions). Analyze a given structure under each of
the ground motions generated in Step 1 which is scaled
from low hazard levels to higher hazard levels until a struc-
tural collapse occurs. The maximum interstory drift can be
obtained using IDA and the maximum acceleration needs to
be calculated through NHA.The present writer [7] illustrated
the methodology of calculating the two EDPs.

Step 3 (estimate of the mean and the standard deviation
originated from (11)). The mean and the standard deviation
from the response samples obtained in Step 2 are required and
then the bivariate PDF can be evaluated. Subsequently, a great
deal of sampling points in the performance function (11) can
be generated through the bivariate PDF.

Step 4 (define the initial DoE). (a) The number of training
points included in the initial DOE is supposed to be small.
The number of 12 is selected in this study, according to the
existing investigations [47, 48].

(b) Latin hypercube sampling (LHS) is utilized to produce
the samples, which are uniformly distributed in the uncertain
space. For bivariate lognormal variables D and A, Nataf
transformation is used to transform the two variables into
the approximately equivalent normal variables. The lower
and upper bounds of equivalent normal variables are chosen
as 𝐹−1𝑖 (Φ(±5)) and then these variables are converted into
the standard u-space. Here, 𝐹−1𝑖 (⋅) is the inverse CDF of
equivalent normal variables. Two steps are required for the
IMP convex variables 𝜇Δ and 𝜇Z. Firstly, the IMP model
needs to be constructed. Then LHS is used to generate a large

amount of samples uniformly covering the space defined by
(28) which is mapped into the original space defined in (25).

(c) These chosen sampling points are used to estimate
the performance function 𝐺(Θ) and then an initial Kriging
model is constructed with the initial DoE.

Step 5 (generate a large amount of samples as candidate
points). (a) Denote the set of candidate points as ΩLHS. For
bivariate lognormal random variables, MCS is adopted to
generate samples. For IMP convex variables, LHS is employed
to obtain the uniformly distributed sampling points as Step 4.

(b) Denote the number of sampling points in ΩLHS as𝑁ΩLHS
. To cover the overall uncertain space, the number of

points 𝑁ΩLHS
(𝑁ΩLHS

= 105) is supposed to be sufficiently
large. Note that the performance function is not calculated in
this stage. All of the points are only considered as candidate
points. The newly increased training points in the next few
steps will be chosen among the points.

Step 6 (identify the newly added training points in the set of
the candidate points). The point maximizing ERF among the
candidates is selected as a new training point, which should
be added into the DoE. The point is expressed as (X(∗),𝜇(∗)).
Step 7 (stopping condition). When the maximum value of
ERF is small enough, the sign of the performance function𝐺(X,𝜇) in the uncertain space has little risk value to be
wrongly predicted.Then, go to Step 9.The stopping condition
adopted here is 𝐸[𝑅(X(∗),𝜇(∗))] ≤ 10−4.
Step 8 (obtain an updated DoE and construct a new Kriging
model). If the stopping condition in Step 7 is not satisfied,𝐺(X,𝜇) at the point (X(∗),𝜇(∗)) should be calculated. Add the
point (X(∗),𝜇(∗)) into the DoE and construct a new Kriging
model. Go back to Step 6.

Step 9. ImplementMGHARwithMCSpresented in Section 2
based on the Kriging model.

6. Case Study: A Six-Story RC Building

6.1. Design of the Case Study according to Chinese Codes. To
verify the efficiency and accuracy of the proposed method, a
sample six-story reinforced concrete (RC) frame building is
taken for case study in this paper. The example structure is
designed according to Chinese codes [72], which represents
the typical mid-rise RC buildings in China. The geographical
location of the modelled building is designated to be western
China. This is a Class II site, with eight times the intensity of
an earthquake and the designing ground acceleration is set
as 0.20. The seismic grade of the example building is level
2 [73]. The plane and elevation views of the designed frame
structure are shown in Figure 2. The total height of building
is 19.8 m. The lengths of longitudinal spans and transversal
spans are 36 m and 14.4 m, respectively. The columns and
beams’ cross sections are 600mm×600mmand 300mm×500
mm, respectively.The distributed steel in beams and columns
is designed by using Chinese codes [72], as shown in Figure 3.
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Figure 2:The plane and elevation views of the designed frame structure.
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6.2.Modeling of the Designed RC Building. By using the finite
element platform OpenSees [74], a three-dimensional model
of the given structure (Figure 4) can be developed in this

section. A rigid diaphragm MPC (multipoint constraints) is
employed tomodel the floor concrete slabs. Nonlinear beam-
column elements are used to model column and beam mem-
bers.The Kent-Scott-Park model with no tension stiffening is
adopted to model the concrete material. Column and beam
cross sections are discretized to fibers of confined concrete,
unconfined concrete, and steel reinforcement. The structure
is considered as deterministic and other parameters are not
regarded as uncertain in the present analysis. The parameters
for confined concrete (identified by the subscript “core”)
are listed as f c,core =34.5MPa, f u,core =24.1MPa, 𝜀0,core =0.005,𝜀u,core =0.020.The parameters for unconfined concrete (iden-
tified by the subscript “cover”) are described as follows:
f c,cover=27.6MPa, f u,cover=0MPa, 𝜀0,cover=0.002, 𝜀u,cover=0.006.
Abilinearmaterial called Steel01material is used tomodel the
reinforcing steel with parameters E=206GPa, 𝑓y=400MPa,
and b=0.01. The structural responses such as interstory drift
and acceleration can be, respectively, obtained through IDA
and NHA.The fundamental mode for the given RC structure
is set at 1.0018 sec by modal analysis.

6.3. Determination of Performance Limit Levels and the Uncer-
tainty Domain. In this study, structural performance limit
states are partitioned into four levels, i.e., normal operation
(NO), immediate occupancy (IO), life safety (LS), and col-
lapse prevention (CP). Limit states of the interstory drift and
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the acceleration are simultaneously considered in this study.
The threshold values of both EDPs under each performance
level are described as random variables, listed in Table 1. The
median of random variables under each performance level is
treated as the IMP variables. The marginal intervals of the
uncertain-but-bounded variables are shown in Table 2. The
correlation coefficients between the bounded variables
defined by (19) are 𝜌Δ𝑍 = 𝜌𝑍Δ = 0.33. The correlation matri-
ces under four performance levels can be expressed as 𝜌NO,
𝜌IO, 𝜌LS, and 𝜌CP. Then all of the correlation matrices can
be built:

𝜌NO = 𝜌IO = 𝜌LS = 𝜌CP = [ 1 0.330.33 1 ] (46)

According to (22), the uncertainty domain Ωp can be ex-
plicitly expressed as

Ωp

= {{{{{𝜇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨[
0.0029 −0.4670−0.0009 1.4788 ](𝜇Δ − 𝜇

𝐶
Δ𝜇𝑍 − 𝜇𝐶𝑍)(𝜇 − 𝜇C)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (111)

}}}}}

(47)

Then, the IMPmodel is transformed into the standard 𝛿-
space. Equation (14) will be a highly nonlinear performance
function in the random space if𝑁1 ≥ 2 and/or𝑁2 ≥ 2.
7. Discussion

7.1. Reliability Analysis with Performance Function (16)

7.1.1. Application of ALK-MGHAR to Performance Function
(16). Before performing ALK-MGHAR, the ground motion
hazard analysis defined by (4) needs to be investigated. Since
the site conditions defined in Section 6.1 are known, the two
unknown parameters 𝑘0 and 𝑘 in (4) are calculated through
the interpolation method. Here, 𝑘0 = 7.9203 × 10−5 and𝑘 = 2.3814. After the maximum seismic failure probability
is estimated by ALK-MGHAR, the failure probability for
different limit states in 50 years can be obtained by combining
the calculated seismic failure probability with groundmotion
hazard curve. AKriging model should be constructed to have
a right prediction for the sign of the performance function𝐺(Θ). Based on the procedure elaborated in Section 5.3, 12
training points are chosen to build an initial Kriging model
and then the iterative process begins. After 51 iterations,
the stopping condition is satisfied and 51 training points
are totally added into DoE. Moreover, the Kriging model
is updated for 51 times. Taking CP performance level as
an example, the DoE including initial and added training
points obtained by ALK-MGHAR is depicted in Figure 4. It
can be observed that a plenty of the added training points
focus on the vicinity of the limit state 𝐺(X,𝜇) = 0. This
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Figure 5: Sign of the minimum performance function with N2=1
predicted by ALK-MGHAR.

demonstrates that ALK-MGHAR is found capable of only
locally approximating the performance function in the region
of interest rather than in the overall uncertain space.

After the Kriging model is built, the optimization prob-
lem (30) can be replaced by the optimization (34).Thismeans
that there exists a risk that the sign of the actual performance
function is wrongly predicted. Then MCS can be carried out
based on the Kriging model. 105 sampling points are used and
the global optimization algorithm is utilized to search the
minimum value of the Kriging model at each simulated sam-
ple. The sign of the minimal function value at each sample
is predicted through ALK-MGHAR, as shown in Figure 5. It
can be seen that only one sign is wrongly predicted. This
indicates the accuracy of the proposed method.

7.1.2. Different Methods for Reliability Analysis. When the
performance function (16) is adopted in this subsection,
the maximum failure probability defined by (7) can be
calculated using different numerical methods, such as MCS,
MPM, SLI, and the proposedALK-MGHAR.Then the failure
probabilities under different performance levels in 50 years
can be obtained by substituting (9) into (5). Note that MPM
and SLI originated fromLuo et al. [35] are generally employed
to solve a double-loop optimization problem.Therefore, both
MPM and SLI based on FORM can be used to solve the
optimization problem (2).The failure probabilities in 50 years
obtained by different methods are shown in Table 3. It can
be observed that both MPM and SLI yield the satisfactory
results. This is because the performance function (16) is
linear at this moment. Therefore, the accuracy of MPM and
SLI has been less affected. Moreover, the computation cost
of ALK-MGHAR is much less than that of other different
methods. For example, MCS requires 2 × 100 × 105 function
computations whereas the advocated method only requires
63 calls to the performance function. However, it is also found
that the computational results obtained by the proposed
method are in good coincidencewith those obtained byMCS.
These findings illustrate the efficiency and accuracy of ALK-
MGHAR.
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Table 1: Threshold capacity values of interstory drift and peak floor acceleration.

Threshold capacities
of both the EDPs

NO level IO level LS level CP level
Mean SD1 Mean SD1 Mean SD1 Mean SD1

Interstory drift
threshold 𝜇

Δ1 0.002 𝜇
Δ2 0.005 𝜇

Δ3 0.015 𝜇
Δ4 0.025

Acceleration
threshold 𝜇𝑍1 0.4 𝜇𝑍2 0.6 𝜇𝑍3 0.8 𝜇𝑍4 1.2

1: standard deviation of the interstory drift threshold and acceleration originated from Sun et al. [53].

Table 2: The marginal intervals of IMP convex variables.

IMP convex variables

Marginal intervals of 𝜇
Δ

𝜇
Δ1 𝜇

Δ2 𝜇
Δ3 𝜇

Δ4[0.00181, 0.00202] [0.00481, 0.00502] [0.01481, 0.01502] [0.00241, 0.00252]
Marginal intervals of 𝜇𝑍 𝜇𝑍1 𝜇𝑍2 𝜇𝑍3 𝜇𝑍4[0.41, 0.52] [0.61, 0.72] [0.81, 1.12] [1.21, 1.52]
1: lower bound; 2: upper bound.
1 and 2 originated from FEMA 273 [54], FEMA 356 [55], and FEMA 445 [56].

Table 3: Results with𝑁2=1 by different methods.

Numerical methods Failure probabilities in 50 years for different limit states Function calls Relative error∗
NO level IO level LS level CP level

MCS 10.260% 1.653% 0.170% 0.0739% 2 × 100 × 105 -
ALK-MGHAR 10.246% 1.647% 0.169% 0.0738% 63 0.135%
MPM 9.951% 1.599% 0.165% 0.0716% 283 3.11%
SLI 9.922% 1.598% 0.164% 0.0713% 147 3.52%
∗: calculated relative error under CP level.

7.2. Reliability Analysis with Performance Function (15)

7.2.1. Case 1: 𝑁2 = 2. If the parameter N2 in (15) is greater
than or equal to 2, the performance function will be non-
linear. In this section, (15) with N2=2 is considered. Analo-
gous to the performance function (16), 105 sampling points
are generated and the minimal value of the Kriging model
at each of the simulated samples is repeatedly explored to
obtain the sign of the minimum function value. The sign of
the extreme values predicted by ALK-MGHAR is shown in
Figure 6. It can be observed that only 2 signs are wrongly
predicted.

Based on different methods, the results are listed in
Table 4. It is seen that both MPM and SLI obtain the precise
results. Qin et al. (2007) revealed that the nonlinearity of
the performance function could make FORM produce large
errors in reliability analysis. In general, both MPM and SLI
based on FORM may generate large errors for nonlinear
problems.However, the performance function (15) withN2=2
is not highly nonlinear and is monotonic with respect to the
IMP convex variables defined in Section 3.2. Moreover, SLI is
an effective method based on the assumption that the
performance function is monotonic with respect to convex
variables [35]. Therefore, the two methods and the proposed
method behave very well in accuracy except in efficiency.
ALK-MGHAR only requires 65 performance function com-
putations that are less than 1/4 of MPM. This testifies the
efficiency of the proposed method.
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Figure 6: Sign of the minimum performance function with N2=2
predicted by ALK-MGHAR.

7.2.2. Case 2: 𝑁2 ≥ 2. The parameter N2 in (15) represents
the nonlinearity of the performance function which reflects
the limit state 𝐺(X,𝜇) = 0. If N2 is greater than or equal to
3, (15) will become a nonlinear function. Based on different
methods, the results with different values of N2 are listed in
Table 5. It can be observed that both MPM and SLI provide
results with a large error for this problem. The reason is that
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Table 4: Results with N2=2 by different methods.

Numerical methods Failure probabilities in 50 years for different limit states Function calls Relative error∗
NO level IO level LS level CP level

MCS 6.339% 1.140% 0.120% 0.0596% 2 × 100 × 105 -
ALK-MGHAR 6.310% 1.136% 0.119% 0.0594% 65 0.34%
MPM 6.105% 1.099% 0.116% 0.0575% 301 3.55%
SLI 6.097% 1.097% 0.115% 0.0573% 159 3.83%
∗: calculated relative error under CP level.

Table 5: Results with different values of N2 by different methods.

N2 Numerical method Failure probabilities in 50 years under four levels Function calls Relative error∗
NO level IO level LS level CP level

N2=3

MCS 5.67% 1.03% 0.098% 0.0424% 2 × 100 × 105 -
ALK-MGHAR 5.652% 1.026% 0.0976% 0.0423% 68 0.338%

MPM 4.145% 0.763% 0.0749% 0.0329% 327 22.34%
SLI 4.347% 0.806% 0.0758% 0.0331% 161 22.03%

N2=6

MCS 3.27% 0.71% 0.080% 0.0290% 2 × 100 × 105 -
ALK-MGHAR 3.259% 0.708% 0.0797% 0.0288% 73 0.359%

MPM 2.613% 0.559% 0.0623% 0.0226% 328 22.17%
SLI 2.577% 0.546% 0.0624% 0.0223% 165 22.99%

∗: calculated relative error under CP level.

the nonlinearity of (15) makes MPM generate a large error as
stated in Section 7.2.1. Because the performance function (15)
for different limit states defined by Section 6.3 is monotonic
within a specified interval, the performance of SLI is similar
to that of MPM. From Table 5, it is also observed that ALK-
MGHAR only needs 68 calls to the performance function
(15) related to N2=3 and requires 73 function calls related to
N2=6. However, both MPM and SLI still need many calls to
the performance function. This demonstrates that no matter
in accuracy or efficiency, ALK-MGHAR exhibits much better
than other different methods.

7.3. Reliability Analysis with Performance Function (14).
When N1 is equal to 3 and N2 is equal to 4, (14) becomes a
more highly nonlinear function. After the Kriging model is
constructed, the optimization problem for the true function
(14) is replaced by the optimization for the Kriging model.
Then MCS can be performed based on the Kriging model.
Likewise, 105 samples are generated and the optimization is
implemented for each of the simulated samples. The sign of
the minimum function value at each sample predicted by
ALK-MGHAR is shown in Figure 7. It is observed that only
2 signs are wrongly predicted. That illustrates the accuracy
of the Kriging model and verifies the applicability of the
property provided in Section 5.1 to MGHAR.

Based on different methods, the results for this problem
are listed in Table 6. It can be seen that both MPM and SLI
obtain results with a large error. This is because the high
nonlinearity of the performance function (14) with N1=3
and N2=4 makes FORM produce large errors. Both MPM
and SLI proposed by Luo et al. [35] are based on FORM.
The performance of SLI is still similar to that of MPM.
From Table 6, it is also observed that ALK-MGHAR offers
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Figure 7: Sign of the minimum performance function with N1=3
and N2=4 predicted by ALK-MGHAR.

very precise results. This testifies that the nonlinearity of
the performance function cannot affect the accuracy of the
proposed method. Moreover, the computational cost of the
proposed method is much less than that of both MPM and
SLI. These findings demonstrate that ALK-MGHAR is sui-
table to deal with such complicated seismic engineering prob-
lems with strongly nonlinear performance functions.

8. Conclusions

This paper provides an ALK-MGHAR method. MGHAR
investigated here represents the reliability problem of a given
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Table 6: Results with N1=3 and N2=4 by different methods.

Numericalmethods Failure probabilities in 50 years for different limit states Functioncalls Relative error∗
NO level IO level LS level CP level

MCS 4.39% 0.95% 0.0892% 0.0355% 2 × 100 × 105 -
ALK-MGHAR 4.376% 0.946% 0.0880% 0.0354% 65 0.342%
MPM 2.858% 0.618% 0.0633% 0.0230% 321 34.89%
SLI 2.898% 0.627% 0.0636% 0.0234% 163 33.97%
∗: calculated relative error under CP level.

RC structure with both random and IMP variables. Limit
thresholds of different types of components are treated as
random variables. The median of random variables is repre-
sented by an improvedMP convexmodel, inwhich the uncer-
tain domain of correlated bounded (interval) variables can be
explicitly expressed by thematrix inequality.The correspond-
ing EDPs are considered as dependent random variables and
follow a multidimensional lognormal distribution. Through
matrix transformation, the limit state function is mapped
into the corresponding regularized one. The Kriging model
is used to approximate the performance function in the
region of interest rather than in the overall uncertain space.
ALK-MGHAR starts its iterative process with constructing
an initial Kriging model by defining an initial DoE with
a handful of training points. The point at which the sign
of the performance function has the maximum risk to be
wrongly predicted should be added into DoE. Sequentially,
the added point from candidate points is used to update the
Kriging model. After the ALK model is constructed, a large
amount of samples is generated and the optimization is
implemented at each sample. Then, the maximum seismic
failure probability for different limit states can be performed
by using MCS. Further, the failure probabilities for different
limit states in 50 years can be obtained through coupling
the seismic failure probability and the ground motion hazard
curve. To demonstrate the efficiency and accuracy of ALK-
MGHAR, a six-story RC building is used as a case study. The
interstory drift and the acceleration can be, respectively,
obtained through IDA and NHA.

From this numerical example, it is demonstrated that the
proposed method exhibits much better than other different
methods such as MPM and SLI no matter in accuracy or
in efficiency. Meanwhile, ALK-MGHAR is found capable of
providing very accurate results forMGHARand requires only
a few of calls to the performance function. The phenomenon
testifies that ALK-MGHARonly rightly predicting the sign of
the performance function can meet the accurate requirement
of MGHAR. It is also illustrated that ALK-MGHAR is able to
deal with complex seismic engineering problemswith strong-
ly nonlinear performance functions.
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[25] D. G. Lü, P. Y. Song, X. H. Yu, and G. Y. Wang, “Nonlinear
global seismic reliability analysis of structures basedonmoment
methods,” Journal of Building Structures, vol. S2, pp. 119–124,
2010.

[26] P. Y. Song, Structural global reliability methods and nonlinear
global seismic reliability analysis of RC frames, PHD thesis,
Harbin Institute of Technology, Harbin, China, 2012.
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