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In this article, some new existence criteria of at least one solution to boundary value problems for a fourth-order difference equation
are obtained by using the critical point theory. In a special case, a necessary and sufficient condition for the existence and uniqueness
of solution is also established. An example of the main result is given.

1. Introduction

Throughout this article, the sets of all natural numbers,
integers, and real numbers are defined as N, Z, and R,
respectively. The transpose of a vector x is defined as x*. For
a,b € Z with a < b, the discrete interval {a,a + 1,...,b} is
denoted as [a,b],.

Consider the existence of solutions to boundary value
problem (BVP) for a fourth-order difference equation:

A (p(t-2)A’x(t-2)) - A(q(t- 1) Ax(t- 1))

)
-r®x®)+ f@)=0, tell,T],,
satisfying the boundary value conditions
Ax(-1) =A% T-1), k=0,1,2,3, )

where T € Nand T > 1, A is the forward difference operator
denoted as Ax(t) = x(f+1) — x(t), Ax(t) = AA*x(2)) (k =
2,3,4), A’x(t) = x(t), p(t) € C([~1,T], R) with p(-1) =
p(T - 1), p(0) = p(T), q(t) € C([0,T],, R) with g(0) = gq(T),
r(t) € C([1,T],, R), f(t) € C([1,T],, R).

And (1), (2) can be regarded as a discrete analogue of

[p&x" 9] a6 % ©)] ~r)x(s)+f(s) =0,
s€1),
with boundary value conditions
20 =xP1), i=01,2,3. (4)

Equations similar in structure to (3) arise in the study of the
existence of solutions to differential equations [1-11].

Difference equations are widely found in mathematics
itself and in its applications to statistics, computing, electrical
circuit analysis, dynamical systems, economics, biology, and
so on. Many authors were interested in difference equations
and obtained some significant results [12-29].

Consider the fourth-order nonlinear difference equation

A (pOAx®)+ f(tx (1) =0, teZ (5)

Thandapani and Arockiasamy [24] in 2001 established some
new criteria for the oscillation and nonoscillation of solu-
tions.
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Xia [26] in 2017 considered the following second-order
nonlinear difference equation with Jacobi operators

Lx (t) — wx (1)

= ftxt+T),...,x(),...,x(t-T)),

(6)
teZ,

containing both many advances and retardations. By using
variational methods and critical point theory, some new cri-
teria are obtained for the existence of a nontrivial homoclinic
solution.

By Krasnoselskii’s fixed point theorems in cones, Cabada
and Dimitrov [13] obtained some existence, multiplicity, and
nonexistence results for the nonlinear singular and nonsin-
gular fourth-order equation depending on a real parameter

x(t+4)+Mx (@) =Ag(t) f (x(t) +c(t),

(7)
te{0,1,...,T—1}.

In [18], a higher order nonlinear difference equation

n
Zri (X + Xjeri) + [ (kX5 Xjo o5 Xjp)
i=0 (8)

=0, neN, ke Z,

is studied. By using critical point theory, sufficient conditions
for the existence of periodic solutions are established.

In [23], Raafat determined the forbidden set, introduced
an explicit formula for the solutions, and discussed the global
behavior of solutions of the difference equation

ax (t —3)
b—cx(t-1)x(t-3)

x(t+1)= t=0,1,2,..., (9

where a, b, ¢ are positive real numbers and the initial condi-
tions x(3), x(2), x(1), x(0) are real numbers.

By using the symmetric mountain pass theorem, Chen
and Tang [15] established some existence criteria to guarantee
the fourth-order difference equation of the form

Ax (t-2)+q(t)x (t)

=f(t,x({t+1),x(t),x(t-1)),

(10)
te”Z,

having infinitely many homoclinic orbits.

Using the direct method of the calculus of variations and
the mountain pass technique, Leszczyniski [20] obtained the
existence of at least one and at least two solutions of the
difference equation:

A (y(-1) bot) (A’x(t-2)))

(n
=flt,x(t+1),x(),x(t-1), te[l,T],,
with boundary value conditions
Ax (1) = Ax(0) = 0,
(12)

x(T+1)=x(T+2)=0.
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Our purpose in this article is to use the critical point
theory to explore some existence criteria of solutions to
the boundary value problem (1), (2) for a fourth-order
nonlinear difference equation. In a special case, a necessary
and sufficient condition for the existence and uniqueness
of solution is also established. Results obtained here are
motivated by the recent papers [18, 25].

Define

Tin = Min{r (1),7(2),...,r (1)},

(13)
Tmax = Max{r (1),7(2),...,r(T)}.

The rest of this article is organized as follows. In Section 2,
we shall introduce some basic notations, set up the variational
framework of BVP (1), (2), and give a lemma which will be
useful in the proofs of our theorems. Section 3 contains our
results of at least one solution. In Section 4, we shall finish
proving the main results. In Section 5, we shall provide an
example to illustrate our main theorem.

2. Preliminaries

Let X be a vector space:

X={x:[-1,T+2], — R | A% (-1)

(14)
=A% (T -1), k=0,1,2,3}.
For any x, y € X, denote
T
(ny)=Yx®)y®,
t=1
(15)
T 1/2
]| = (Zx2 <t>> :
t=1
Remark 1. Tt is obvious that
x(-1)=x(T-1),
x(0) = x(T),
x(1)=x(T+1), (16)

x(2)=x(T+2),

Vx e X.

In reality, X is isomorphic to R”. In the following and in the
sequel, when we write x = (x(1), x(2),...,x(T)) € R7, we
always mean that x can be extended to a vector in X so that
(16) is satisfied.
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For any x € X, define the functional I as For this reason, I'(x) = 0 when and only when
r A (p(t-2) A% (t-2)) - A(q(t— 1) Ax(t - 1))
1) = Y pt-2) (Ax (- 2))’ (19)
2 —rMx@®)+ f@) =0, tell,T],.

t=1

1< S ) Thereby a function x € X is a critical point of the
* 52‘1 (t) (Ax ()" ~ Ezr (t) (x (1)) 17) functional I on X when and only when x is a solution of the
t=1 t=1

BVP (1), (2).
T Let P and Q be the T' x T' matrices as follows.
+Y B x(). IfT =1,1et P = Q = (0).
t=1 IfT =2, let

P
It is easy to see that I € CY(X,R) and

~ <p(—1)+4p(0)+3p(1) —2p(0)—4p(1)—2p(2)>
—2p(0)—4p(1)-2p(2) p(0)+4p(1)+3p(2) )  (20)

aait) =A*(p(t-2)A’x (t-2))

~ 1) Q_<q<o>+q<1> —q<o>—q<1>>
—-A(qt-1DAx(t-1))-r(t)x(t) \—q0)-gq1) qO)+q1) /)
+f@), te[l,T];. IfT = 3, let

P +4p ) +p(1) p2)-2(p(O)+p) p(1)-2(p2)+p((3))
P=| p@)-2(p0)+p1) pO)+4p(M)+pQ2) pB)-2(p(M)+pQ2) |. (21)
p(-2(p2+p@B3) pB)-2(p(M+p@2) pL)+4p2)+p(3)

IfT = 4, let
P +4p ) +p(1) -2(p(0)+p(1)) p()+p(3) -2(p(3)+p©)
_ =2(p0)+p(1) pO+4pD)+p(2) =2(p(1)+p(2) pR)+p4) 22)
p()+p@A3) 2(pM+pR) pM+4pR)+pB3) -2(pQ2)+p?3))
-2(p(3)+p 1) pQ2)+p4) 2(p2)+pB) pR)+4pB)+p4)
IfT > 5, let
n() m() p1) 0 0 p(T-1) m(T)
m(l) n@2) m2) p2) - 0 0 p(T)
p(1) mQ) nB) m(@3) --- 0 0 0
0 p@2) m@B) n(4) - 0 0 0
pP= . (23)

0 0 - m(T=3) p(T-3) 0
0 0 0 0 - n(T-2) m(T-2) p(T-2)

0 0

0 0

p(T-1) 0 o m(T=2) n(T-1) m(T-1)
m(T)  p(T) S p(T-2) m(T-1) n(T)



where n(k) = p(k) + 4p(k — 1) + p(k — 2), m(k) = —2(p(k -
1)+ p(k)), k=1,2,...,T.

q0)+qg(1) —-q(1)
-q(1) q)+q(2)
0 )
Q- q(2)
0 0
-q(0) 0

Let M == P + Q. Therefore, we rewrite I(x) by
1, 1 Z , I
[(x) = 5" Mx - 5Zr(t) @+ fOxE). (25
t=1 t=1

Assume that X isareal Banach spaceandI € C "X, R)isa
continuously Fréchet differentiable functional defined on X.
As usual, I is said to satisfy the Palais-Smale condition if any
sequence {x;}po; C X for which {I(x;)};2, is bounded and
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If T > 3, let
-q2) - 0
q2)+4q03) - 0 (24)
0 e —q(T-1)
0 « q(T-1)+q(0)

I'(x;) — 0ask — 0o possesses a convergent subsequence.
Here, the sequence {x;};2, is called a Palais-Smale sequence.
Let Bp be the open ball in X about 0 of radius p, 8BP be

its boundary, and EP be its closure.

Lemma 2 (saddle point theorem [30]). Suppose that X is a
real Banach space, X = X, @ X,, where X, # {0} and is finite
dimensional. Suppose that I € C'(X,R) satisfies the Palais-
Smale condition and
(I,) there are constants &,1 > 0 such that IlE)meXl < e(1)
there is§ € B, N X, and a constant x > & such that Iy > x.
Then I admits a critical value ¢ > y, where

c=inf max I(g(x)),Q= {g eC (E] n XI,X) | g|aBﬂmX1 = id} (26)

geQ xeB,NX,

and id is defined as the identity operator.

3. Main Theorems

Our main theorems are as follows.

Theorem 3. Assume that the following assumptions are satis-
fied.

(p) Foranyt € [-1,T],, p(t) > 0.

(q) Foranyt € [0,T1],, q(t) > 0.

(ry) Foranyt € [1,T],, r(t) < 0.

(M) n(1)+m(1)+ p(1)+p(T-1)+m(T) = 0, n(2) +m(2)+
p2)+p(T)+m(1) = 0, n(k)+m(k)+p(k)+p(k—2)+m(k—1) =
0, k=3,4,...,T.

(f1) Foranyt € [1,T],,

T T T
_Zfz (t) Zr (t) < (Amin - rmax) Zf ), (27)
t=1 t=1 t=1

where A,,;, can be referred to (32).
Then the BVP (1), (2) has at least one solution.

If r(t) > 0, we obtain the theorem as follows.

Theorem 4. Assume that (p), (q), (M) and the following
assumptions are satisfied.

(ry) Foranyt € [1,T],, r(t) > 0.
(73) Tyain > Appar> Where A, can be referred to (33).
(f,) Foranyt € [1,T],,

T T T 2
¥ 7030 <t dd (E10) 09
t=1 t=1 t=1

Then the BVP (1), (2) has at least one solution.
If () = 0, consider the following equation:
A (p(t-2)A’x(t-2)) - A(q(t- 1) Ax(t- 1))

=f®,

29)
te(l,T],,

with boundary value condition (2).
By a similar argument to that in Section 2, we define the
functional I as

I(x) = %x*Mx—(f,x), (30)

where f = (f(1), f(2),..., f(T))". Hence, a function x € X
isa critical point of the functional I on X when and only when
x is a solution of the BVP (29), (2).
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It is obvious to find that the critical point of I is just the
solution of the following linear equation:

Mx = f. (31)

Let @ = (M, f). Making use of the linear algebraic
theory, we can obtain the following necessary and sufficient
conditions.

Theorem 5. The BVP (29), (2) has at least one solution when
and only when rank(M) = rank(Q)), where rank(M) defines
the rank of the matrix M.

Theorem 6. The BVP (29), (2) has a unique solution when and
only when rank(M) =T
4. Proofs of the Theorems

In this section, we shall finish proofs of the theorems by using
critical point theory.
By (M), it is evident that M is positive semidefinite.

A, = 0 is an eigenvalue of M and (1,1,...,1)" is an
eigenvector corresponding to 0. Let A,,A5,..., A be the
other eigenvalues of M.
Define
Amin = min{A,, A5, .., Az}, (32)
Amax = Max{Ay,As,..., Az} (33)

Let the space X, = {(x;,%,,...
R,j= 1,2,...,T}andX2l

,xp)t € X Xj=cc€
= X, such that

X=X, 0X, (34)

Proof of Theorem 3. Let {x;},eny € X be such that {I(x;)}en
is bounded and I'(x;) — 0as k — co. Thus, for any k € N,
there exists a positive constant K, such that

It comes from Hoélder inequality that

t=1 t=1

T T 1/2 T 1/2
Z|f(t)xk(t)|s<2f2(t)> <Z(xk(t))2> . (36)

By (25) and (36), we have

Kl > 1 (.xk)

1 * 1 El 2
=3 ()" Mx — Ezr (t) (%, (1))
t=1

T
+ ) f () x (8)
t=1

5
>——Zr(t) xi (1) Z|f(t)xk ®]
r T
z—%Z(w)
- 12 ;o 1/2
(Z (t)) (Z X () )
t=1 t=1
. T 1/2
- P (320 bl
t=1
(37)

That is,

. - 1/2
- (3P0) sk 69
t=1

From the assumption (), (38) implies that {x;}cy is
bounded in X. Since the dimension of X is finite, {x;}icn
has a convergent subsequence. As a result, I(x) satisfies the
Palais-Smale condition. Hence, it is sufficient to prove that
I(x) satisfies the conditions (I;) and (I,) of Lemma 2.

For any u = (c,c,...,¢)" € X,, we have

1z T
[w=-2)r®c+) fO)c (39)
t=1 t=1
Choose
Zthl f@®
=== " (40)
Yo r(®
VT Y, f(#)
= lull = —F5=——. (41)
TS e
Therefore,
T
I(u)= (Zt:;f ) (42)
2% ()
Let
T 2
(Zt:;f (t)) (43)
2 Zt:1 r(t)
Thus,
I(u)=¢, Vue€oB,NX,. (44)

The condition (I;) of Lemma 2 is proved.



Then, we prove the condition (I,) of Lemma 2. For any
v € X,, by Holder inequality, we have

1, 1z , T
I(v) = 3v' My - 5Zr(t) @+ fE v
t=1 t=1

Amin 2 "max < 2 <
> IR - S (v (@) - ) |f (v )]
t=1 t=1

~

1/2
> =2 ) - T 112 (Zf (t)) vl (45)

t=1

y T 1/2
min — max
= i |y - (Zﬁ (t)) vl

YL A
2(Agin — 1

b
min max )

as one finds by minimization with respect to ||v||. In other
words,

Yo £1(0)
2 2 o) "
Let
T 2
__IL S )

2 (/\min - 7’max) .
It follows from ( f;) that
Iv) = x>e (48)

All the assumptions of Lemma 2 are proved. According
to saddle point theorem, the proof of Theorem 3 is complete.
O

Proof of Theorem 4. Let {x;},eny € X be such that {I(x;)}ren
is bounded and I'(xk) —> 0ask — co. Thus, for any k € N,
there exists a positive constant K, such that

| (x)| < Ky (49)
By (25), (33) and Hoélder inequality, we have

—Ba < I(xk)

()" Mx; — EZr (t) (i (t))

t=1

rol —

T
+ > f (1) x; (8)
t=1
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A A L
< 2B g T2 e P )| (0 0)
t=1

A

max ~ "min "x "2

2

T 12 /1 1/2
+<Zf2(t)> (Z X (1)) )

A

T 1/2
et (520l
t=1

IN

(50)

That is,

ro —A 2 < "
et o (310) s o)
=1

By condition (r3), (51) implies that {x; };<y is @ bounded in
X. Since the dimension of X is finite, {x; };cy hasa convergent
subsequence. Consequently, I(x) satisfies the Palais-Smale
condition. Hence, it is sufficient to prove that I(x) satisfies
conditions (I;) and (I,) of Lemma 2.

For any u = (c,¢,...,c)" € X,, let
T 2
- —(ijf ) , (52)
2 Zt:1 r(t)
and similar to the proof of Theorem 1.1 we have
I(u)=¢ VYueoB, nX,. (53)

Condition (I;) of Lemma 2 is proved.
Then, we prove the condition (I,) of Lemma 2. For any
v € X,, by Holder inequality, we have

1, 1 T , T
1) = 2v"My= =3 r (@) (v(®) + } f O v (@)
t=1 t=1

< I? -

mmZ( (1)’ +Z|f(t)v(t>|

T 1/2
—“n I”? - “;" IIVI|2+<Zf2(t)> vl (54)
t=1

Aoy — Vi I 2
= S ) (Zﬁ (t)) v
t=1
YL Lo
2 (/\max - rmin) ’

as one finds by maximization with respect to ||v||. That is to
say,

T 2
PIEVAON : (55)

( max 7’min)

I(v)<
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Let
L
r= _2 (Amax - rmin) (56)
By (f,), we have
I(v)<y<e (57)

Therefore, —I satisfies the condition of saddle point theorem.
By Lemma 2, the proof of Theorem 4 is finished. O
5. Examples

In this section, we shall provide two examples to illustrate our
main theorem.

Example 1. Fort € [1,3],, assume that
A (t-2)Ax(t-2)) - A((t- 1) Ax(t - 1)

(58)
+2x(t)+0.1t =0,

satisfying the boundary value conditions

x(-1)=x(2),

Ax (-1) = Ax (2),

X 5 (59)
Ax(-1)=Ax(2),

Ax(-1)=A’x(2).
We have

pt)y=t>0,
q(t)=t>>0,
r(t) =t <0, (60)

f @) =0.1t,
te([l,3],,

with

p(=1)=2,
p(0) =3,
q(0) =9,
25 -7 -18
M=| -7 14 -7 |,
-18 -7 25

(61)

and the eigenvalues of M are A, = 0,1, = 21, and A; = 43.
Thus, A, = 21,7, = —1and

max

3 3
=Y £2(#) D () = - (0.01 +0.04 + 0.09) x (~36)

t=1 t=1
=5.04
> (62)
< (Amin - rmax) Zf (t)
t=1
=[21-(-1)] x (0.1 +0.2+0.3)

=13.2.

From the above argument, we see that all the suppositions of
Theorem 3 are satisfied; then the BVP (58), (59) has at least
one solution.

Example 2. Fort € [1,4],, assume that

A ((t-2)Ax(t-2)) - A((t-1)° Ax(t- 1))

(63)
+2tx (t) + 0.2t = 0,
satisfying the boundary value conditions
x(-1)=x(3),
Ax (-1) = Ax(3),
(64)
Ax (-1) = A*x (3),
Nx(-1) = A’x(3).
We have
pt)=t>0,
qt) =1t >0,
r(t) = -2t <0, (65)
f () =0.2t,
te([l,4],,
with
P (_1) =3,
p(0) =4,
q(0) = 256,
277 -11 4 =270 (66)

-11 19 -14 6
M= ,
4 -14 84 -74

-270 6 -74 338



and the eigenvalues of M are A, = 0,1, = 23.9633,1; =
107.7880 and A, ~ 586.2487. Thus, A, ~ 23.9633,7,, =
—2and

4 4
=Y F2(6) D () =~ (0.04+0.16 + 0.36 + 0.64)
=1 =1

x (—20) = 24

4
< (Amin - rmax) Zf (t) (67)
t=1

~ [23.9633 — (-2)]
X (0.2+ 0.4+ 0.6 +0.8)

= 51.9266.

From the above argument, we see that all the suppositions of
Theorem 3 are satisfied; then the BVP (63), (64) has at least
one solution.

6. Conclusions

Difference equations, the discrete analogue of differential
equations, occur widely in numerous settings and forms,
both in mathematics itself and in its applications in theory
and practice. The boundary value problem discussed in this
paper has important analogue in the continuous case of
the fourth-order differential equation. Such problem is of
special significance for the study of beam equations which
are used to describe the bending of an elastic beam. The
problem discussed in this paper can be extended to 2nth-
order difference boundary value problem.
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