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In this article, some new existence criteria of at least one solution to boundary value problems for a fourth-order difference equation
are obtained by using the critical point theory. In a special case, a necessary and sufficient condition for the existence anduniqueness
of solution is also established. An example of the main result is given.

1. Introduction

Throughout this article, the sets of all natural numbers,
integers, and real numbers are defined as N, Z, and R,
respectively. The transpose of a vector 𝑥 is defined as 𝑥∗. For𝑎, 𝑏 ∈ Z with 𝑎 < 𝑏, the discrete interval {𝑎, 𝑎 + 1, . . . , 𝑏} is
denoted as [𝑎, 𝑏]Z.

Consider the existence of solutions to boundary value
problem (BVP) for a fourth-order difference equation:Δ2 (𝑝 (𝑡 − 2) Δ2𝑥 (𝑡 − 2)) − Δ (𝑞 (𝑡 − 1) Δ𝑥 (𝑡 − 1))− 𝑟 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) = 0, 𝑡 ∈ [1, 𝑇]Z , (1)

satisfying the boundary value conditionsΔ𝑘𝑥 (−1) = Δ𝑘𝑥 (𝑇 − 1) , 𝑘 = 0, 1, 2, 3, (2)

where 𝑇 ∈ N and 𝑇 ≥ 1, Δ is the forward difference operator
denoted as Δ𝑥(𝑡) = 𝑥(𝑡+1)−𝑥(𝑡),Δ𝑘𝑥(𝑡) = Δ(Δ𝑘−1𝑥(𝑡)) (𝑘 =2, 3, 4), Δ0𝑥(𝑡) = 𝑥(𝑡), 𝑝(𝑡) ∈ 𝐶([−1, 𝑇]Z,R) with 𝑝(−1) =𝑝(𝑇 − 1), 𝑝(0) = 𝑝(𝑇), 𝑞(𝑡) ∈ 𝐶([0, 𝑇]Z,R) with 𝑞(0) = 𝑞(𝑇),𝑟(𝑡) ∈ 𝐶([1, 𝑇]Z,R), 𝑓(𝑡) ∈ 𝐶([1, 𝑇]Z,R).

And (1), (2) can be regarded as a discrete analogue of[𝑝 (𝑠) 𝑥 (𝑠)] − [𝑞 (𝑠) 𝑥 (𝑠)] − 𝑟 (𝑠) 𝑥 (𝑠) + 𝑓 (𝑠) = 0,𝑠 ∈ (0, 1) , (3)

with boundary value conditions𝑥(𝑖) (0) = 𝑥(𝑖) (1) , 𝑖 = 0, 1, 2, 3. (4)

Equations similar in structure to (3) arise in the study of the
existence of solutions to differential equations [1–11].

Difference equations are widely found in mathematics
itself and in its applications to statistics, computing, electrical
circuit analysis, dynamical systems, economics, biology, and
so on. Many authors were interested in difference equations
and obtained some significant results [12–29].

Consider the fourth-order nonlinear difference equationΔ2 (𝑝 (𝑡) Δ2𝑥 (𝑡)) + 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ Z. (5)

Thandapani and Arockiasamy [24] in 2001 established some
new criteria for the oscillation and nonoscillation of solu-
tions.
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Xia [26] in 2017 considered the following second-order
nonlinear difference equation with Jacobi operators𝐿𝑥 (𝑡) − 𝜔𝑥 (𝑡)= 𝑓 (𝑡, 𝑥 (𝑡 + Γ) , . . . , 𝑥 (𝑡) , . . . , 𝑥 (𝑡 − Γ)) , 𝑡 ∈ Z, (6)

containing both many advances and retardations. By using
variational methods and critical point theory, some new cri-
teria are obtained for the existence of a nontrivial homoclinic
solution.

By Krasnoselskii’s fixed point theorems in cones, Cabada
and Dimitrov [13] obtained some existence, multiplicity, and
nonexistence results for the nonlinear singular and nonsin-
gular fourth-order equation depending on a real parameter𝑥 (𝑡 + 4) +𝑀𝑥 (𝑡) = 𝜆𝑔 (𝑡) 𝑓 (𝑥 (𝑡)) + 𝑐 (𝑡) ,𝑡 ∈ {0, 1, . . . , 𝑇 − 1} . (7)

In [18], a higher order nonlinear difference equation

𝑛∑
𝑖=0

𝑟𝑖 (𝑋𝑘−𝑖 + 𝑋𝑘+𝑖) + 𝑓 (𝑘, 𝑋𝑘+Γ, . . . , 𝑋𝑘, . . . , 𝑋𝑘−Γ)= 0, 𝑛 ∈ N, 𝑘 ∈ Z, (8)

is studied. By using critical point theory, sufficient conditions
for the existence of periodic solutions are established.

In [23], Raafat determined the forbidden set, introduced
an explicit formula for the solutions, and discussed the global
behavior of solutions of the difference equation𝑥 (𝑡 + 1) = 𝑎𝑥 (𝑡 − 3)𝑏 − 𝑐𝑥 (𝑡 − 1) 𝑥 (𝑡 − 3) , 𝑡 = 0, 1, 2, . . . , (9)

where 𝑎, 𝑏, 𝑐 are positive real numbers and the initial condi-
tions 𝑥(3), 𝑥(2), 𝑥(1), 𝑥(0) are real numbers.

By using the symmetric mountain pass theorem, Chen
and Tang [15] established some existence criteria to guarantee
the fourth-order difference equation of the formΔ4𝑥 (𝑡 − 2) + 𝑞 (𝑡) 𝑥 (𝑡)= 𝑓 (𝑡, 𝑥 (𝑡 + 1) , 𝑥 (𝑡) , 𝑥 (𝑡 − 1)) , 𝑡 ∈ Z, (10)

having infinitely many homoclinic orbits.
Using the direct method of the calculus of variations and

the mountain pass technique, Leszczyński [20] obtained the
existence of at least one and at least two solutions of the
difference equation:Δ2 (𝛾 (𝑡 − 1) 𝜙𝑝(𝑡) (Δ2𝑥 (𝑡 − 2)))= 𝑓 (𝑡, 𝑥 (𝑡 + 1) , 𝑥 (𝑡) , 𝑥 (𝑡 − 1)) , 𝑡 ∈ [1, 𝑇]Z , (11)

with boundary value conditionsΔx (−1) = Δ𝑥 (0) = 0,𝑥 (𝑇 + 1) = 𝑥 (𝑇 + 2) = 0. (12)

Our purpose in this article is to use the critical point
theory to explore some existence criteria of solutions to
the boundary value problem (1), (2) for a fourth-order
nonlinear difference equation. In a special case, a necessary
and sufficient condition for the existence and uniqueness
of solution is also established. Results obtained here are
motivated by the recent papers [18, 25].

Define 𝑟min = min {𝑟 (1) , 𝑟 (2) , . . . , 𝑟 (𝑇)} ,𝑟max = max {𝑟 (1) , 𝑟 (2) , . . . , 𝑟 (𝑇)} . (13)

The rest of this article is organized as follows. In Section 2,
we shall introduce some basic notations, set up the variational
framework of BVP (1), (2), and give a lemma which will be
useful in the proofs of our theorems. Section 3 contains our
results of at least one solution. In Section 4, we shall finish
proving the main results. In Section 5, we shall provide an
example to illustrate our main theorem.

2. Preliminaries

Let𝑋 be a vector space:

𝑋 fl {𝑥 : [−1, 𝑇 + 2]Z → R | Δ𝑘𝑥 (−1)= Δ𝑘𝑥 (𝑇 − 1) , 𝑘 = 0, 1, 2, 3} . (14)

For any 𝑥, 𝑦 ∈ 𝑋, denote
(𝑥, 𝑦) fl 𝑇∑

𝑡=1

𝑥 (𝑡) 𝑦 (𝑡) ,
‖𝑥‖ fl ( 𝑇∑

𝑡=1

𝑥2 (𝑡))1/2 . (15)

Remark 1. It is obvious that𝑥 (−1) = 𝑥 (𝑇 − 1) ,𝑥 (0) = 𝑥 (𝑇) ,𝑥 (1) = 𝑥 (𝑇 + 1) ,𝑥 (2) = 𝑥 (𝑇 + 2) ,∀𝑥 ∈ 𝑋.
(16)

In reality, 𝑋 is isomorphic to R𝑇. In the following and in the
sequel, when we write 𝑥 = (𝑥(1), 𝑥(2), . . . , 𝑥(𝑇)) ∈ R𝑇, we
always mean that 𝑥 can be extended to a vector in 𝑋 so that
(16) is satisfied.
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For any 𝑥 ∈ 𝑋, define the functional 𝐼 as
𝐼 (𝑥) fl 12 𝑇∑𝑡=1𝑝 (𝑡 − 2) (Δ2𝑥 (𝑡 − 2))2+ 12 𝑇∑𝑡=1𝑞 (𝑡) (Δ𝑥 (𝑡))2 − 12 𝑇∑𝑡=1𝑟 (𝑡) (𝑥 (𝑡))2+ 𝑇∑

𝑡=1

𝑓 (𝑡) 𝑥 (𝑡) .
(17)

It is easy to see that 𝐼 ∈ 𝐶1(𝑋,R) and𝜕𝐼𝜕𝑥 (𝑡) = Δ2 (𝑝 (𝑡 − 2) Δ2𝑥 (𝑡 − 2))− Δ (𝑞 (𝑡 − 1) Δ𝑥 (𝑡 − 1)) − 𝑟 (𝑡) 𝑥 (𝑡)+ 𝑓 (𝑡) , 𝑡 ∈ [1, 𝑇]Z . (18)

For this reason, 𝐼(𝑥) = 0 when and only whenΔ2 (𝑝 (𝑡 − 2) Δ2𝑥 (𝑡 − 2)) − Δ (𝑞 (𝑡 − 1) Δ𝑥 (𝑡 − 1))− 𝑟 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡) = 0, 𝑡 ∈ [1, 𝑇]Z . (19)

Thereby a function 𝑥 ∈ 𝑋 is a critical point of the
functional 𝐼 on 𝑋 when and only when 𝑥 is a solution of the
BVP (1), (2).

Let 𝑃 and 𝑄 be the 𝑇 × 𝑇matrices as follows.
If 𝑇 = 1, let 𝑃 = 𝑄 = (0).
If 𝑇 = 2, let𝑃= ( 𝑝 (−1) + 4𝑝 (0) + 3𝑝 (1) −2𝑝 (0) − 4𝑝 (1) − 2𝑝 (2)−2𝑝 (0) − 4𝑝 (1) − 2𝑝 (2) 𝑝 (0) + 4𝑝 (1) + 3𝑝 (2) ) ,𝑄 = ( 𝑞 (0) + 𝑞 (1) −𝑞 (0) − 𝑞 (1)−𝑞 (0) − 𝑞 (1) 𝑞 (0) + 𝑞 (1) ) .

(20)

If 𝑇 = 3, let
𝑃 = (𝑝 (−1) + 4𝑝 (0) + 𝑝 (1) 𝑝 (2) − 2 (𝑝 (0) + 𝑝 (1)) 𝑝 (1) − 2 (𝑝 (2) + 𝑝 (3))𝑝 (2) − 2 (𝑝 (0) + 𝑝 (1)) 𝑝 (0) + 4𝑝 (1) + 𝑝 (2) 𝑝 (3) − 2 (𝑝 (1) + 𝑝 (2))𝑝 (1) − 2 (𝑝 (2) + 𝑝 (3)) 𝑝 (3) − 2 (𝑝 (1) + 𝑝 (2)) 𝑝 (1) + 4𝑝 (2) + 𝑝 (3) ) . (21)

If 𝑇 = 4, let
𝑃 =(𝑝(−1) + 4𝑝 (0) + 𝑝 (1) −2 (𝑝 (0) + 𝑝 (1)) 𝑝 (1) + 𝑝 (3) −2 (𝑝 (3) + 𝑝 (4))−2 (𝑝 (0) + 𝑝 (1)) 𝑝 (0) + 4𝑝 (1) + 𝑝 (2) −2 (𝑝 (1) + 𝑝 (2)) 𝑝 (2) + 𝑝 (4)𝑝 (1) + 𝑝 (3) −2 (𝑝 (1) + p (2)) 𝑝 (1) + 4𝑝 (2) + 𝑝 (3) −2 (𝑝 (2) + 𝑝 (3))−2 (𝑝 (3) + 𝑝 (4)) 𝑝 (2) + 𝑝 (4) −2 (𝑝 (2) + 𝑝 (3)) 𝑝 (2) + 4𝑝 (3) + 𝑝 (4)). (22)

If 𝑇 ≥ 5, let

𝑃 =
(((((((((((((
(

𝑛(1) 𝑚 (1) 𝑝 (1) 0 ⋅ ⋅ ⋅ 0 𝑝 (𝑇 − 1) 𝑚 (𝑇)𝑚 (1) 𝑛 (2) 𝑚 (2) 𝑝 (2) ⋅ ⋅ ⋅ 0 0 𝑝 (𝑇)𝑝 (1) 𝑚 (2) 𝑛 (3) 𝑚 (3) ⋅ ⋅ ⋅ 0 0 00 𝑝 (2) 𝑚 (3) 𝑛 (4) ⋅ ⋅ ⋅ 0 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 0 0 ⋅ ⋅ ⋅ 𝑚 (T − 3) 𝑝 (𝑇 − 3) 00 0 0 0 ⋅ ⋅ ⋅ 𝑛 (𝑇 − 2) 𝑚 (𝑇 − 2) 𝑝 (𝑇 − 2)𝑝 (𝑇 − 1) 0 0 0 ⋅ ⋅ ⋅ 𝑚 (𝑇 − 2) 𝑛 (𝑇 − 1) 𝑚 (𝑇 − 1)𝑚 (𝑇) 𝑝 (𝑇) 0 0 ⋅ ⋅ ⋅ 𝑝 (𝑇 − 2) 𝑚 (𝑇 − 1) 𝑛 (𝑇)

)))))))))))))
)

, (23)
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where 𝑛(𝑘) = 𝑝(𝑘) + 4𝑝(𝑘 − 1) + 𝑝(𝑘 − 2), 𝑚(𝑘) = −2(𝑝(𝑘 −1) + 𝑝(𝑘)), 𝑘 = 1, 2, . . . , 𝑇. If 𝑇 ≥ 3, let

𝑄 =(((((
(

𝑞(0) + 𝑞 (1) −𝑞 (1) 0 ⋅ ⋅ ⋅ −𝑞 (0)−𝑞 (1) 𝑞 (1) + 𝑞 (2) −𝑞 (2) ⋅ ⋅ ⋅ 00 −𝑞 (2) 𝑞 (2) + 𝑞 (3) ⋅ ⋅ ⋅ 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 0 ⋅ ⋅ ⋅ −𝑞 (𝑇 − 1)−𝑞 (0) 0 0 ⋅ ⋅ ⋅ 𝑞 (𝑇 − 1) + 𝑞 (0)
)))))
)

. (24)

Let𝑀 fl 𝑃 + 𝑄. Therefore, we rewrite 𝐼(𝑥) by
𝐼 (𝑥) = 12𝑥∗𝑀𝑥 − 12 𝑇∑𝑡=1𝑟 (𝑡) (𝑥 (𝑡))2 + 𝑇∑𝑡=1𝑓 (𝑡) 𝑥 (𝑡) . (25)

Assume that𝑋 is a real Banach space and 𝐼 ∈ 𝐶1(𝑋,R) is a
continuously Fréchet differentiable functional defined on 𝑋.
As usual, 𝐼 is said to satisfy the Palais-Smale condition if any
sequence {𝑥𝑘}∞𝑘=1 ⊂ 𝑋 for which {𝐼(𝑥𝑘)}∞𝑘=1 is bounded and

𝐼(𝑥𝑘) → 0 as 𝑘 → ∞ possesses a convergent subsequence.
Here, the sequence {𝑥𝑘}∞𝑘=1 is called a Palais-Smale sequence.

Let 𝐵𝜌 be the open ball in 𝑋 about 0 of radius 𝜌, 𝜕𝐵𝜌 be
its boundary, and 𝐵𝜌 be its closure.
Lemma 2 (saddle point theorem [30]). Suppose that 𝑋 is a
real Banach space, 𝑋 = 𝑋1 ⊕ 𝑋2, where 𝑋1 ̸= {0} and is finite
dimensional. Suppose that 𝐼 ∈ 𝐶1(𝑋,R) satisfies the Palais-
Smale condition and(𝐼1) there are constants 𝜀, 𝜂 > 0 such that 𝐼|𝜕𝐵𝜂∩𝑋1 ≤ 𝜀(𝐼2)
there is 𝜉 ∈ 𝐵𝜂 ∩ 𝑋1 and a constant 𝜒 > 𝜀 such that 𝐼𝜉+𝑋2 ≥ 𝜒.

Then 𝐼 admits a critical value 𝑐 ≥ 𝜒, where
𝑐 = inf
𝑔∈Ω

max
𝑥∈𝐵𝜂∩𝑋1

𝐼 (𝑔 (𝑥)) , Ω = {𝑔 ∈ 𝐶 (𝐵𝜂 ∩ 𝑋1, 𝑋) | 𝑔𝜕𝐵𝜂∩𝑋1 = 𝑖𝑑} (26)

and 𝑖𝑑 is defined as the identity operator.
3. Main Theorems

Our main theorems are as follows.

Theorem 3. Assume that the following assumptions are satis-
fied.(𝑝) For any 𝑡 ∈ [−1, 𝑇]Z, 𝑝(𝑡) > 0.(𝑞) For any 𝑡 ∈ [0, 𝑇]Z, 𝑞(𝑡) > 0.(𝑟1) For any 𝑡 ∈ [1, 𝑇]Z, 𝑟(𝑡) < 0.(𝑀) 𝑛(1)+𝑚(1)+𝑝(1)+𝑝(𝑇−1)+𝑚(𝑇) = 0, 𝑛(2)+𝑚(2)+𝑝(2)+𝑝(𝑇)+𝑚(1) = 0, 𝑛(𝑘)+𝑚(𝑘)+𝑝(𝑘)+𝑝(𝑘−2)+𝑚(𝑘−1) =0, 𝑘 = 3, 4, . . . , 𝑇.(𝑓1) For any 𝑡 ∈ [1, 𝑇]Z,− 𝑇∑

𝑡=1

𝑓2 (𝑡) 𝑇∑
𝑡=1

𝑟 (𝑡) < (𝜆𝑚𝑖𝑛 − 𝑟𝑚𝑎𝑥) 𝑇∑
𝑡=1

𝑓 (𝑡) , (27)

where 𝜆𝑚𝑖𝑛 can be referred to (32).
Then the BVP (1), (2) has at least one solution.

If 𝑟(𝑡) > 0, we obtain the theorem as follows.

Theorem 4. Assume that (𝑝), (𝑞), (𝑀) and the following
assumptions are satisfied.

(𝑟2) For any 𝑡 ∈ [1, 𝑇]Z, 𝑟(𝑡) > 0.(𝑟3) 𝑟𝑚𝑖𝑛 > 𝜆𝑚𝑎𝑥, where 𝜆𝑚𝑎𝑥 can be referred to (33).(𝑓2) For any 𝑡 ∈ [1, 𝑇]Z,
𝑇∑
𝑡=1

𝑓2 (𝑡) 𝑇∑
𝑡=1

𝑟 (𝑡) < (𝑟𝑚𝑖𝑛 − 𝜆𝑚𝑎𝑥) ( 𝑇∑
𝑡=1

𝑓 (𝑡))2 . (28)

Then the BVP (1), (2) has at least one solution.

If 𝑟(𝑡) = 0, consider the following equation:Δ2 (𝑝 (𝑡 − 2) Δ2𝑥 (𝑡 − 2)) − Δ (𝑞 (𝑡 − 1) Δ𝑥 (𝑡 − 1))= 𝑓 (𝑡) , 𝑡 ∈ [1, 𝑇]Z , (29)

with boundary value condition (2).
By a similar argument to that in Section 2, we define the

functional 𝐼 as 𝐼 (𝑥) = 12𝑥∗𝑀𝑥 − (𝑓, 𝑥) , (30)

where 𝑓 = (𝑓(1), 𝑓(2), . . . , 𝑓(𝑇))∗. Hence, a function 𝑥 ∈ 𝑋
is a critical point of the functional 𝐼 on𝑋when and onlywhen𝑥 is a solution of the BVP (29), (2).
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It is obvious to find that the critical point of 𝐼 is just the
solution of the following linear equation:𝑀𝑥 = 𝑓. (31)

Let Ω = (𝑀,𝑓). Making use of the linear algebraic
theory, we can obtain the following necessary and sufficient
conditions.

Theorem 5. The BVP (29), (2) has at least one solution when
and only when 𝑟𝑎𝑛𝑘(𝑀) = 𝑟𝑎𝑛𝑘(Ω), where 𝑟𝑎𝑛𝑘(𝑀) defines
the rank of the matrix𝑀.

Theorem6. TheBVP (29), (2) has a unique solutionwhen and
only when 𝑟𝑎𝑛𝑘(𝑀) = 𝑇.
4. Proofs of the Theorems

In this section, we shall finish proofs of the theorems by using
critical point theory.

By (𝑀), it is evident that 𝑀 is positive semidefinite.𝜆1 = 0 is an eigenvalue of 𝑀 and (1, 1, . . . , 1)∗ is an
eigenvector corresponding to 0. Let 𝜆2, 𝜆3, . . . , 𝜆𝑇 be the
other eigenvalues of𝑀.

Define 𝜆min = min {𝜆2, 𝜆3, . . . , 𝜆𝑇} , (32)𝜆max = max {𝜆2, 𝜆3, . . . , 𝜆𝑇} . (33)

Let the space 𝑋2 = {(𝑥1, 𝑥2, . . . , 𝑥𝑇)∗ ∈ 𝑋 : 𝑥𝑗 ≡ 𝑐, 𝑐 ∈
R, 𝑗 = 1, 2, . . . , 𝑇} and 𝑋⊥2 = 𝑋1 such that𝑋 = 𝑋1 ⊕ 𝑋2. (34)

Proof of Theorem 3. Let {𝑥𝑘}𝑘∈N ⊂ 𝑋 be such that {𝐼(𝑥𝑘)}𝑘∈N
is bounded and 𝐼(𝑥𝑘) → 0 as 𝑘 → ∞.Thus, for any 𝑘 ∈ N,
there exists a positive constant 𝐾1 such that𝐼 (𝑥𝑘) ≤ 𝐾1. (35)

It comes from Hölder inequality that

𝑇∑
𝑡=1

𝑓 (𝑡) 𝑥𝑘 (𝑡) ≤ ( 𝑇∑
𝑡=1

𝑓2 (𝑡))1/2( 𝑇∑
𝑡=1

(𝑥𝑘 (𝑡))2)1/2 . (36)

By (25) and (36), we have𝐾1 ≥ 𝐼 (𝑥𝑘)= 12 (𝑥𝑘)∗𝑀𝑥𝑘 − 12 𝑇∑𝑡=1𝑟 (𝑡) (𝑥𝑘 (𝑡))2+ 𝑇∑
𝑡=1

𝑓 (𝑡) 𝑥𝑘 (𝑡)

≥ −12 𝑇∑𝑡=1𝑟 (𝑡) (𝑥𝑘 (𝑡))2 − 𝑇∑𝑡=1 𝑓 (𝑡) 𝑥𝑘 (𝑡)≥ −𝑟max2 𝑇∑𝑡=1 (𝑥𝑘 (𝑡))2− ( 𝑇∑
𝑡=1

𝑓2 (𝑡))1/2 ( 𝑇∑
𝑡=1

(𝑥𝑘 (𝑡))2)1/2
= −𝑟max2 𝑥𝑘2 − ( 𝑇∑

𝑡=1

𝑓2 (𝑡))1/2 𝑥𝑘 .
(37)

That is,

−𝑟max2 𝑥𝑘2 − ( 𝑇∑
𝑡=1

𝑓2 (𝑡))1/2 𝑥𝑘 ≤ 𝐾1. (38)

From the assumption (𝑟1), (38) implies that {𝑥𝑘}𝑘∈N is
bounded in 𝑋. Since the dimension of 𝑋 is finite, {𝑥𝑘}𝑘∈N
has a convergent subsequence. As a result, 𝐼(𝑥) satisfies the
Palais-Smale condition. Hence, it is sufficient to prove that𝐼(𝑥) satisfies the conditions (𝐼1) and (𝐼2) of Lemma 2.

For any 𝑢 = (𝑐, 𝑐, . . . , 𝑐)∗ ∈ 𝑋2, we have
𝐼 (𝑢) = −12 𝑇∑𝑡=1𝑟 (𝑡) 𝑐2 + 𝑇∑𝑡=1𝑓 (𝑡) 𝑐. (39)

Choose

𝑐 = ∑𝑇𝑡=1 𝑓 (𝑡)∑𝑇𝑡=1 𝑟 (𝑡) , (40)

𝜂 = ‖𝑢‖ = √𝑇∑𝑇𝑡=1 𝑓 (𝑡)∑𝑇𝑡=1 𝑟 (𝑡) . (41)

Therefore,

𝐼 (𝑢) = (∑𝑇𝑡=1 𝑓 (𝑡))22∑𝑇𝑡=1 𝑟 (𝑡) . (42)

Let

𝜀 = (∑𝑇𝑡=1 𝑓 (𝑡))22∑𝑇𝑡=1 𝑟 (𝑡) . (43)

Thus, 𝐼 (𝑢) = 𝜀, ∀𝑢 ∈ 𝜕𝐵𝜂 ∩ 𝑋1. (44)

The condition (𝐼1) of Lemma 2 is proved.
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Then, we prove the condition (𝐼2) of Lemma 2. For any
V ∈ 𝑋1, by Hölder inequality, we have

𝐼 (V) = 12V∗𝑀V − 12 𝑇∑𝑡=1𝑟 (𝑡) (V (𝑡))2 + 𝑇∑𝑡=1𝑓 (𝑡) V (𝑡)≥ 𝜆min2 ‖V‖2 − 𝑟max2 𝑇∑𝑡=1 (V (𝑡))2 − 𝑇∑𝑡=1 𝑓 (𝑡) V (𝑡)≥ 𝜆min2 ‖V‖2 − 𝑟max2 ‖V‖2 − ( 𝑇∑
𝑡=1

𝑓2 (𝑡))1/2 ‖V‖
= 𝜆min − 𝑟max2 ‖V‖2 − ( 𝑇∑

𝑡=1

𝑓2 (𝑡))1/2 ‖V‖
≥ − ∑𝑇𝑡=1 𝑓2 (𝑡)2 (𝜆min − 𝑟max) ,

(45)

as one finds by minimization with respect to ‖V‖. In other
words,

𝐼 (V) ≥ − ∑𝑇𝑡=1 𝑓2 (𝑡)2 (𝜆min − 𝑟max) . (46)

Let

𝜒 = − ∑𝑇𝑡=1 𝑓2 (𝑡)2 (𝜆min − 𝑟max) . (47)

It follows from (𝑓1) that𝐼 (V) ≥ 𝜒 > 𝜀. (48)

All the assumptions of Lemma 2 are proved. According
to saddle point theorem, the proof of Theorem 3 is complete.

Proof of Theorem 4. Let {𝑥𝑘}𝑘∈N ⊂ 𝑋 be such that {𝐼(𝑥𝑘)}𝑘∈N
is bounded and 𝐼(𝑥𝑘) → 0 as 𝑘 → ∞.Thus, for any 𝑘 ∈ N,
there exists a positive constant 𝐾2 such that𝐼 (𝑥𝑘) ≤ 𝐾2. (49)

By (25), (33) and Hölder inequality, we have−𝐾2 ≤ 𝐼 (𝑥𝑘)= 12 (𝑥𝑘)∗𝑀𝑥𝑘 − 12 𝑇∑𝑡=1𝑟 (𝑡) (𝑥𝑘 (𝑡))2+ 𝑇∑
𝑡=1

𝑓 (𝑡) 𝑥𝑘 (𝑡)

≤ 𝜆max2 𝑥𝑘2 − 𝑟min2 𝑥𝑘2 + 𝑇∑
𝑡=1

𝑓 (𝑡) 𝑥𝑘 (𝑡)
≤ 𝜆max − 𝑟min2 𝑥𝑘2
+ ( 𝑇∑
𝑡=1

𝑓2 (𝑡))1/2( 𝑇∑
𝑡=1

(𝑥𝑘 (t))2)1/2
= 𝜆max − 𝑟min2 𝑥𝑘2 + ( 𝑇∑

𝑡=1

𝑓2 (𝑡))1/2 𝑥𝑘 .
(50)

That is,𝑟min − 𝜆max2 𝑥𝑘2 − ( 𝑇∑
𝑡=1

𝑓2 (𝑡))1/2 𝑥𝑘 ≤ 𝐾2. (51)

By condition (𝑟3), (51) implies that {𝑥𝑘}𝑘∈N is a bounded in𝑋. Since the dimension of𝑋 is finite, {𝑥𝑘}𝑘∈N has a convergent
subsequence. Consequently, 𝐼(𝑥) satisfies the Palais-Smale
condition. Hence, it is sufficient to prove that 𝐼(𝑥) satisfies
conditions (𝐼1) and (𝐼2) of Lemma 2.

For any 𝑢 = (𝑐, 𝑐, . . . , 𝑐)∗ ∈ 𝑋2, let
𝜀 = (∑𝑇𝑡=1 𝑓 (𝑡))22∑𝑇𝑡=1 𝑟 (𝑡) , (52)

and similar to the proof of Theorem 1.1 we have𝐼 (𝑢) = 𝜀, ∀𝑢 ∈ 𝜕𝐵𝜂 ∩ 𝑋1. (53)

Condition (𝐼1) of Lemma 2 is proved.
Then, we prove the condition (𝐼2) of Lemma 2. For any

V ∈ 𝑋1, by Hölder inequality, we have𝐼 (V) = 12V∗𝑀V − 12 𝑇∑𝑡=1𝑟 (𝑡) (V (𝑡))2 + 𝑇∑𝑡=1𝑓 (𝑡) V (𝑡)≤ 𝜆max2 ‖V‖2 − 𝑟min2 𝑇∑𝑡=1 (V (𝑡))2 + 𝑇∑𝑡=1 𝑓 (𝑡) V (𝑡)≤ 𝜆max2 ‖V‖2 − 𝑟min2 ‖V‖2 + ( 𝑇∑
𝑡=1

𝑓2 (𝑡))1/2 ‖V‖
= 𝜆max − 𝑟min2 ‖V‖2 + ( 𝑇∑

𝑡=1

𝑓2 (𝑡))1/2 ‖V‖
≤ − ∑𝑇𝑡=1 𝑓2 (𝑡)2 (𝜆max − 𝑟min) ,

(54)

as one finds by maximization with respect to ‖V‖. That is to
say, 𝐼 (V) ≤ − ∑𝑇𝑡=1 𝑓2 (𝑡)2 (𝜆max − 𝑟min) . (55)
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Let

𝜒 = − ∑𝑇𝑡=1 𝑓2 (𝑡)2 (𝜆max − 𝑟min) . (56)

By (𝑓2), we have 𝐼 (V) ≤ 𝜒 < 𝜀. (57)

Therefore, −𝐼 satisfies the condition of saddle point theorem.
By Lemma 2, the proof of Theorem 4 is finished.

5. Examples

In this section, we shall provide two examples to illustrate our
main theorem.

Example 1. For 𝑡 ∈ [1, 3]Z, assume thatΔ2 ((𝑡 − 2) Δ2𝑥 (𝑡 − 2)) − Δ ((𝑡 − 1)2 Δ𝑥 (𝑡 − 1))+ 𝑡3𝑥 (𝑡) + 0.1𝑡 = 0, (58)

satisfying the boundary value conditions𝑥 (−1) = 𝑥 (2) ,Δ𝑥 (−1) = Δ𝑥 (2) ,Δ2𝑥 (−1) = Δ2𝑥 (2) ,Δ3𝑥 (−1) = Δ3𝑥 (2) .
(59)

We have 𝑝 (𝑡) = 𝑡 > 0,𝑞 (𝑡) = 𝑡2 > 0,𝑟 (𝑡) = −𝑡3 < 0,𝑓 (𝑡) = 0.1𝑡, 𝑡 ∈ [1, 3]Z ,
(60)

with 𝑝 (−1) = 2,𝑝 (0) = 3,𝑞 (0) = 9,
𝑀 = ( 25 −7 −18−7 14 −7−18 −7 25 ) ,

(61)

and the eigenvalues of𝑀 are 𝜆1 = 0, 𝜆2 = 21, and 𝜆3 = 43.
Thus, 𝜆min = 21, 𝑟max = −1 and
− 3∑
𝑡=1

𝑓2 (𝑡) 3∑
𝑡=1

𝑟 (𝑡) = − (0.01 + 0.04 + 0.09) × (−36)= 5.04< (𝜆min − 𝑟max) 3∑
𝑡=1

𝑓 (𝑡)= [21 − (−1)] × (0.1 + 0.2 + 0.3)= 13.2.
(62)

From the above argument, we see that all the suppositions of
Theorem 3 are satisfied; then the BVP (58), (59) has at least
one solution.

Example 2. For 𝑡 ∈ [1, 4]Z, assume thatΔ2 ((𝑡 − 2) Δ2𝑥 (𝑡 − 2)) − Δ ((𝑡 − 1)3 Δ𝑥 (𝑡 − 1))+ 2𝑡𝑥 (𝑡) + 0.2𝑡 = 0, (63)

satisfying the boundary value conditions𝑥 (−1) = 𝑥 (3) ,Δ𝑥 (−1) = Δ𝑥 (3) ,Δ2𝑥 (−1) = Δ2𝑥 (3) ,Δ3𝑥 (−1) = Δ3𝑥 (3) .
(64)

We have 𝑝 (𝑡) = 𝑡 > 0,𝑞 (𝑡) = 𝑡3 > 0,𝑟 (𝑡) = −2𝑡 < 0,𝑓 (𝑡) = 0.2𝑡, 𝑡 ∈ [1, 4]Z ,
(65)

with 𝑝 (−1) = 3,𝑝 (0) = 4,𝑞 (0) = 256,
𝑀 =( 277 −11 4 −270−11 19 −14 64 −14 84 −74−270 6 −74 338 ) , (66)
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and the eigenvalues of 𝑀 are 𝜆1 = 0, 𝜆2 ≈ 23.9633, 𝜆3 ≈107.7880 and 𝜆4 ≈ 586.2487. Thus, 𝜆min ≈ 23.9633, 𝑟max =−2 and− 4∑
𝑡=1

𝑓2 (𝑡) 4∑
𝑡=1

𝑟 (𝑡) = − (0.04 + 0.16 + 0.36 + 0.64)× (−20) = 24< (𝜆min − 𝑟max) 4∑
𝑡=1

𝑓 (𝑡)≈ [23.9633 − (−2)]× (0.2 + 0.4 + 0.6 + 0.8)= 51.9266.
(67)

From the above argument, we see that all the suppositions of
Theorem 3 are satisfied; then the BVP (63), (64) has at least
one solution.

6. Conclusions

Difference equations, the discrete analogue of differential
equations, occur widely in numerous settings and forms,
both in mathematics itself and in its applications in theory
and practice. The boundary value problem discussed in this
paper has important analogue in the continuous case of
the fourth-order differential equation. Such problem is of
special significance for the study of beam equations which
are used to describe the bending of an elastic beam. The
problem discussed in this paper can be extended to 2𝑛th-
order difference boundary value problem.
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