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In the traditional optimal velocity model, safe distance is usually a constant, which, however, is not representative of actual traffic
conditions. This paper attempts to study the impact of dynamic safety distance on vehicular stream through a car-following model.
Firstly, a new car-following model is proposed, in which the traditional safety distance is replaced by a dynamic term. Then, the
phase diagram in the headway, speed, and sensitivity spaces is given to illustrate the impact of a variable safe distance on traffic flow.
Finally, numericalmethods are conducted to examine the performance of the proposedmodel with regard to two aspects: compared
with the optimal velocity model, the new model can suppress traffic congestion effectively and, for different safety distances, the
dynamic safety distance can improve the stability of vehicular stream. Simulation results suggest that the new model is able to
enhance traffic flow stability.

1. Introduction

In order to explore congestion mechanisms, researchers
have developed several excellent traffic flow models from
different perspectives [1–18]. The car-following model, first
proposed by Pipes [5], is a kind of microscopic traffic flow
model. The idea behind it is that drivers adjust their velocity
according to the space headway between their own vehicle
and the preceding vehicle. Based on this idea, different types
of car-following models were proposed to investigate the
characteristic features of traffic flow. Bando et al. proposed
an optimal velocity model (OVM) that can reproduce various
traffic phenomena, such as phase transitions and stop-and-go
congestion patterns [6].The optimal velocity model attracted
extensive attention due to its simplicity and accessibility.

Based on the OVM, various improvements have been
put forward to explore the nature of traffic congestion. Some
researchers enhanced traffic flow stability by considering
different space headway values in intelligent transportation
systems (ITS). Nagatani extended the OVM to improve the
stability of traffic flow with the help of headway information
from the following car [7]. Using headway information from

multiple preceding vehicles, Lenz extended the OVM by
incorporating multivehicle interaction [8]. The impact of
multianticipative driving behavior has been analyzed using
analytical methods and numerical simulations. Based on the
ITS approach, Ge et al. proposed another multianticipative
OVM [9]. By using linear stability analysis and nonlinear
analysis, it was found that the model had a stabilizing effect
on traffic flow. In order to make the OVM suitable for coop-
erative driving control systems, Hasebe et al. developed an
extended OVM by using arbitrary car position information
throughout the traffic system [10].

Apart from headway, the velocity information from
downstream vehicles also plays a significant role in the stabil-
ity of traffic flow. Considering the negative velocity difference
effect, Helbing and Benno Tilch proposed a generalized force
model (GFM) [11]. Simulation results suggested that the GFM
is more consistent with real traffic conditions than the OVM.
Jiang et al. constructed a full velocity difference (FVD) car-
following model, which was more effective in describing
traffic flow [12]. The corresponding analytical and numerical
analysis is presented in detail. Liu et al. proposed a new car-
following model that took into consideration the velocity
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difference between the current speed and the historical speed
of the leading car [13].

OVM improvements have also originated through differ-
ent approaches, such as velocity fluctuation of the preceding
car [14, 15] or multiple preceding cars’ velocity fluctuation
feedback [16]. Traffic safety, another important topic, was
tackled by Tang et al., who developed traffic flow models to
explore the impacts of vehicle’s safety distances (front and
back) on the vehicle safety during the starting process. They
also studied other traffic-related problems such as emissions
and vehicle communications [17, 18]. Unfortunately, all the
above car-following models consider the safety distance to
be a constant, which does not correspond to real traffic
flow.

In real-world driving, drivers rely on their perception of
safety headway. This safety headway changes as the speeds of
the current vehicle and the preceding vehicle vary, generally
in a direct manner. For example, when a car runs at a speed of
100 km/h, the safety distance should be 100 meters, while, at
50 km/h, a safety distance of 50 meters should bemaintained.
The constant safety distance in the OV function should be
replaced by a dynamic safety distance (DSD). In this paper,
we propose a new definition of the dynamic safety distance
inOV function.Then, a new car-following model is explored,
which takes into account the DSD. The influence of variable
safety headway on traffic flow is also studied.This manuscript
is organized as follows: an improved car-following model
accounting for the DSD is proposed in Section 2; in Section 3,
numerical simulations are conducted to explore the impact of
DSD on traffic flow; conclusions and future works are given
in Section 4.

2. Car-Following Models

2.1. Optimal Velocity Model. The optimal velocity (OV)
model was proposed by Bando in 1995, with the following
mathematical description:

dV
𝑛

d𝑡
= 𝛼 (V (Δ𝑥

𝑛
) − V
𝑛
) , (1)

where 𝛼, corresponding to the driver’s relaxation time, is a
sensitivity coefficient. V

𝑛
is the velocity of vehicle 𝑛.Δ𝑥

𝑛
is the

distance between the current car and the leading car. 𝑉(⋅) is
the optimal velocity, which is upper-bounded monotonically
decreasing.
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where 𝑥
𝑐
is the safety distance of vehicle 𝑛.

2.2. Dynamic Safety Distance Model. In order to obtain a
more effective car-following model to describe real traffic, we
propose a new definition of safety distance. The safety dis-
tance can be denoted by the safety time headway multiplied
by instant velocity, i.e., 𝑥

𝑐
= 𝑇
𝑠
⋅ V
𝑛
. The corresponding OV

function can be rewritten as
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Figure 1: Phase diagram in the headway-speed-sensitivity space
(vmax= 2.0).

where 𝑇
𝑠
denotes the safety time headway, while 𝑇

𝑠
V
𝑛
is the

new safety distance of vehicle 𝑛. Since the velocity V
𝑛
varies

with the time 𝑡, the original constant-distance equation now
becomes dynamic (i.e., (3)). In the following, the OVM with
a dynamic safety distance optimal velocity function will be
called the dynamic safety distance model (DSDM).

Generally, traffic flow includes three states: the stable
state, the unstable state, and the metastate. This paper mainly
investigates the stable and unstable states. The parameter
space associated with the sensitivity 𝛼, speed V, and headway
Δ𝑥 is shown in Figure 1. The whole space is divided into
two sections: the stable space and the unstable space. Under
the surface, traffic flow is in the stable state, while the
volume above the surface corresponds to the unstable state. A
small headway (i.e., high density) with a large speed denotes
that the traffic flow lies in the unstable state. In this state,
headway is less than the safety distance, so drivers will need to
decelerate tomaintain a safety headway with the front car and
avoid collision. In the case of slow speed with large headway
(low density), the traffic flow is also in the unstable state, as
in this region the driver usually accelerates to follow the car
ahead due to the large headway. Figure 1 shows that there is
almost no stable space between two regions. For each Δ𝑥,
there is a unique speed that makes sensitivity 𝛼 reach the
critical point, and, conversely, for every Δ𝑥, the critical point
is always obtained using a unique speed; all these points form
a critical line. When the sensitivity coefficient 𝛼 is less than
a critical value, small disturbances will be amplified into a
congested flow, while when 𝛼 is larger than that critical value,
any disturbance will be absorbed and the traffic flow will be
restored to its stable state.

3. Numerical Simulation

In this section, numerical simulations are carried out to
investigate the impact of variable distance on the dynamics
of the traffic system. We first present a comparison between
theDSDMand theOVM.The simulation parameters were set
as follows: sensitivity (𝛼) was set to 0.5 and 0.8, respectively,
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Figure 2: Speed profiles for 𝛼 = 0.5, 𝑇
𝑠
= 1 at 𝑡 = 300 s.

while the safety time headway 𝑇
𝑠
was set equal to 1 in the

DSDM.
We then add a perturbation to the OVM. The evolution

of the perturbation at time 𝑡 = 300 is shown in Figure 2.
As shown the figure, some vehicles’ speed is equal to zero,
which means these vehicles cannot move at time 𝑡 = 300,
while some vehicles are moving at maximum speed. This is
indicative of a stop-and-go traffic pattern. Under the same
initial conditions, the simulation results obtained using the
DSDM are considerably different from those of the OVM.
Although there are some vehicles running at low speed,
the number of these vehicles is very small, while there are
no stopped vehicles. Accordingly, the maximum speed in
DSDM is also lower than the maximum speed in OVM,
while the fluctuation of speed in DSDM is also smaller,
which denotes that the perturbation which develops into a
congestion pattern in OVM propagates slowly in the DSDM.

We then increased the sensitivity coefficient from 0.5
to 0.8. The traffic congestion in OVM is relieved, but it is
still in the stop-and-go congestion pattern (see Figure 3).
On the other hand, in the DSDM, the initial perturbation is
absorbed and the resulting fluctuation is hardly observable,
which means the current traffic flow is stable. The above
simulation results show that the DSDM can suppress traffic
congestion effectively.

In this subsection, we study the impact of driver hetero-
geneity (safety headway variation) on traffic flow. We set the
sensitivity coefficient 𝛼 = 0.4 and present the speed profiles
for all the vehicles in the system at 𝑡 = 300 s.

First, the safety time headway was set to 𝑇
𝑠
= 0.6, which

corresponds to a smaller-than-normal distance. Drivers in
this situation are called aggressive drivers, and all the cars
keep a short headway (corresponding to low speed) with the
front vehicle. The traffic system maintains a higher traffic
capacity if there is no perturbation, but 𝛼 = 0.4 is an
unstable state. When a perturbation is added to the system,
the fluctuation of the cars’ speed (and thus headway) develops
into a stop-and-go congestion pattern (Figure 4), where some
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Figure 3: Speed profiles for 𝛼 = 0.8, 𝑇
𝑠
= 1 at 𝑡 = 300 s.
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Figure 4: Speed profiles for DSDM with 𝛼 = 0.4, 𝑇
𝑠
= 0.6 at 𝑡 =

300 s.

vehicles run at high speed, while others cannot move at all.
There are about 20 vehicles (20%) completely stopped at 𝑇

𝑠
=

0.6 (Figure 4). In macroscopic analysis of traffic flow, this
pattern is also called a kink-antikink density wave.

When the safety time headway increases to 0.9, as shown
in Figure 4, the perturbation evolves into stop-and-go traffic
(see Figure 5), but not to the degree observed in Figure 4.
The vehicles caught in congestion in Figure 5 are fewer than
those in Figure 4, and congestion tends to dissipate with the
increase of safety distance.

We then further increase the safety time headway to
𝑇
𝑠
= 1.2. The profile of car speed over time is shown in

Figure 6.The perturbation grows into an unstable traffic flow,
but the fluctuation is not as large as that of Figure 5. In
Figure 6, themaximumandminimumspeed are 1.61 and 0.42,
respectively; there is a maximum speed offset 23.08% from
the stable velocity of 1.31, while the minimum speed shift is
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Figure 5: Speed profiles for DSDM with 𝛼 = 0.4, 𝑇
𝑠
= 0.9 at 𝑡 =

300 s.
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Figure 6: Speed profiles for DSDM with 𝛼 = 0.4, 𝑇
𝑠
= 1.2 at 𝑡 =

300 s.

about 67.94%. In this case, stop-and-go traffic disappears and
oscillatory congestion occurs.

To understand the impact of safety distance on traffic
congestion, we set 𝑇

𝑠
= 1.5. In this case (Figure 7), the traffic

congestionwas completely eliminated from the traffic system,
with a fluctuation of less than 1%. Obviously, this condition is
a free flow state.

4. Conclusions

Although the OV car-following model has been extensively
investigated by researchers from various fields, all of them
used a constant safety distance, which is not consistent with
real traffic. In this paper, we propose an extended OVMwith
dynamic safety distance to study driving behavior. Numerical
simulations are conducted to determine the impact of a
variable safety distance on the dynamics of traffic stream.
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Figure 7: Speed profiles for DSDM with 𝛼 = 0.4, 𝑇
𝑠
= 1.5 at 𝑡 =

300 s.

From the simulation results, we obtained the following con-
clusions:

(1) A three-dimensional phase diagram is presented to
illustrate the impact of dynamic safety distance on the
evolution of traffic flow

(2) Fast-responding drivers (i.e., those with a large sen-
sitivity coefficient) are conducive to the stability of
traffic flow

(3) Conservative drivers (i.e., those with a large safety
time headway) can keep road traffic smoother than
aggressive drivers

(4) The proposedmodel is able to reproduce the observed
stop-and-go phase transition

However, the proposed model was only investigated
using theoretical analysis and numerical simulations, and the
parameters in the model were not calibrated according to real
traffic data. In future works, we will use experimental data
to explore the effects of variable safety distance on driving
behavior.
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