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Mathematical models become an important and popular tools to understand the dynamics of the disease and give an insight to
reduce the impact of malaria burden within the community. Thus, this paper aims to apply a mathematical model to study global
stability of malaria transmission dynamics model with logistic growth. Analysis of themodel applies scaling and sensitivity analysis
and sensitivity analysis of the model applied to understand the important parameters in transmission and prevalence of malaria
disease. We derive the equilibrium points of the model and investigated their stabilities.The results of our analysis have shown that
if 𝑅0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable, and the disease dies out; if 𝑅0 > 1, then the unique
endemic equilibrium point is globally asymptotically stable and the disease persists within the population. Furthermore, numerical
simulations in the application of the model showed the abrupt and periodic variations.

1. Introduction

Malaria is a mosquito-borne disease caused by Plasmodium
parasite, which is transmitted through the bites of an infected
mosquito. In 2017, the World Health Organization report
reveals estimations of 216 million malaria cases and 445
thousand deaths due to malaria were registered worldwide
in 2016. However, the most malaria cases and deaths were
shared by the WHO Africa region, which account for 90%
of cases and 91% deaths. The most predominant malaria
parasite in theWHOAfrica region isPlasmodium falciparum,
accounting for 99% of malaria cases in 2016 [1].

Malaria is entirely preventable and treatable disease if
the recommended interventions are properly applied. Indi-
viduals should have taken some aggressive measurements
to decline malaria burden. Personal protection measures are
the first line of defense against mosquito-borne diseases.
Mosquito repellent is a method used for personal protection;
and these are the substances used for exposed skin to
prevent human-mosquito contact. Insecticide Treated Bed
Nets (ITNs) are used for individuals againstmalaria to reduce
the morbidity of childhood malaria (below five years of age)
by 50% and global child mortality by 20–30% [2, 3]. When

used on a large scale, ITNs are supposed to represent efficient
tools for malaria vector control but there is a limitation
of resistance to insecticides used for a saturated net. The
resistance of the most important African malaria Anopheles
gambiae to protrude is already widespread in several West
African countries [4, 5].

Nowadays, mathematical models become an important
and popular tools to understand the transmission dynamics
of the disease and give an insight to reduce the impact of
malaria burden in the society. This is because mathematical
modeling can answer the following questions raised by the
public health authorities and policy makers to make the
correct decisions: (1) how severe will the epidemics be? (2)
How long will it last? (3) How effective will an intervention
be? (4) What are the effective measures to control and
eliminate an endemic disease? The earliest malaria model
study originated from Ross in 1911 [6] and later modification
made by Macdonald [7]. Some further extensions of Ross-
Macdonald models for malaria were described in [8–13].
Tumwiine et al. [13] define the reproduction number, 𝑅0,
and show the existence and stability of the disease-free
equilibrium and an endemic equilibrium.
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Figure 1: The compartmental model for malaria transmission.

Recently, many works on host-vector interaction models
have been done in [14–24]. In [18, 20, 22, 25], global stability
of equilibria has been investigated using suitable Lyapunov
functions; and their results show that the disease-free and
endemic equilibrium points become globally asymptotically
stable if 𝑅0 ≤ 1 and 𝑅0 > 1, respectively. Application of the
optimal control theory becomes an important tool for investi-
gating the efficiency of joint control intervention strategies to
minimize the impact ofmalaria disease and cost-effectiveness
of implementing them [19, 21, 23, 24]. Their studies suggest
that the optimal control strategies can effectively reduce
the malaria disease.

Motivated by the above studies, we extend the model
presented in [14] by taking into account a logistic model
with population dependent birth rates for both human and
vector populations that describes self-limiting growth of
both the human host and mosquito vector populations. We
consider logistic malaria model as no population can grow
exponentially at all time, in general. A number of populations
initially grow exponentially, but, due to competition and
limited resources availability, their population size decline,
after some time, to a stable size 𝐾, called the maximum
carrying capacity. The competition for limited resources
(including food, territory, light, water, and oxygen) decreases
the fertility or survival of individuals. Furthermore, this
paper presents application of the model to study abrupt and
periodic variations of malaria and sensitivity analysis applied
to understand the important parameters in transmission and
prevalence of the malaria disease. The purpose of this work
is to investigate the global stability of both disease-free and
endemic equilibrium points.

2. Malaria Model

We consider that the total human host population, 𝑁ℎ, at
a time 𝑡∗, is divided into three disjoint compartments: sus-
ceptible 𝑆ℎ, infectious 𝐼ℎ, and recovered 𝑅ℎ. The total vector

population, 𝑁V, at a time 𝑡∗, is divided into two mutually
exclusive subpopulations of individuals who are susceptible,𝑆V, and infectious, 𝐼V. The susceptible human and vector
populations are recruited at the rates 𝐵ℎ and 𝐵V, respectively,
where 𝐵ℎ = 𝜇ℎ𝑁ℎ(1 − 𝑁ℎ/𝐾ℎ) and 𝐵V = 𝜇V𝑁V(1 − 𝑁V/𝐾V).
The susceptible human and vector populations decrease due
to natural death at a rate 𝛼ℎ for humans and 𝛼V for vectors,
and those that move to the infected classes at a rate 𝛽ℎ𝐼V and𝛽V𝐼ℎ, respectively. The infected human population grows as
a result of new infection at a rate 𝛽ℎ𝑆ℎ𝐼V and decline due to
natural mortality, disease induced death, and recovery at a
rate 𝛼ℎ, 𝜌ℎ, and 𝛾ℎ, respectively. For details, see the schematic
diagram of the model in Figure 1. The state variables and
parameters for the model are described in “State Variables,
Parameters, Descriptions, and Their Dimensions of Malaria
Model” section.

The model has made the following assumptions: both
the total sizes of human and vector populations not being
constant; all variables and parameters involving the model
assumed to be nonnegative; all newborns susceptible to
infection; mosquitoes not dying because of infection; no
recovery compartment for infected mosquitoes; and the
recovered human population developing permanent immu-
nity. From the schematics diagram of transmission of malaria
between human and mosquito (see Figure 1), we have the
governed differential equations which describe the dynamics
of malaria,

𝑑𝑆ℎ𝑑𝑡∗ = 𝜇ℎ𝑁ℎ (1 − 𝑁ℎ𝐾ℎ ) − 𝛽ℎ𝑆ℎ𝐼V − 𝛼ℎ𝑆ℎ,
𝑑𝐼ℎ𝑑𝑡∗ = 𝛽ℎ𝑆ℎ𝐼V − 𝛼ℎ𝐼ℎ − 𝜌ℎ𝐼ℎ − 𝛾ℎ𝐼ℎ,
𝑑𝑅ℎ𝑑𝑡∗ = 𝛾ℎ𝐼ℎ − 𝛼ℎ𝑅ℎ,
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𝑑𝑆V𝑑𝑡∗ = 𝜇V𝑁V (1 − 𝑁V𝐾V
) − 𝛽V𝑆V𝐼ℎ − 𝛼V𝑆V,

𝑑𝐼V𝑑𝑡∗ = 𝛽V𝑆V𝐼ℎ − 𝛼V𝐼V,
(1)

with initial conditions
𝑆ℎ (0) = 𝑆ℎ0,
𝐼ℎ (0) = 𝐼ℎ0,
𝑅ℎ (0) = 𝑅ℎ0,
𝑆V (0) = 𝑆V0,
𝐼V (0) = 𝐼V0.

(2)

At all times,𝑁ℎ = 𝑆ℎ+𝐼ℎ+𝑅ℎ and𝑁V = 𝑆V+𝐼V. Moreover,
their differential equations are satisfying

𝑑𝑁ℎ𝑑𝑡∗ = 𝜇ℎ𝑁ℎ (1 − 𝑁ℎ𝐾ℎ ) − 𝛼ℎ𝑁ℎ − 𝜌ℎ𝐼ℎ,
𝑑𝑁V𝑑𝑡∗ = 𝜇V𝑁V (1 − 𝑁V𝐾V

) − 𝛼V𝑁V,
(3)

respectively. We may notice that the vector population
equation is completely decoupled from the human equations
which is physically reasonable.

If we eliminate 𝑅ℎ and 𝑆V and add the total population
equations, then we finally have

𝑑𝑆ℎ𝑑𝑡∗ = 𝜇ℎ𝑁ℎ (1 − 𝑁ℎ𝐾ℎ ) − 𝛽ℎ𝑆ℎ𝐼V − 𝛼ℎ𝑆ℎ,
𝑑𝐼ℎ𝑑𝑡∗ = 𝛽ℎ𝑆ℎ𝐼V − 𝛼ℎ𝐼ℎ − 𝜌ℎ𝐼ℎ − 𝛾ℎ𝐼ℎ,
𝑑𝐼V𝑑𝑡∗ = 𝛽V (𝑁V − 𝐼V) 𝐼ℎ − 𝛼V𝐼V,
𝑑𝑁ℎ𝑑𝑡∗ = 𝜇ℎ𝑁ℎ (1 − 𝑁ℎ𝐾ℎ ) − 𝛼ℎ𝑁ℎ − 𝜌ℎ𝐼ℎ,
𝑑𝑁V𝑑𝑡∗ = 𝜇V𝑁V (1 − 𝑁V𝐾V

) − 𝛼V𝑁V.

(4)

2.1. Basic Properties. Since the model system (1) involves
human and mosquito populations, all its associated variables
and parameters are nonnegative.

Theorem 1. Solutions of the model system (1) with positive
initial data will remain nonnegative for all time 𝑡 ≥ 0.
Proof. Let Ω = {(𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆V, 𝐼V ∈ 𝑅5 : 𝑆ℎ0 > 0, 𝐼ℎ0 > 0,𝑅ℎ0 > 0, 𝐼V0 > 0, 𝑆V0 > 0)}. Then it follows from the second
equation of malaria model (1) that

𝑑𝑆ℎ𝑑𝑡 = 𝜇ℎ𝑁ℎ (1 − 𝑁ℎ𝐾ℎ ) − 𝑆ℎ𝛽ℎ𝐼V − 𝛼ℎ𝑆ℎ
≥ −𝑆ℎ (𝛽ℎ𝐼V + 𝛼ℎ) ,

(5)

so that

𝑑𝑆ℎ𝑆ℎ ≥ − (𝛽ℎ𝐼V + 𝛼ℎ) 𝑑𝑡. (6)

Hence,

𝑆ℎ (𝑡) ≥ 𝑆ℎ0 exp (−𝛽ℎ𝐼V − 𝛼ℎ) 𝑡 ≥ 0. (7)

Similarly, it can be shown that 𝐼ℎ ≥ 0, 𝑅ℎ ≥ 0, 𝑆V ≥ 0, and𝐼V ≥ 0 for all time 𝑡 ≥ 0.
This completes the proof.

2.1.1. Invariant Region. The malaria model (1) will be ana-
lyzed in biologically feasible region. Thus, the feasible solu-
tions set for the model written by

Ω = {(𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆V, 𝐼V) ∈ 𝑅5+ : 𝑆ℎ + 𝐼ℎ + 𝑅ℎ
≤ 𝐾ℎ (𝜇ℎ − 𝛼ℎ)𝜇ℎ , 𝑆V + 𝐼V ≤ 𝐾V (𝜇V − 𝛼V)𝜇V }

(8)

is positively invariant and then the model is biologically
meaningful and mathematically well posed in the domainΩ.
The proof is omitted for simplicity.

3. Model Analysis

To analyze the malaria model in system (4), we use the
normalized quantities instead of the actual populations. Since𝑁ℎ and 𝑁V may vary, these scales are not suitable for use in
the scaling. However, the typical choice for logistic models is
to use the sustainable populations 𝐾ℎ and 𝐾V for the scales.
In the present case, we shall also consider varying 𝐾ℎ and𝐾V. It is, therefore, convenient to write 𝐾ℎ = 𝐾0ℎ𝑔ℎ(𝑡) and𝐾V = 𝐾0V𝑔V(𝑡), where 𝐾0ℎ and 𝐾0V are typical sizes and where𝑔ℎ and 𝑔V take care of the time variations. At the moment, we
just assume that 𝑔ℎ(𝑡) = 𝑔V(𝑡) = 1. We shall scale the time 𝑡∗
with the quantity 1/𝜇ℎ by setting 𝑡 = 𝜇ℎ𝑡∗. The scaling is then𝑆ℎ = 𝐾0ℎ𝑠ℎ, 𝐼ℎ = 𝐾0ℎ𝑖ℎ, 𝑅ℎ = 𝐾0ℎ𝑟ℎ, 𝑁ℎ = 𝐾0ℎ𝑛ℎ, 𝑆V = 𝐾0V 𝑠V,𝐼V = 𝐾0V 𝑖V, 𝑁V = 𝐾0V𝑛V, and 𝑡∗ = (1/𝜇ℎ)𝑡. The dimensionless
parameters of the model become 𝛽 = 𝛽ℎ𝑁V/𝜇ℎ, 𝛼 = 𝛼ℎ/𝜇ℎ,𝛾 = (𝜌ℎ +𝛾ℎ)/𝜇ℎ, ] = 𝛽V𝑁ℎ/𝜇V, 𝛿 = 𝛼V/𝜇V, and 𝜀 = 𝜇ℎ/𝜇V ≪ 1.

The scaled equations then become

𝑑𝑛ℎ𝑑𝑡 = 𝑛ℎ (1 − 𝑛ℎ) − 𝛼𝑛ℎ − 𝜌𝑖ℎ,
𝑑𝑠ℎ𝑑𝑡 = 𝑛ℎ (1 − 𝑛ℎ) − 𝛽𝑠ℎ𝑖V − 𝛼𝑠ℎ,
𝑑𝑖ℎ𝑑𝑡 = 𝛽𝑠ℎ𝑖V − (𝛼 + 𝜌 + 𝛾) 𝑖ℎ,
𝜀𝑑𝑛V𝑑𝑡 = 𝑛V (1 − 𝑛V) − 𝛿𝑛V,
𝜀𝑑𝑖V𝑑𝑡 = ] (𝑛V − 𝑖V) 𝑖ℎ − 𝛿𝑖V,

(9)
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subject to suitable initial conditions,

𝑛ℎ (0) = 𝑛ℎ0,
𝑖ℎ (0) = 𝑖ℎ0,
𝑠ℎ (0) = 𝑠ℎ0,
𝑛V (0) = 𝑛V0,
𝑖V (0) = 𝑖V0.

(10)

3.1. Stability of Disease-Free Equilibrium and Reproduction
Number. Our model (9) admits two disease-free equilibria,
namely, 𝐸0 = (0, 0, 0, 0, 0) and 𝐸1 = (1 − 𝛼, 1 − 𝛼, 0, 1 − 𝛿, 0),
where 𝛼 and 𝛿 lie between 0 and 1, and a unique endemic
equilibrium, 𝐸2 = (𝑛ℎ∗, 𝑠ℎ∗, 𝑖ℎ∗, 𝑛V∗, 𝑖V∗). The equilibria of
the system (9) are obtained by setting the right side equal to
zero.

The basic reproduction number, 𝑅0, is the single most
important parameter in epidemiological modeling. It mea-
sures the average number of the secondary infections caused
by a single infective in an entirely susceptible population
during its whole infectious period [26]. To derive the basic
reproduction number 𝑅0 of model (9), we use the next gen-
eration matrix approach described in [27–29]. The infected
compartments of system (9) are 𝑖ℎ and 𝑖V. Following [29], the
new infectionmatrix 𝐹 and the transitionmatrix𝑉 are given,
respectively, by

𝐹 = [ 0 𝛽 (1 − 𝛼)
] (1 − 𝛿) 0 ] ,

𝑉 = [𝛼 + 𝜌 + 𝛾 00 𝛿] .
(11)

Hence, the basic reproduction number, 𝑅0, is the dom-
inant eigenvalue of the next generation matrix 𝐹𝑉−1 and
becomes

𝑅0 = 𝜌 (𝐹𝑉−1) ,
= √ 𝛽 (1 − 𝛼)(𝛼 + 𝜌 + 𝛾) ] (1 − 𝛿)𝛿
= √𝑅0Vℎ × 𝑅0ℎV.

(12)

From (12), it is noted that the reproduction number depends
on the product of the number of humans that one mosquito
infects through its infectious lifetime, 𝑅0Vℎ, and the number
of mosquitoes that one human infects through its infectious
lifetime, 𝑅0ℎV.
Theorem 2. The disease-free equilibrium point, 𝐸0, is locally
asymptotically stable if all eigenvalues of the characteristic
equation of the variational matrix lie below zero.

Proof. At the equilibrium point, 𝐸0, the variational matrix is
given by

𝐽 (𝐸0) =
[[[[[[[[
[

1 − 𝛼 0 −𝜌 0 0
1 −𝛼 0 0 0
0 0 − (𝛼 + 𝜌 + 𝛾) 0 0
0 0 0 1 − 𝛿 0
0 0 0 0 −𝛿

]]]]]]]]
]
. (13)

The characteristic equation may be written as det[𝐽(𝐸0) −𝜆𝐼] = 0. It implies

(1 − 𝛼 − 𝜆) (−𝛼 − 𝜆) (−𝛼 − 𝜌 − 𝛾 − 𝜆) (1 − 𝛿 − 𝜆)
⋅ (−𝛿 − 𝜆) = 0. (14)

Clearly, we have

𝜆1 = 1 − 𝛼 > 0, as 𝛼 < 1,
𝜆2 = −𝛼 < 0,
𝜆3 = − (𝛼 + 𝜌 + 𝛾) < 0,
𝜆4 = 1 − 𝛿 > 0 as 𝛿 < 1,
𝜆5 = −𝛿 < 0.

(15)

Thus, this shows that the solution,𝐸0, is unstable since 𝜆1 and𝜆4 lie above zero.
Theorem 3. The disease-free equilibrium point, 𝐸1, is locally
asymptotically stable if 𝑅0 < 1.
Proof. The variational matrix at the equilibrium point, 𝐸1,
becomes

𝐽 (𝐸1)

=
[[[[[[[[
[

𝛼 − 1 0 −𝜌 0 0
2𝛼 − 1 −𝛼 0 0 𝛽 (𝛼 − 1)
0 0 − (𝛼 + 𝜌 + 𝛾) 0 𝛽 (1 − 𝛼)
0 0 0 𝛿 − 1 0
0 0 ] (1 − 𝛿) 0 −𝛿

]]]]]]]]
]
. (16)

Thus, the characteristic equation of the variational matrix is
given by

(𝛼 − 1 − 𝜆) (−𝛼 − 𝜆) (𝛿 − 1 − 𝜆) (𝜆2 + 𝑎1𝜆 + 𝑎0) = 0, (17)

where

𝑎0 = 𝛿 (𝛼 + 𝜌 + 𝛾) (1 − 𝑅20) ,
𝑎1 = 𝛿 + 𝛼 + 𝛾 + 𝜌. (18)

The characteristic polynomial in (17) has roots 𝜆1 = 𝛼 − 1,𝜆2 = 𝛿 − 1, 𝜆3 = −𝛼, with negative real parts since 0 < 𝛼, 𝛿 <1. By Routh-Hurwitz criterion [28], the other roots 𝜆4 and
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𝜆5 have negative real parts if both 𝑎0 and 𝑎1 lie above zero.
From the second equation of (18), 𝑎1 > 0, and from the first
equation of (18), 𝑎0 > 0, when 𝑅0 < 1. Hence, the disease-free
equilibrium point, 𝐸1, is locally asymptotically stable.

Theorem 4. The disease-free equilibrium point, 𝐸1, is globally
asymptotically stable in Ω if 𝑅0 ≤ 1; otherwise it is unstable.
Proof. Consider the Lyapunov function

𝑉 (𝑖ℎ, 𝑖V) = 𝑎𝑖ℎ + 𝑏𝑖V, (19)

where

𝑎 = ]
1 − 𝛿𝛿 (𝛼 + 𝛾 + 𝜌) ,

𝑏 = 𝜀𝛿 .
(20)

The time derivative of the function 𝑉 along the solutions of
(9) becomes

𝑉̇ (𝑖ℎ, 𝑖V) = 𝑎𝑑𝑖ℎ𝑑𝑡 + 𝑏𝑑𝑖V𝑑𝑡
= 𝑎 (𝛽𝑠ℎ𝑖V − (𝛼 + 𝛾 + 𝜌) 𝑖ℎ)
+ 𝑏(] (𝑛V − 𝑖V) 𝑖ℎ − 𝛿𝑖V𝜀 )

= (𝑎𝛽 (1 − 𝛼) − 𝑏𝛿𝜀 ) 𝑖V
+ (𝑏]𝜀 (1 − 𝛿 − 𝑖V) − 𝑎 (𝛼 + 𝛾 + 𝜌)) 𝑖ℎ

= (𝛽] (1 − 𝛼) (1 − 𝛿)𝛿 (𝛼 + 𝛾 + 𝜌) − 1) 𝑖V − ]𝛿 𝑖ℎ𝑖V
= (𝑅20 − 1) 𝑖V − ]𝛿 𝑖ℎ𝑖V ≤ 0.

(21)

Thus 𝑉̇ ≤ 0 if 𝑅0 ≤ 1 and the equality 𝑉̇ = 0 holds if and only
if 𝑖ℎ = 𝑖V = 0. Therefore, the largest compact invariant set in{(𝑖ℎ, 𝑖V) ∈ Ω : 𝑉̇ = 0} is the singleton {𝐸1}, where 𝐸1 is the
disease-free equilibrium. LaSalle’s Invariant Principle [30]
implies that 𝐸1 is globally asymptotically stable inΩ.
3.2. Stability of Endemic Equilibrium. To find the endemic
equilibrium 𝐸2, we shall keep the assumptions about 𝑛V∗ and𝑖V∗ from the singular perturbation equations (see the fourth
and fifth equations of system (9)) and then focus on the first
three equations of system (9). We consider the equilibrium
solutions, using 𝑖ℎ∗ as the basic quantity. From the third
equation of (9), we have an expression for 𝑠ℎ∗:

𝑠ℎ∗ = 𝛼 + 𝛾 + 𝜌𝛽] (1 − 𝛿) (𝛿 + ]𝑖ℎ∗) . (22)

Addition of the second and third equations of system (9) gives

𝑛ℎ∗ − 𝛾𝛼𝑖ℎ∗ − 𝑖ℎ∗ − 𝑠ℎ∗ = 0. (23)
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Figure 2: Graph illustrating the behaviour of the solutions of the
equation between 𝑛ℎ∗ and 𝑖ℎ∗.

Now, let us consider the first equation of (9) which connects𝑛ℎ∗ and 𝑖ℎ∗. That is,

𝑛ℎ∗ (1 − 𝑛ℎ∗) − 𝛼𝑛ℎ∗ − 𝜌𝑖ℎ∗ = 0. (24)

Equation (24) has only real and positive solutions for 𝑛ℎ∗ if𝜌𝑖ℎ∗ < ((1−𝛼)/2)2, since themaximumvalue of 𝑛ℎ∗(1−𝑛ℎ∗)−𝛼𝑛ℎ∗ is (1 − 𝛼)2/4. If 𝜌𝑖ℎ∗ < (1 − 𝛼)2/4, then (24) has two
solutions:

𝑛+ℎ∗, 𝑛−ℎ∗ = 1 − 𝛼2 ± √ (1 − 𝛼)24 − 𝜌𝑖ℎ∗, (25)

for each value of 𝜌𝑖ℎ∗.
One might wonder what happens when the inequality is

violated and 𝜌𝑖ℎ∗ > ((1−𝛼)/2)2.The solution of (24) will then
be majorized by the equation

𝑑𝑦𝑑𝑡 = 𝑦 (1 − 𝑦) − 𝛼𝑦 − (1 − 𝛼2 )2

when 𝜌𝑖ℎ∗ = (1 − 𝛼2 )2 ,
(26)

which has only one unstable equilibrium point at 𝑦 = ((1 −𝛼)/2) and otherwise tends to 0. Moreover, it is clear that𝑛ℎ∗ needs to be larger or equal to 𝑖ℎ∗. Let us, therefore,
consider 𝑛+ℎ∗ and 𝑛−ℎ∗ in the light of this restriction. The
various situations are best described in terms of the graph
shown in Figure 2.

The parabola is the locus of the solutions for 𝑛+ℎ∗ and 𝑛−ℎ∗
when 0 ≤ 𝜌𝑖ℎ∗ ≤ (1 − 𝛼)2/4. The line, 𝑖ℎ∗ = (1/𝜌)(𝜌𝑖ℎ∗),
defines the limit of the region for solutions fulfilling 𝑖ℎ∗ ≤ 𝑛ℎ∗.
In the graph, the upper solution (upper red dot) is acceptable
since 𝑛+ℎ∗ > 𝑖ℎ∗, whereas the lower solution is outside the
region and hence unacceptable. Further inspection of the
graph shows the following.
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Table 1: Number of possible positive real roots of (27) for 𝑅0 < 1
and 𝑅0 > 1.
Cases 𝑎 𝑏 𝑐 𝑅0 Number of

sign changes
Number of possible
positive real roots

1 + + + <1 0 0
2 + + − >1 1 1
3 + − − >1 1 1

(1) If 1 − 𝛼 ≤ 𝜌, both solutions, 𝑛−ℎ∗ and 𝑛+ℎ∗, are larger
than 𝑖ℎ∗ (consider the line 𝑦2).

(2) If 𝜌 < (1 − 𝛼)/2, only 𝑛+ℎ∗ is larger than 𝑖ℎ∗ when 𝑖ℎ∗ is
positive (consider the line 𝑦1).

(3) For (1−𝛼)/2 < 𝜌 < 1−𝛼, one or both of the solutions
are acceptable.

Themain conclusion is that there are acceptable solutions
with respect to size for all 𝑖ℎ∗ where 0 ≤ 𝜌𝑖ℎ∗ ≤ (1 − 𝛼)2/4.

Assume that 𝜌𝑖ℎ∗ < (1 − 𝛼)2/4, where only 𝑛+ℎ∗ is accept-
able with respect to size. Then substituting expressions (22)
and (25) into the equation in (23) and simplifying lead to the
following quadratic equation:

𝑎𝑖2ℎ∗ + 𝑏𝑖ℎ∗ + 𝑐 = 0, (27)

where

𝑎 = (1 + 𝛾𝛼 + 𝛼 + 𝛾 + 𝜌𝛽 (1 − 𝛿) )
2 ,

𝑏 = (1 + 𝛾𝛼 + 𝛼 + 𝛾 + 𝜌𝛽 (1 − 𝛿) )(𝛿 (𝛼 + 𝛾 + 𝜌)𝛽] (1 − 𝛿) (2 − 𝑅20))
+ 𝜌,

𝑐 = (𝛿 (𝛼 + 𝛾 + 𝜌)𝛽] (1 − 𝛿) )
2 (1 − 𝑅0) + (1 − 𝛼2 )2 .

(28)

From (27), it can easily be seen that 𝑎 > 0. Further, if𝑅0 > 1, then 𝑐 < 0. Thus, the number of possible positive
real roots of (27) can depend on the signs of 𝑏. This can be
analyzed using the Descartes rule of signs on the quadratic
polynomial (27). The different possibilities for the roots of
(27) are tabulated in Table 1.

Thus, the malaria model has a unique endemic equilib-
rium if 𝑅0 > 1 and whenever cases 2 and 3 are satisfied.
Hence, the endemic equilibrium then becomes

𝑛ℎ∗ = (1 + 𝛾𝛼 + 𝛼 + 𝛾 + 𝜌𝛽 (1 − 𝛿) ) 𝑖ℎ∗ + 𝛿 (𝛼 + 𝛾 + 𝜌)𝛽] (1 − 𝛿) ,
𝑠ℎ∗ = 𝛿 (𝛼 + 𝛾 + 𝜌)𝛽] (1 − 𝛿) + 𝛼 + 𝛾 + 𝜌𝛽 (1 − 𝛿) 𝑖ℎ∗,
𝑛V∗ = 1 − 𝛿,
𝑖V∗ = (1 − 𝛿) ]𝑖ℎ∗𝛿 + ]𝑖ℎ∗ ,

(29)

and 𝑖ℎ∗ is the unique positive root of (27).

Theorem 5. If 𝑅0 > 1, then the endemic equilibrium 𝐸2 of the
malaria model (9) is globally asymptotically stable in Ω.
Proof. We shall propose the Lyapunov function

𝑉 (𝑛ℎ, 𝑠ℎ, 𝑖ℎ, 𝑛V, 𝑖V) = 𝑎1 (𝑛ℎ − 𝑛ℎ∗ − 𝑛ℎ∗ ln 𝑛ℎ𝑛ℎ∗)
+ 𝑎2 (𝑠ℎ − 𝑠ℎ∗ − 𝑠ℎ∗ ln 𝑠ℎ𝑠ℎ∗)
+ 𝑎3 (𝑖ℎ − 𝑖ℎ∗ − 𝑖ℎ∗ ln 𝑖ℎ𝑖ℎ∗)
+ 𝑎4 (𝑛V − 𝑛V∗ − 𝑛V∗ ln 𝑛V𝑛V∗)
+ 𝑎5 (𝑖V − 𝑖V∗ − 𝑖V∗ ln 𝑖V𝑖V∗) ,

(30)

where
𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 1,
𝑎5 = 𝜀] .

(31)

The Lyapunov function 𝑉 is continuous for all 𝑛ℎ, 𝑠ℎ, 𝑖ℎ,𝑛V, 𝑖V > 0. The time derivative of the function 𝑉 along the
solutions of system (9) becomes
𝑑𝑉𝑑𝑡 = 𝑎1 (1 − 𝑛ℎ∗𝑛ℎ )

𝑑𝑛ℎ𝑑𝑡 + 𝑎2 (1 − 𝑠ℎ∗𝑠ℎ )
𝑑𝑠ℎ𝑑𝑡

+ 𝑎3 (1 − 𝑖ℎ∗𝑖ℎ )
𝑑𝑖ℎ𝑑𝑡 + 𝑎4 (1 − 𝑛V∗𝑛V )

𝑑𝑛V𝑑𝑡
+ 𝑎5 (1 − 𝑖V∗𝑖V )

𝑑𝑖V𝑑𝑡
= 𝑎1 (1 − 𝑛ℎ∗𝑛ℎ ) (𝑛ℎ (1 − 𝑛ℎ) − 𝛼𝑛ℎ − 𝜌𝑖ℎ)
+ 𝑎2 (1 − 𝑠ℎ∗𝑠ℎ ) (𝑛ℎ (1 − 𝑛ℎ) − 𝛽𝑠ℎ𝑖V − 𝛼𝑠ℎ)
+ 𝑎3 (1 − 𝑖ℎ∗𝑖ℎ ) (𝛽𝑠ℎ𝑖V − (𝛼 + 𝛾 + 𝜌) 𝑖ℎ)
+ 𝑎4 (1 − 𝑛V∗𝑛V )(

𝑛V (1 − 𝑛V) − 𝛿𝑛V𝜀 )
+ 𝑎5 (1 − 𝑖V∗𝑖V )(

] (𝑛V − 𝑖V) 𝑖ℎ − 𝛿𝑖V𝜀 ) .

(32)

From the equilibrium point of themalariamodel (9), we have
the following relations:

𝛼 = 𝑛ℎ∗ (1 − 𝑛ℎ∗) + 𝜌𝑖ℎ∗𝑛ℎ∗ ,
𝛼 + 𝛾 + 𝜌 = 𝛽𝑠ℎ∗𝑖V∗𝑖ℎ∗ ,

𝛿 = 1 − 𝑛V∗,
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] = 𝛿𝑖V∗(𝑛V∗ − 𝑖V∗) 𝑖ℎ∗ ,
𝑛ℎ∗ (1 − 𝑛ℎ∗) = 𝛽𝑠ℎ∗𝑖V∗ + 𝛼𝑠ℎ∗.

(33)

By adding and subtracting 𝛽𝑠ℎ∗𝑖V∗, 𝛽𝑠ℎ∗𝑖V∗ (𝑛ℎ𝑖V∗/𝑛ℎ∗𝑖V) and
using (31) and (33) in (32), after intensive simplification, we
have

𝑑𝑉𝑑𝑡 = 𝑛ℎ (1 − 𝑛ℎ) (2 − 𝑛ℎ∗𝑛ℎ −
𝑠ℎ∗𝑠ℎ )

+ 𝛼𝑠ℎ∗ (2 − 𝑛ℎ𝑛ℎ∗ −
𝑠ℎ𝑠ℎ∗)

+ 𝛽𝑠ℎ∗𝑖V∗ (3 − 𝑖ℎ𝑖ℎ∗ −
𝑛ℎ𝑖V∗𝑛ℎ∗𝑖V +

𝑠ℎ𝑠ℎ∗
𝑖ℎ∗𝑖ℎ
𝑖V𝑖V∗)

+ 𝛽𝑠ℎ∗𝑖V∗ (1 − 𝑖V∗𝑖V )(
𝑖V𝑖V∗ −

𝑛ℎ𝑛ℎ∗)
+ 𝜌𝑖ℎ∗ (𝑛ℎ∗𝑛ℎ − 1)(

𝑛ℎ𝑛ℎ∗ +
𝑖ℎ𝑖ℎ∗)

+ 𝑛V∗𝑖V∗ ( 𝑛V𝑖ℎ𝑛V∗𝑖ℎ∗ −
𝑖V𝑖V∗)(1 −

𝑖V∗𝑖V )
− 1𝜀 (𝑛V − 𝑛V∗)2
− 𝑖ℎ∗𝑖V∗ (1 − 𝑖ℎ𝑖ℎ∗)(1 −

𝑖V𝑖V∗) .

(34)

Since the arithmetic mean is greater than or equal to the
geometric mean, then we have

(2 − 𝑛ℎ∗𝑛ℎ −
𝑠ℎ∗𝑠ℎ ) ≤ 0,

(2 − 𝑛ℎ𝑛ℎ∗ −
𝑠ℎ𝑠ℎ∗) ≤ 0,

(3 − 𝑖ℎ𝑖ℎ∗ −
𝑛ℎ𝑖V∗𝑛ℎ∗𝑖V +

𝑠ℎ𝑠ℎ∗
𝑖ℎ∗𝑖ℎ
𝑖V𝑖V∗) ≤ 0.

(35)

Also,

(1 − 𝑖V∗𝑖V )(
𝑖V𝑖V∗ −

𝑛ℎ𝑛ℎ∗) ≤ 0, (36)

if

𝑖V𝑖V∗ ≤
𝑛ℎ𝑛ℎ∗ when 𝑖V ≥ 𝑖V∗,

𝑖V𝑖V∗ ≥
𝑛ℎ𝑛ℎ∗ when 𝑖V ≤ 𝑖V∗,

(𝑛ℎ∗𝑛ℎ − 1)(
𝑛ℎ𝑛ℎ∗ +

𝑖ℎ𝑖ℎ∗) ≤ 0, if 𝑛ℎ ≥ 𝑛ℎ∗.
(37)

Furthermore,

( 𝑛V𝑖ℎ𝑛V∗𝑖ℎ∗ −
𝑖V𝑖V∗)(1 −

𝑖V∗𝑖V ) ≤ 0, (38)

if

𝑛V𝑖ℎ𝑛V∗𝑖ℎ∗ ≤
𝑖V𝑖V∗ when 𝑖V∗ ≤ 𝑖V,

𝑛V𝑖ℎ𝑛V∗𝑖ℎ∗ ≥
𝑖V𝑖V∗ when 𝑖V∗ ≥ 𝑖V.

(39)

Hence, it follows from (34), (35), (36), and (38) that 𝑑𝑉/𝑑𝑡 ≤0 in Ω. Thus, the equality 𝑑𝑉/𝑑𝑡 = 0 holds only when 𝑛ℎ =𝑛ℎ∗, 𝑠ℎ = 𝑠ℎ∗, 𝑖ℎ = 𝑖ℎ∗, 𝑛V = 𝑛V∗, and 𝑖V = 𝑖V∗. Therefore,
the largest compact invariant set in {𝑛ℎ, 𝑠ℎ, 𝑖ℎ, 𝑛V, 𝑖V ∈ Ω :𝑉̇ = 0} is the singleton {𝐸2}, where 𝐸2 is the endemic equilib-
rium. From the LaSalle’s invariant principle [30], the unique
equilibrium 𝐸2 of system (9) is globally asymptomatically
stable for 𝑅0 > 1.
3.3. Sensitivity Analysis. To understand the relative impor-
tance of parameters which are responsible for transmission
and prevalence of malaria disease, described in the model
(9), we perform a sensitivity analysis. Sensitivity indices help
us to measure the relative change in a state variable while
a parameter changes. The normalized sensitivity index of a
variable to a parameter is the ratio of the relative change
in the variable to the relative change in the parameter [27].
We calculate the sensitivity indices of 𝑅0 to assess which
parameter has a great impact on 𝑅0 and hence the greatest
effect in determining whether the disease dies out or persists
with population.

Let 𝑃 be the generic parameter of model (9). We, now
only, derive the normalized sensitivity index of 𝑅0 to each
of the parameters involved in 𝑅0, defined by the ratio of the
relative change in 𝑅0 to the relative change in the parameter𝑃; that is,

Π𝑅0𝑃 = 𝑃𝑅0
𝜕𝑅0𝜕𝑃 . (40)

This index shows how sensitive 𝑅0 is to a change in the
parameter 𝑃. We notice that

Π𝑅0
𝛽
= 𝛽𝑅0

𝜕𝑅0𝜕𝛽 = 𝛽𝑅0√
] (1 − 𝛼) (1 − 𝛿)𝛿 (𝛼 + 𝛾 + 𝜌) 𝜕

√𝛽𝜕𝛽 = 12 . (41)

This indicates that Π𝑅0
𝛽

does not depend on any parameter
value. Similarly, for the other parameters, we have

Π𝑅0] = 12 ,
Π𝑅0𝛼 = −𝛽]𝛼 (1 − 𝛿) (1 + 𝛾 + 𝜌)2𝑅20𝛿 (𝛼 + 𝛾 + 𝜌)2
Π𝑅0𝛾 = − 𝛾2 (𝛼 + 𝛾 + 𝜌) ,
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Table 2: Some parameter values of the malaria model; all parame-
ters are nondimensional.

Parameter Baseline value Source𝛽 0.0220 [31]
] 0.4800 [31]𝛾 0.1096 [32]𝛿 0.2538 [31]𝛼 0.1455 [31]𝜌 0.8182 [31]

Table 3: Sensitivity indices of 𝑅0 to parameters for the malaria
model.

Parameter Sensitivity index𝛽 +0.5000
] +0.5000𝛾 −0.0511𝛿 −0.6266𝛼 −0.1528𝜌 −0.3812

Π𝑅0𝜌 = − 𝜌2 (𝛼 + 𝛾 + 𝜌) ,
Π𝑅0
𝛿
= − 𝛽] (1 − 𝛼)
2𝑅20𝛿 (𝛼 + 𝛾 + 𝜌)2 .

(42)

We evaluate the above sensitivity indices, in Table 3, using
the parameter values in Table 2.The basic reproduction num-
ber, 𝑅0, is most sensitive to the contact rates of human to vec-
tor and vector to human, with 𝜋𝑅0

𝛽
= 0.5000 and 𝜋𝑅0] = 0.5000

as it can be seen in Table 3. This shows that any increase
(decrease) by 10% in 𝛽 or ] will increase (decrease) by 5% in𝑅0. The other parameters with highest sensitivity indices are𝛿, with 𝜋𝑅0

𝛿
= −0.6266, and 𝜌, with 𝜋𝑅0𝜌 = −0.3812. Increasing

(decreasing) 𝛿 by 10%will decrease (increase) in𝑅0 by 6.266%
and increasing (decreasing) 𝜌 by 10%will decrease (increase)
in 𝑅0 by 3.812% or vice versa. The rest of parameters,𝛾 and 𝛼, have less significant effect in 𝑅0.

In conclusion, the vector death rate, the human induced
death rate, and the contact rates are important parameters in
the model which have a significant impact on prevalence and
transmission of themalaria disease; these parameters are able
to control so that an intensive effort/work has to be done to
eradicate the malaria disease from the population. Further-
more, one can understand from the sensitivity indices that
vector control is the most effective control strategy.

4. Application of the Model

In this section, we present more simulations illustrating
the abrupt and periodic variations of the model. We fix
a reasonable parameter values of the model for numerical
simulations.
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Figure 3: Numerical simulation for the fractions of human and
vector population versus time with constant parameter values, 𝜀 =0.01, 𝛼 = 0.01, 𝛽 = 2, 𝜌 = 0.01, 𝛾 = 0.1, 𝛿 = 0.4, and ] = 0.5, and
initial values of the fractions of human host and mosquito vector𝑛ℎ0 = 1.0, 𝑠ℎ0 = 0.99, 𝑖ℎ0 = 0.01, 𝑛V0 = 0.8, 𝑖V0 = 0.5, and 𝐾ℎ = 1.
Steps down the vector population by 50%.

We allow themosquito sustainable level,𝐾V(𝑡) = 𝐾0V𝑔V(𝑡),
noted in Section 3, to vary with respect to time. However, we
first keep 𝐾ℎ fixed in order to investigate the impact of fast
variation in𝐾V on the humanpopulations. Periodic variations
in 𝐾V are shown in these plots for different periods. Plots
of the abrupt changes in the sustainable populations, 𝐾ℎ =𝐾0ℎ𝑔ℎ(𝑡) (see in Section 3) and𝐾V, are located in Figures 3–7,
whereas plots of periodic variations are shown in Figures 8
and 9.

Abrupt changes in the human and mosquito popula-
tions may, for example, be due to intensive spraying of the
mosquitoes some massive emigration (refugee camps) or
immigration for the humans. In Figures 3 and 4, steps down
and up in vector sustainable population about 50% are plot-
ted. These plots show that the transition occurs very fast and
the system adjusts quickly to the new equilibrium. In Figures
5–7 increases about 50% and 100% and decrease about 50% in𝐾ℎ are shown. Step change in humans needs caution since it
may lead to unphysical solutions. In Figure 5, after a transient,
the solution converges to the new equilibrium. An increase
in 𝐾ℎ in Figure 6 may lead to an increase in the fraction of
the human susceptible population for small time intervals,
but not much dramatic change is shown. However, the slow
change in human population after transient is shown in
Figure 7. In the plots of periodic variation, one observes that
the fast variation is quickly adapted by the vector population.
This is because of the fast time scale for the mosquito
population.Most of the figures show that the humans follow a
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Figure 4: Numerical simulation for the fractions of human and
vector population versus time with constant parameter values the
same as in Figure 3 and steps up the vector population by 50%.
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Figure 5: Numerical simulation for the fractions of human and
vector population versus time with constant parameter values the
same as in Figure 3 and steps up the human population by 50%.

slow variations relative to the vectors.Therefore, it is possible
to say that fast variations in𝐾V do not imply large variation in
human population. In general, for periods shorter than 1/𝜇ℎ,
the human population do not in practice show the variations
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Figure 6: Numerical simulation for the fractions of human and
vector population versus time with constant parameter values the
same as in Figure 3 and increasing the human population by 100%.
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Figure 7: Numerical simulation for the fractions of human and
vector population versus time with constant parameter values the
same as in Figure 3 and 𝜀 = 0.001, and steps down the human
population by 50% in the formof a constant drop over a time interval
of length 100.

in the vector populations, but for long periods they do, but
apparently weaker.
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Figure 8: Numerical simulation for the fractions of human and
vector population versus time with constant parameter values, 𝜀 =0.001, 𝛼 = 0.01, 𝛽 = 0.7, 𝜌 = 0.01, 𝛾 = 0.1, 𝛿 = 0.4, and ] = 0.5, and
initial values of the fractions of human host and mosquito vector,𝑛ℎ0 = 1.0, 𝑠ℎ0 = 0.99, 𝑖ℎ0 = 0.01, 𝑛V0 = 0.8, and 𝑖V0 = 0.5, and
the sustainable levels 𝐾ℎ = 1 and periodic variations in 𝐾V given by𝐾V = 1 + 0.5 sin(2𝜋𝑡/15).

5. Conclusions

In this work, we developed and analyzed a logistic malaria
model to study the global stability of both disease-free and
endemic equilibrium points. Mathematically, we formulated
a five-dimensional system of deterministic ordinary differ-
ential equations and defined the domain where the model
is epidemiologically feasible and mathematically well-posed.
The model used the next generation matrix approach to
obtain an explicit formula for a reproduction number, 𝑅0,
which is the expected number of secondary cases produced
by a single infectious individual during its entire period of
infectiousness in a fully susceptible populations.

Qualitative analysis of the model determines stability
analysis of the equilibrium points. Accordingly, we obtained
two diseases-free equilibrium points 𝐸0 and 𝐸1. The equi-
librium point, 𝐸0, is unstable and unphysical, while the
equilibrium point, 𝐸1, becomes both locally and globally
stable whenever𝑅0 < 1 and𝑅0 ≤ 1, respectively.We also have
shown that the endemic equilibrium point, 𝐸2, is globally
asymptotically stable if 𝑅0 > 1. Furthermore, sensitivity
analysis of the model shows that the human induced death
rate, the contact rates (human tomosquito or vice versa), and
mosquito death rate have a significant effect on transmission
and prevalence of the malaria disease. Moreover, numerical
simulations are carried out in the application of the model
to investigate how variations in the sustainable level of the
vectors affect the human population. One can see from these
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Figure 9: Periodic variations in 𝐾V with 𝐾V = 1 + 0.3 sin(𝜋𝑡/6), for𝐾ℎ = 1, and the other parameters and initial values remain fixed as
in Figure 8 apart from 𝛽 = 0.5 over the time interval [0 100].

simulations that fast variations in 𝐾V do not lead to large
variations in the human population.

State Variables, Parameters, Descriptions, and
Their Dimensions of Malaria Model

𝑆ℎ: Number of susceptible humans at a time 𝑡∗𝐼ℎ: Number of infected humans at a time 𝑡∗𝑅ℎ: Number of recovered humans at a time 𝑡∗𝑆V: Number of susceptible mosquitoes at a time 𝑡∗𝐼V: Number of infected mosquitoes at a time 𝑡∗𝑁ℎ: The total human population at a time 𝑡∗𝑁V: The total mosquito population at a time 𝑡∗𝐾ℎ: Sustainable level of human population at a time 𝑡∗𝐾V: Sustainable level of mosquito population at a time 𝑡∗𝜇ℎ: Per capita birth rate of human population.
Dimension: Time−1𝛼ℎ: Per capita natural death rate for humans.
Dimension: Time−1𝜌ℎ: Per capita disease-induced death rate for humans.
Dimension: Time−1𝛽ℎ: The human contact rate. Dimension:
Mosquitoes−1 × Time−1𝛾ℎ: Per capita recovery rate for humans. Time−1𝜇V: Per capita birth rate of mosquitoes. Dimension:
Time−1𝛼V: Per capita natural death rate of mosquitoes.
Dimension: Time−1𝛽V: The mosquito contact rate. Dimension:
Humans−1 × Time−1.
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