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We are devoted to studying a class of nonlinear delay Volterra–Fredholm type dynamic integral inequalities on time scales, which
can provide explicit bounds on unknown functions. The obtained results can be utilized to investigate the qualitative theory of
nonlinear delay Volterra–Fredholm type dynamic equations. An example is also presented to illustrate the theoretical results.

1. Introduction

Since Hilger established the theory of time scales [1], it has
become the research focus of mathematics and engineering
field [2]. Particularly, integral inequalities play an important
role in studying the qualitative properties of dynamic equa-
tions on time scales. For example, the integral inequalities
were employed to investigate the stability of switched systems
or uncertain nonlinear systems [3, 4].

In recent years, many authors have been devoted to study-
ing different kinds of integral inequalities and their applica-
tions [5–24], especially the application of Volterra–Fredholm
integrodifferential system [25–28]. To mention a few, in
[8], Gu and Meng considered the nonlinear dynamic inte-
gral inequalities on time scales and applied the theoretical
results to Volterra–Fredholm integrodifferential system, and
Liu [9] investigated the linear delay Volterra–Fredholm
type dynamic integral inequalities which generalized the
main results of [8]. In [20], Xu and Ma considered
Volterra–Fredholm type integral inequalities in two inde-
pendent variables and their applications in partial differ-
ential equations. Very recently, in [22], Ding and Ahmad
studied Volterra–Fredholm type integral inequalities and
their applications to fractional differential equations. As is
known to us, few authors pay attention to nonlinear delay
Volterra–Fredholm type dynamic integral inequalities on

time scales. This is the main reason why we establish this
topic.

This paper investigates a class of nonlinear dynamic
integral inequalities on time scales, which can be utilized as
effective tools in the study of delay Volterra–Fredholm type
dynamic equations. At the end, we provide an example to
illustrate the main results.

2. Main Results

Throughout the paper, let R be the set of real numbers,
R+ = [0, ∞), 𝐶(𝑀, 𝑆) be the class of all continuous functions
defined on set 𝑀 with range in the set 𝑆, and T be an arbitrary
time scale. The set T𝑘 is derived from T as follows: if T has
a left-scattered maximum 𝑛, then T𝑘 = T − {𝑛}; otherwise,
T𝑘 = T . 𝐼 = [𝑡0, 𝑇1] ∩ T𝑘, where 𝑡0 ∈ T𝑘, 𝑇1 ∈ T𝑘, and 𝑇1 > 𝑡0.𝐶𝑟𝑑 denotes the set of rd-continuous functions.R represents
the set of all regressive and rd-continuous functions, and
R+ = {𝑝 ∈ R : 1 + 𝜇(𝑡)𝑝(𝑡) > 0, 𝑡 ∈ T}. The graininess
function 𝜇 : T 󳨀→ [0, ∞) is defined by 𝜇(𝑡) := 𝜎(𝑡) − 𝑡,
the forward jump operator 𝜎 : T 󳨀→ T by 𝜎(𝑡) = inf{𝑠 ∈
T : 𝑠 > 𝑡}, and the circle plus addition ⊕ is defined by
(𝑝 ⊕ 𝑞)(𝑡) = 𝑝(𝑡) + 𝑞(𝑡) + 𝜇(𝑡)𝑝(𝑡)𝑞(𝑡), 𝑡 ∈ T𝑘.

Next, we introduce some lemmas to establish the main
results.
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Lemma 1 (comparison theorem [2]). Let 𝑢, 𝑏 ∈ 𝐶𝑟𝑑 and 𝑎 ∈
R+. If

𝑢Δ (𝑡) ≤ 𝑎 (𝑡) 𝑢 (𝑡) + 𝑏 (𝑡) , 𝑡 ≥ 𝑡0, 𝑡 ∈ T
𝑘, (1)

then

𝑢 (𝑡) ≤ 𝑢 (𝑡0) 𝑒𝑎 (𝑡, 𝑡0) + ∫𝑡
𝑡0

𝑏 (𝜏) 𝑒𝑎 (𝑡, 𝜎 (𝜏)) Δ𝜏,

𝑡 ≥ 𝑡0, 𝑡 ∈ T
𝑘.

(2)

Lemma 2 (see [2]). Assume that 𝑤 : T × T𝑘 󳨀→ R+ is
continuous at (𝑡, 𝑡) with 𝑡 > 𝑡0 and 𝑡0, 𝑡 ∈ T𝑘, and 𝑤(𝑡, ⋅)
is rd-continuous on [𝑡0, 𝜎(𝑡)]. For any 𝜀 > 0, if there exists a
neighborhood U of 𝑡, independent of 𝜉 ∈ [𝑡0, 𝜎(𝑡)], such that

󵄨󵄨󵄨󵄨󵄨𝑤 (𝜎 (𝑡) , 𝜉) − 𝑤 (𝑠, 𝜉) − 𝑤Δ𝑡 (𝑡, 𝜉) (𝜎 (𝑡) − 𝑠)󵄨󵄨󵄨󵄨󵄨
≤ 𝜀 |𝜎 (𝑡) − 𝑠| , 𝑠 ∈ U,

(3)

where 𝑤Δ𝑡 represents the derivative of 𝜔 with respect to 𝑡, then

V (𝑡) = ∫𝑡
𝑡0

𝑤 (𝑡, 𝜉) Δ𝜉 (4)

implies

VΔ (𝑡) = ∫𝑡
𝑡0

𝑤Δ𝑡 (𝑡, 𝜉) Δ𝜉 + 𝑤 (𝜎 (𝑡) , 𝑡) . (5)

Lemma 3 (see [6]). Let 𝑎 ≥ 0 and 𝑝 ≥ 𝑞 > 0. For any 𝐾 > 0,
we have

𝑎𝑞/𝑝 ≤ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝𝑎 + 𝑝 − 𝑞

𝑝 𝐾𝑞/𝑝. (6)

Theorem 4. Assume that 𝑝 ≥ 𝑞 > 0, 𝑝 ≥ 𝑟 > 0, and 𝜆 ≥
0 are positive constants, 𝑢, 𝑎, 𝑏, 𝑓1, 𝑓2, 𝑔 : 𝐼 󳨀→ R+ are rd-
continuous functions, 𝑎 is nondecreasing, 𝜏 : 𝐼 󳨀→ 𝐼, 𝜏(𝑡) ≤ 𝑡,
−∞ < 𝛼 = inf{𝜏(𝑡), 𝑡 ∈ 𝐼} ≤ 𝑡0, and 𝜑 ∈ 𝐶𝑟𝑑([𝛼, 𝑡0] ∩ T ,R+).
If 𝑢 satisfies

𝑢𝑝 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫𝑡
𝑡0

[𝑓1 (𝑠) 𝑢𝑞 (𝜏 (𝑠))

+ 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠 + 𝜆𝑏 (𝑇1)

⋅ ∫𝑇1
𝑡0

[𝑓1 (𝑠) 𝑢𝑞 (𝜏 (𝑠))

+ 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠, 𝑡 ∈ 𝐼

(7)

with the initial condition

𝑢 (𝑡) = 𝜑 (𝑡) , for 𝑡 ∈ [𝛼, 𝑡0] ,
𝜑 (𝜏 (𝑡)) ≤ 𝑎1/𝑝 (𝑡) for every 𝑡 ∈ 𝐼 with 𝜏 (𝑡) ≤ 𝑡0,

(8)

then

𝑢 (𝑡) ≤ {𝐷 (𝜆, 𝑇1) 𝑒𝐴⊕𝐵 (𝑡, 𝑡0)

+ ∫𝑡
𝑡0

𝑒𝐴⊕𝐵 (𝑡, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠}
1/𝑝

for any 𝐾 > 0, 𝑡 ∈ 𝐼

(9)

under the condition that 𝑒𝐴⊕𝐵(𝑇1, 𝑡0) < (𝜆 + 1)/𝜆 and
𝜇(𝑡)𝐵1(𝑡) < 1, where

𝐴 (𝑡) = 𝑏 (𝑡) [ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝𝑓1 (𝑡) + 𝑟

𝑝 𝐾(𝑟−𝑝)/𝑝𝑓2 (𝑡)

⋅ ∫𝑡
𝑡0

𝑔 (𝜉) Δ𝜉] ,

𝐵 (𝑡) = 𝐵1 (𝑡)
1 − 𝜇 (𝑡) 𝐵1 (𝑡) ,

𝐶 (𝑡) = [1 + 𝜇 (𝑡) 𝐵 (𝑡)] 𝐶1 (𝑡) ,
𝐵1 (𝑡) = 𝑏Δ (𝑡) ∫𝜎(𝑡)

𝑡0

[ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝𝑓1 (𝑠)

+ 𝑟
𝑝 𝐾(𝑟−𝑝)/𝑝𝑓2 (𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠,

𝐶1 (𝑡) = 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[ 𝑝 − 𝑞
𝑝 𝐾𝑞/𝑝𝑓1 (𝑠)

+ 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑓2 (𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡) [ 𝑝 − 𝑞
𝑝

⋅ 𝐾𝑞/𝑝𝑓1 (𝑡) + 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑓2 (𝑡) ∫𝑡

𝑡0

𝑔 (𝜉) Δ𝜉] ,

𝐷 (𝜆, 𝑇1) = 𝑎 (𝑇1) + 𝜆 ∫T1

𝑡0
𝑒𝐴⊕𝐵 (𝑇1, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠

𝜆 + 1 − 𝜆𝑒𝐴⊕𝐵 (𝑇1, 𝑡0) .

(10)

Proof. Define 𝑦(𝑡) by
𝑦 (𝑡) = 𝑎 (𝑇1) + 𝑏 (𝑡)

⋅ ∫𝑡
𝑡0

[𝑓1 (𝑠) 𝑢𝑞 (𝜏 (𝑠)) + 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠
+ 𝜆𝑏 (𝑇1)
⋅ ∫𝑇1
𝑡0

[𝑓1 (𝑠) 𝑢𝑞 (𝜏 (𝑠)) + 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉]
⋅ Δ𝑠, 𝑡 ∈ 𝐼.

(11)

Then, 𝑦(𝑡) ≥ 0, 𝑦(𝑡) is nondecreasing,
𝑢 (𝑡) ≤ 𝑦1/𝑝 (𝑡) , 𝑡 ∈ 𝐼, (12)
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and

𝑦 (𝑡0) = 𝑎 (𝑇1) + 𝜆𝑏 (𝑇1)
⋅ ∫𝑇1
𝑡0

[𝑓1 (𝑠) 𝑢𝑞 (𝜏 (𝑠)) + 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉]
⋅ Δ𝑠.

(13)

Next, we will prove that, for every 𝑡 ∈ 𝐼, 𝑢(𝜏(𝑡)) ≤ 𝑦1/𝑝(𝑡).
Case 1.When 𝜏(𝑡) > 𝑡0, 𝑡 ∈ 𝐼, we obtain

𝑢 (𝜏 (𝑡)) ≤ 𝑦1/𝑝 (𝜏 (𝑡)) ≤ 𝑦1/𝑝 (𝑡) . (14)

Case 2. For 𝑡 ∈ 𝐼 with 𝜏(𝑡) ≤ 𝑡0, by the initial condition (8),
we have

𝑢 (𝜏 (𝑡)) = 𝜑 (𝜏 (𝑡)) ≤ 𝑎1/𝑝 (𝑡) ≤ 𝑎1/𝑝 (𝑇1) ≤ 𝑦1/𝑝 (𝑡) . (15)

From (14) and (15), we always have the relation

𝑢 (𝜏 (𝑡)) ≤ 𝑦1/𝑝 (𝑡) . (16)

By simple computation, it follows from (12) and (16) that

𝑦Δ (𝑡) = 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[𝑓1 (𝑠) 𝑢𝑞 (𝜏 (𝑠))

+ 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡) [𝑓1 (𝑡)

⋅ 𝑢𝑞 (𝜏 (𝑡)) + 𝑓2 (𝑡) ∫𝑡
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] ≤ 𝑏Δ (𝑡)

⋅ ∫𝜎(𝑡)
𝑡0

[𝑓1 (𝑠) 𝑦𝑞/𝑝 (𝑠)

+ 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑦𝑟/𝑝 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡) [𝑓1 (𝑡)

⋅ 𝑦𝑞/𝑝 (𝑡) + 𝑓2 (𝑡) ∫𝑡
𝑡0

𝑔 (𝜉) 𝑦𝑟/𝑝 (𝜉) Δ𝜉] .

(17)

For any 𝐾 > 0, it follows from Lemma 3 that

𝑦𝑞/𝑝 (𝑡) ≤ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝𝑦 (𝑡) + 𝑝 − 𝑞

𝑝 𝐾𝑞/𝑝,

𝑦𝑟/𝑝 (𝑡) ≤ 𝑟
𝑝 𝐾(𝑟−𝑝)/𝑝𝑦 (𝑡) + 𝑝 − 𝑟

𝑝 𝐾𝑟/𝑝.
(18)

This together with (17) implies

𝑦Δ (𝑡) ≤ 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[𝑓1 (𝑠) 𝑦𝑞/𝑝 (𝑠)

+ 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑦𝑟/𝑝 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡) [𝑓1 (𝑡)

⋅ 𝑦𝑞/𝑝 (𝑡) + 𝑓2 (𝑡) ∫𝑡
𝑡0

𝑔 (𝜉) 𝑦𝑟/𝑝 (𝜉) Δ𝜉] ≤ 𝑦 (𝜎 (𝑡))

⋅ 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝𝑓1 (𝑠)

+ 𝑟
𝑝 𝐾(𝑟−𝑝)/𝑝𝑓2 (𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠 + 𝑦 (𝑡) 𝑏 (𝑡) [ 𝑞
𝑝

⋅ 𝐾(𝑞−𝑝)/𝑝𝑓1 (𝑡) + 𝑟
𝑝 𝐾(𝑟−𝑝)/𝑝𝑓2 (𝑡) ∫𝑡

𝑡0

𝑔 (𝜉) Δ𝜉]

+ 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[ 𝑝 − 𝑞
𝑝 𝐾𝑞/𝑝𝑓1 (𝑠)

+ 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑓2 (𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡) [ 𝑝 − 𝑞
𝑝

⋅ 𝐾𝑞/𝑝𝑓1 (𝑡) + 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑓2 (𝑡) ∫𝑡

𝑡0

𝑔 (𝜉) Δ𝜉]
= 𝐴 (𝑡) 𝑦 (𝑡) + 𝐵1 (𝑡) 𝑦 (𝜎 (𝑡)) + 𝐶1 (𝑡) = 𝐴 (𝑡) 𝑦 (𝑡)
+ 𝐵 (𝑡)

1 + 𝜇 (𝑡) 𝐵 (𝑡) (𝑦 (𝑡) + 𝜇 (𝑡) 𝑦Δ (𝑡)) + 𝐶1 (𝑡) ,

(19)

which yields

1
1 + 𝜇 (𝑡) 𝐵 (𝑡) 𝑦Δ (𝑡) ≤ (𝐴 (𝑡) + 𝐵 (𝑡)

1 + 𝜇 (𝑡) 𝐵 (𝑡) ) 𝑦 (𝑡)
+ 𝐶1 (𝑡) ,

(20)

i.e.,

𝑦Δ (𝑡) ≤ (𝐴 ⊕ 𝐵) (𝑡) 𝑦 (𝑡) + 𝐶 (𝑡) , 𝑡 ∈ 𝐼; (21)

where 𝐶(𝑡) = [1 + 𝜇(𝑡)𝐵(𝑡)]𝐶1(𝑡). Note that 𝑦, 𝐶 ∈ 𝐶𝑟𝑑 and𝐴 ⊕ 𝐵 ∈ R+. By Lemma 1, we get

𝑦 (𝑡) ≤ 𝑦 (𝑡0) 𝑒𝐴⊕𝐵 (𝑡, 𝑡0) + ∫𝑡
𝑡0

𝑒𝐴⊕𝐵 (𝑡, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠,
𝑡 ∈ 𝐼.

(22)

From (11) and (13), we get

𝜆 + 1
𝜆 𝑦 (𝑡0) − 1

𝜆 𝑎 (𝑇1) = 𝑦 (𝑇1)
≤ 𝑦 (𝑡0) 𝑒𝐴⊕𝐵 (𝑇1, 𝑡0)

+ ∫𝑇1
𝑡0

𝑒𝐴⊕𝐵 (𝑇1, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠;
(23)
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i.e.,

𝑦 (𝑡0) ≤ 𝐷 (𝜆, 𝑇1) . (24)

Therefore,

𝑦 (𝑡) ≤ 𝐷 (𝜆, 𝑇1) 𝑒𝐴⊕𝐵 (𝑡, 𝑡0)
+ ∫𝑡
𝑡0

𝑒𝐴⊕𝐵 (𝑡, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠, 𝑡 ∈ 𝐼. (25)

Noting that 𝑢(𝑡) ≤ 𝑦1/𝑝(𝑡), we obtain the required inequality
(9). The proof is complete.

Remark 5. [8, Theorem 3] is the special case of Theorem 4
with 𝑎(𝑡) ≡ 𝑢0, 𝑏(𝑡) ≡ 1, 𝜆 = 𝑝 = 𝑞 = 𝑟 = 1, and 𝜏(𝑡) = 𝑡.
Remark 6. Theorem 4 generalizes [9, Theorem 3.1] to the
nonlinear case.

Remark 7. From (9), we can obtain that the upper bound
of 𝑢(𝑡) depends on parameters 𝑝, 𝑞, 𝑟, and 𝜆. For practical
system, the above parameters are easily to be obtained;
therefore the theoretical upper bound can be computed by
(9).

If we take𝜆 = 1/𝑏(𝑇1), 𝑏(𝑇1) ̸= 0, then the following result
can be obtained.

Corollary 8. Let 𝑝, 𝑞, 𝑟, 𝑢, 𝑎, 𝑏, 𝑓1, 𝑓2, 𝑔, 𝜏, 𝜑 be defined as in
Theorem 4 and 𝑢 satisfy

𝑢𝑝 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡)
⋅ ∫𝑡
𝑡0

[𝑓1 (𝑠) 𝑢𝑞 (𝜏 (𝑠)) + 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉]
⋅ Δ𝑠
+ ∫𝑇1
𝑡0

[𝑓1 (𝑠) 𝑢𝑞 (𝜏 (𝑠)) + 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉]
⋅ Δ𝑠, 𝑡 ∈ 𝐼

(26)

and (8). If 𝑒𝐴⊕𝐵(𝑇1, 𝑡0) < 1 + 𝑏(𝑇1) and 𝜇(𝑡)𝐵1(𝑡) < 1, then
𝑢 (𝑡) ≤ {𝐷 (𝜆, 𝑇1) 𝑒𝐴⊕𝐵 (𝑡, 𝑡0)

+ ∫𝑡
𝑡0

𝑒𝐴⊕𝐵 (𝑡, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠}
1/𝑝

for any 𝐾 > 0, 𝑡 ∈ 𝐼,

(27)

where 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐵1(𝑡), 𝐶1(𝑡) are defined as inTheorem 4
and

𝐷 (𝜆, 𝑇1)

= 𝑎 (𝑇1) 𝑏 (𝑇1) + ∫𝑇1
𝑡0

𝑒𝐴⊕𝐵 (𝑇1, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠
1 + 𝑏 (𝑇1) − 𝑒𝐴⊕𝐵 (𝑇1, 𝑡0) .

(28)

Theorem 9. Suppose that 𝑝 ≥ 𝑞 > 0, 𝑝 ≥ 𝑟 > 0, and 𝜆 ≥ 0
are positive constants, 𝑢, 𝑎, 𝑏, 𝑔 : 𝐼 󳨀→ R+ are rd-continuous
functions, 𝑎 is nondecreasing, V(𝑡, 𝑠), 𝑤(𝑡, 𝑠) are defined as in
Lemma 2 such that VΔ𝑡 (𝑡, 𝑠) ≥ 0 and 𝑤Δ𝑡 (𝑡, 𝑠) ≥ 0 for 𝑡 ≥ 𝑠,
𝜏 : 𝐼 󳨀→ 𝐼, 𝜏(𝑡) ≤ 𝑡, −∞ < 𝛼 = inf{𝜏(𝑡), 𝑡 ∈ 𝐼} ≤ 𝑡0, and𝜑 ∈ 𝐶𝑟𝑑([𝛼, 𝑡0] ∩ T ,R+). If 𝑢 satisfies

𝑢𝑝 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫𝑡
𝑡0

[V (𝑡, 𝑠) 𝑢𝑞 (𝜏 (𝑠))

+ 𝑤 (𝑡, 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠 + 𝜆𝑏 (𝑇1)

⋅ ∫𝑇1
𝑡0

[V (𝑇1, 𝑠) 𝑢𝑞 (𝜏 (𝑠))

+ 𝑤 (𝑇1, 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠, 𝑡 ∈ 𝐼

(29)

and (8), then

𝑢 (𝑡) ≤ {𝐷 (𝜆, 𝑇1) 𝑒𝐴⊕𝐵 (𝑡, 𝑡0)

+ ∫𝑡
𝑡0

𝑒𝐴⊕𝐵 (𝑡, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠}
1/𝑝

for any 𝐾 > 0, 𝑡 ∈ 𝐼

(30)

under the condition that 𝑒𝐴⊕𝐵(𝑇1, 𝑡0) < (𝜆 + 1)/𝜆 and
𝜇(𝑡)𝐵2(𝑡) < 1, where

𝐴 (𝑡) = 𝑏 (𝑡) [ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝V (𝜎 (𝑡) , 𝑡) + 𝑟

𝑝
⋅ 𝐾(𝑟−𝑝)/𝑝𝑤 (𝜎 (𝑡) , 𝑡) ∫𝑡

𝑡0

𝑔 (𝜉) Δ𝜉 + ∫𝑡
𝑡0

(VΔ𝑡 (𝑡, 𝑠)

+ 𝑤Δ𝑡 (𝑡, 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) Δ𝜉) Δ𝑠] ,

𝐵 (𝑡) = 𝐵2 (𝑡)
1 − 𝜇 (𝑡) 𝐵2 (𝑡) ,

𝐶 (𝑡) = [1 + 𝜇 (𝑡) 𝐵 (𝑡)] 𝐶2 (𝑡) ,

𝐵2 (𝑡) = 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝V (𝜎 (𝑡) , 𝑠) + 𝑟

𝑝
⋅ 𝐾(𝑟−𝑝)/𝑝𝑤 (𝜎 (𝑡) , 𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠,

𝐶2 (𝑡) = 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[ 𝑝 − 𝑞
𝑝 𝐾𝑞/𝑝V (𝜎 (𝑡) , 𝑠) + 𝑝 − 𝑟

𝑝
⋅ 𝐾𝑟/𝑝𝑤 (𝜎 (𝑡) , 𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡) [ 𝑝 − 𝑞
𝑝
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⋅ 𝐾𝑞/𝑝V (𝜎 (𝑡) , 𝑡) + 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑤 (𝜎 (𝑡) , 𝑡)

⋅ ∫𝑡
𝑡0

𝑔 (𝜉) Δ𝜉 + ∫𝑡
𝑡0

( 𝑝 − 𝑞
𝑝 𝐾𝑞/𝑝VΔ𝑡 (𝑡, 𝑠)

+ 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑤Δ𝑡 (𝑡, 𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉) Δ𝑠] ,

𝐷 (𝜆, 𝑇1) = 𝑎 (𝑇1) + 𝜆 ∫𝑇1
𝑡0

𝑒𝐴⊕𝐵 (𝑇1, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠
𝜆 + 1 − 𝜆𝑒𝐴⊕𝐵 (𝑇1, 𝑡0) .

(31)

Proof. Define 𝑧(𝑡) by
𝑧 (𝑡) = 𝑎 (𝑇1) + 𝑏 (𝑡) ∫𝑡

𝑡0

[V (𝑡, 𝑠) 𝑢𝑞 (𝜏 (𝑠))

+ 𝑤 (𝑡, 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠 + 𝜆𝑏 (𝑇1)

⋅ ∫𝑇1
𝑡0

[V (𝑇1, 𝑠) 𝑢𝑞 (𝜏 (𝑠))

+ 𝑤 (𝑇1, 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠, 𝑡 ∈ 𝐼.

(32)

Then, 𝑧(𝑡) ≥ 0 for 𝑡 ∈ 𝐼, 𝑧(𝑡) is nondecreasing,
𝑢 (𝑡) ≤ 𝑧1/𝑝 (𝑡) , (33)

and

𝑧 (𝑡0) = 𝑎 (𝑇1) + 𝜆𝑏 (𝑇1) ∫𝑇1
𝑡0

[V (𝑇1, 𝑠) 𝑢𝑞 (𝜏 (𝑠))

+ 𝑤 (𝑇1, 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠.
(34)

It is not difficult to obtain that

𝑢 (𝜏 (𝑡)) ≤ 𝑧1/𝑝 (𝑡) . (35)

Taking the derivative of 𝑧(𝑡) and by Lemma 2, we get

𝑧Δ (𝑡) = 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[V (𝜎 (𝑡) , 𝑠) 𝑢𝑞 (𝑠)

+ 𝑤 (𝜎 (𝑡) , 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡)

⋅ [V (𝜎 (𝑡) , 𝑡) 𝑢𝑞 (𝜏 (𝑡)) + 𝑤 (𝜎 (𝑡) , 𝑡)

⋅ ∫𝑡
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] + 𝑏 (𝑡)

⋅ ∫𝑡
𝑡0

[VΔ𝑡 (𝑡, 𝑠) 𝑢𝑞 (𝜏 (𝑠))

+ 𝑤Δ𝑡 (𝑡, 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑢𝑟 (𝜉) Δ𝜉] Δ𝑠.

(36)

It follows from (33) and (35) that

𝑧Δ (𝑡) ≤ 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[V (𝜎 (𝑡) , 𝑠) 𝑧𝑞/𝑝 (𝑠)

+ 𝑤 (𝜎 (𝑡) , 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑧𝑟/𝑝 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡)

⋅ [V (𝜎 (𝑡) , 𝑡) 𝑧𝑞/𝑝 (𝑡) + 𝑤 (𝜎 (𝑡) , 𝑡)

⋅ ∫𝑡
𝑡0

𝑔 (𝜉) 𝑧𝑟/𝑝 (𝜉) Δ𝜉] + 𝑏 (𝑡)

⋅ ∫𝑡
𝑡0

[VΔ𝑡 (𝑡, 𝑠) 𝑧𝑞/𝑝 (𝑠)

+ 𝑤Δ𝑡 (𝑡, 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 𝑧𝑟/𝑝 (𝜉) Δ𝜉] Δ𝑠.

(37)

By Lemma 3, we get

𝑧𝑞/𝑝 (𝑡) ≤ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝𝑧 (𝑡) + 𝑝 − 𝑞

𝑝 𝐾𝑞/𝑝,

𝑧𝑟/𝑝 (𝑡) ≤ 𝑟
𝑝 𝐾(𝑟−𝑝)/𝑝𝑧 (𝑡) + 𝑝 − 𝑟

𝑝 𝐾𝑟/𝑝
(38)

for any 𝐾 > 0. Combining (37) with (38) yields

𝑧Δ (𝑡) ≤ 𝑧 (𝜎 (𝑡)) 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝V (𝜎 (𝑡) , 𝑠)

+ 𝑟
𝑝 𝐾(𝑟−𝑝)/𝑝𝑤 (𝜎 (𝑡) , 𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠 + 𝑧 (𝑡) 𝑏 (𝑡)

⋅ [ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝V (𝜎 (𝑡) , 𝑡) + 𝑟

𝑝 𝐾(𝑟−𝑝)/𝑝𝑤 (𝜎 (𝑡) , 𝑡)

⋅ ∫𝑡
𝑡0

𝑔 (𝜉) Δ𝜉 + ∫𝑡
𝑡0

(VΔ𝑡 (𝑡, 𝑠)

+ 𝑤Δ𝑡 (𝑡, 𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) Δ𝜉) Δ𝑠] + 𝑏Δ (𝑡)

⋅ ∫𝜎(𝑡)
𝑡0

[ 𝑝 − 𝑞
𝑝 𝐾𝑞/𝑝V (𝜎 (𝑡) , 𝑠) + 𝑝 − 𝑟

𝑝
⋅ 𝐾𝑟/𝑝𝑤 (𝜎 (𝑡) , 𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡) [ 𝑝 − 𝑞
𝑝

⋅ 𝐾𝑞/𝑝V (𝜎 (𝑡) , 𝑡) + 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑤 (𝜎 (𝑡) , 𝑡)

⋅ ∫𝑡
𝑡0

𝑔 (𝜉) Δ𝜉 + ∫𝑡
𝑡0

( 𝑝 − 𝑞
𝑝 𝐾𝑞/𝑝VΔ𝑡 (𝑡, 𝑠)

+ 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑤Δ𝑡 (𝑡, 𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉) Δ𝑠] = 𝐴 (𝑡) 𝑧 (𝑡)
+ 𝐵2 (𝑡) 𝑧 (𝜎 (𝑡)) + 𝐶2 (𝑡) .

(39)
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The remainder of the proof is similar to that of Theorem 4,
and hence we omit it here.

Remark 10. In [14], we investigated the integral inequalities
with mixed nonlinearities on time scales; however, the delay
terms are not considered; furthermore, the inequalities con-
sidered in this paper are Volterra–Fredholm type.The results
established in Theorems 4 and 9 generalize [14, Theorems 2.1
and 2.2].

3. Application

In this part, we present an example to illustrate the theoretical
results.

Example 11. Consider the delay Volterra–Fredholm type
integral equation on time scales

𝑢𝑝 (𝑡)
= 𝑎 (𝑡)

+ 𝑏 (𝑡) ∫𝑡
𝑡0

𝐹 (𝑠, 𝑢 (𝜏 (𝑠)) , ∫𝑠
𝑡0

𝐺 (𝜉, 𝑢 (𝜉)) Δ𝜉) Δ𝑠

+ ∫𝑇1
𝑡0

𝐻 (𝑠, 𝑢 (𝜏 (𝑠)) , ∫𝑠
𝑡0

𝐿 (𝜉, 𝑢 (𝜉)) Δ𝜉) Δ𝑠,
𝑡 ∈ 𝐼 = [𝑡0, 𝑇1]

(40)

with the initial condition

𝑢 (𝑡) = 𝜑 (𝑡) , for 𝑡 ∈ [𝛼, 𝑡0] ,
󵄨󵄨󵄨󵄨𝜑 (𝜏 (𝑡))󵄨󵄨󵄨󵄨 ≤ |𝑎 (𝑡)|1/𝑝

for every 𝑡 ∈ 𝐼 with 𝜏 (𝑡) ≤ 𝑡0,
(41)

where 𝑢(𝑡) and 𝑢(𝜏(𝑡)) defined on the interval 𝐼 are the state
and state delay variables, respectively. 𝑎, 𝑏 : 𝐼 󳨀→ R, |𝑎| is
nondecreasing, 𝑏(𝑇1) ̸= 0, 𝑇1 ∈ T , and 𝑇1 > 𝑡0. 𝜏 : 𝐼 󳨀→ 𝐼
satisfying 𝜏(𝑡) ≤ 𝑡, −∞ < 𝛼 = inf{𝜏(𝑡), 𝑡 ∈ 𝐼} ≤ 𝑡0, and𝜑 ∈ 𝐶𝑟𝑑([𝛼, 𝑡0] ∩ T ,R), 𝐹, 𝐻 : 𝐼 × R × R 󳨀→ R, and 𝐺, 𝐿 :
𝐼 × R 󳨀→ R are continuous functions.

Suppose that

|𝐹 (𝑡, 𝑢, V)| ≤ 𝑓1 (𝑡) |𝑢|𝑞 + 𝑓2 (𝑡) |V| ,
|𝐺 (𝑡, 𝑢)| ≤ 𝑔 (𝑡) |𝑢|𝑟 ,

|𝐻 (𝑡, 𝑢, V)| ≤ 𝑓1 (𝑡) |𝑢|𝑞 + 𝑓2 (𝑡) |V| ,
|𝐿 (𝑡, 𝑢)| ≤ 𝑔 (𝑡) |𝑢|𝑟 ,

(42)

where 𝑝 ≥ 𝑞 > 0 and 𝑝 ≥ 𝑟 > 0 are real constants and 𝑓1,𝑓2, and 𝑔 are nonnegative rd-continuous functions on 𝐼. If

𝑒𝐴⊕𝐵(𝑇1, 𝑡0) < 1 + |𝑏(𝑇1)| and 𝜇(𝑡)𝐵1(𝑡) < 1, then the solution
𝑢(𝑡) of (40) satisfies

𝑢 (𝑡) ≤ {𝐷 (𝜆, 𝑇1) 𝑒𝐴⊕𝐵 (𝑡, 𝑡0)

+ ∫𝑡
𝑡0

𝑒𝐴⊕𝐵 (𝑡, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠}
1/𝑝

for any 𝐾 > 0, 𝑡 ∈ 𝐼,

(43)

where

𝐴 (𝑡) = 𝑏 (𝑡) [ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝𝑓1 (𝑡) + 𝑟

𝑝 𝐾(𝑟−𝑝)/𝑝𝑓2 (𝑡)

⋅ ∫𝑡
𝑡0

𝑔 (𝜉) Δ𝜉] ,

𝐵 (𝑡) = 𝐵1 (𝑡)
1 − 𝜇 (𝑡) 𝐵1 (𝑡) ,

𝐶 (𝑡) = [1 + 𝜇 (𝑡) 𝐵 (𝑡)] 𝐶1 (𝑡) ,
𝐵1 (𝑡) = 𝑏Δ (𝑡) ∫𝜎(𝑡)

𝑡0

[ 𝑞
𝑝 𝐾(𝑞−𝑝)/𝑝𝑓1 (𝑠)

+ 𝑟
𝑝 𝐾(𝑟−𝑝)/𝑝𝑓2 (𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠,

𝐶1 (𝑡) = 𝑏Δ (𝑡) ∫𝜎(𝑡)
𝑡0

[ 𝑝 − 𝑞
𝑝 𝐾𝑞/𝑝𝑓1 (𝑠)

+ 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑓2 (𝑠) ∫𝑠

𝑡0

𝑔 (𝜉) Δ𝜉] Δ𝑠 + 𝑏 (𝑡) [ 𝑝 − 𝑞
𝑝

⋅ 𝐾𝑞/𝑝𝑓1 (𝑡) + 𝑝 − 𝑟
𝑝 𝐾𝑟/𝑝𝑓2 (𝑡) ∫𝑡

𝑡0

𝑔 (𝜉) Δ𝜉] ,
𝐷 (𝜆, 𝑇1)

=
󵄨󵄨󵄨󵄨𝑎 (𝑇1) 𝑏 (𝑇1)󵄨󵄨󵄨󵄨 + ∫𝑇1

𝑡0
𝑒𝐴⊕𝐵 (𝑇1, 𝜎 (𝑠)) 𝐶 (𝑠) Δ𝑠

1 + 󵄨󵄨󵄨󵄨𝑏 (𝑇1)󵄨󵄨󵄨󵄨 − 𝑒𝐴⊕𝐵 (𝑇1, 𝑡0) .

(44)

Actually, by (40), 𝑢(𝑡) satisfies
|𝑢 (𝑡)|𝑝 ≤ |𝑎 (𝑡)| + |𝑏 (𝑡)|

⋅ ∫𝑡
𝑡0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐹 (𝑠, 𝑢 (𝜏 (𝑠)) , ∫𝑠
𝑡0

𝐺 (𝜉, 𝑢 (𝜉)) Δ𝜉)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Δ𝑠

+ ∫𝑇1
𝑡0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐻 (𝑠, 𝑢 (𝜏 (𝑠)) , ∫𝑠
𝑡0

𝐿 (𝜉, 𝑢 (𝜉)) Δ𝜉)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Δ𝑠

≤ |𝑎 (𝑡)| + |𝑏 (𝑡)| ∫𝑡
𝑡0

[𝑓1 (𝑠) |𝑢 (𝜏 (𝑠))|𝑞

+ 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 󵄨󵄨󵄨󵄨𝑢 (𝜉)󵄨󵄨󵄨󵄨𝑟 Δ𝜉] Δ𝑠
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+ ∫𝑇1
𝑡0

[𝑓1 (𝑠) |𝑢 (𝜏 (𝑠))|𝑞

+ 𝑓2 (𝑠) ∫𝑠
𝑡0

𝑔 (𝜉) 󵄨󵄨󵄨󵄨𝑢 (𝜉)󵄨󵄨󵄨󵄨𝑟 Δ𝜉] Δ𝑠, 𝑡 ∈ 𝐼.
(45)

It is not difficult to verify (43) is satisfied by Corollary 8.
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