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This paper studies a damped Frenkel–Kontorovamodel with periodic boundary condition. By using Nash–Moser iteration scheme,
we prove that such model has a family of smooth traveling wave solutions.

1. Introduction

The present work concerns the existence of traveling wave
solutions for the following underdamped Frenkel–Kontorova
model:

𝜓󸀠󸀠𝑗 + Γ𝜓󸀠𝑗 + sin (𝜓𝑗) = 𝐹 + 𝐾 [𝜓𝑗+1 − 2𝜓𝑗 + 𝜓𝑗−1] ,
∀𝑗 ∈ Z, (1)

with periodic boundary condition

𝜓𝑗+𝑛 (𝑡) = 𝜓𝑗 (𝑡) + 2𝑚𝜋, ∀𝑗 ∈ Z, (2)

where the parameters Γ > 0, 𝐾 > 0, 𝐹 > 0, and𝑚 ≥ 1.
In the last decades, there has been large growth in

the study of the existence and stability of traveling wave
solutions for lattice systems including Frenkel–Kontorova
model (discrete sine-Gordon equations), which arises from
many physical systems, such as circular arrays of Josephson
junctions, glassy materials, sliding friction, adsorbate layer
on the surface of a crystal, ionic conductors, and mechanical
interpretation as a model for a ring of pendula coupled by
torsional springs (see [1–4]). When Γ = 0, system (4) is
conservative. Baesens and MacKay [5] proved the existence
and also global stability of traveling waves. When Γ > 0,
system (4) is dissipative. Under the condition Γ > 2√2𝐾 + 1
and 𝜖 = 1, Baesens andMacKay [6] showed that the traveling
wave solution is globally stable if and only if (4) and (2) do
not have stationary solutions. Levi in [7] pointed out that

the local stability of traveling waves can be obtained by the
monotonicity method in [8]. Under the condition Γ > 2√2𝐾
and 𝐹 ≥ 𝐹0 > 1, Qin et al. [9] investigated the stability of
single-wave-form for the underdamped Frenkel–Kontorova
model (4) by the monotonicity method.

Recently, by using Schauder fixed point theorem, Mirollo
and Rosen [10] and Katriel [11] have obtained a series of
results about the existence of traveling waves for (4) with
periodic boundary condition (2). Katriel [11] proved the
following:(1) Fixing any Γ > 0 and 𝐾 > 0 and given any velocity
V > 0, there exists a traveling wave solution of (4) and (2)
with velocity V for an appropriate 𝐹 > 0.(2) For any 𝐹 > 1 there exists a traveling wave solution of
(4) and (2).(3) Assume that 𝑛 does not divide 𝑚. Fixing any 𝐹 > 0
and Γ̃ > 0, for all 𝐾 sufficiently large there exists a traveling
wave solution of (4) and (2) for any 𝐹 ≥ 𝐹 > 0 and Γ ≥ Γ̃ > 0.(4) Fixing any 𝐹 > 0 and Γ̃ > 0, for all Γ > 0 sufficiently
small there exists a traveling wave solution of (4) and (2) for
any 𝐹 ≥ 𝐹 > 0 and 0 < 𝐾 ≤ 𝐾̃.

In the final of Katriel’s paper, he gave several open
problems. One of them is the following: Is it true that, fixingΓ > 0 and 𝐾 > 0, for sufficiently small 𝐹 > 0 and small
applied force, a traveling wave does exist? If 𝑛 divides𝑚, what
is the situation of the existence of traveling waves for (4) with
periodic boundary condition (2)? In fact, if 𝑛 divides𝑚, there
appears the “small divisor.” Then, the problem is difficult.
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Levi et al. [12] showed that, for fixing Γ > 0, (4) possesses
a traveling wave only when 𝐹 exceeds a positive critical value.

In this paper, we will construct a new Nash–Moser
iteration to answer the open problem mentioned above. This
method has been used in solving the existence of periodic
solutions for nonlinear elliptic equations [13], nonlinear wave
equations [14–18], and standingwaves [19].Here, we try to use
this method to study the existence of traveling wave solutions
for dissipative and conservative lattice systems.

Instead of looking for solutions of (1) in a shrinking
neighborhood of zero, it is a convenient device to perform
the rescaling

𝜓 󳨀→ 𝜖𝜓, 𝜖 > 0 (3)

having

𝜓󸀠󸀠𝑗 + Γ𝜓󸀠𝑗 + 𝜖−1sin (𝜖𝜓𝑗)
= 𝜖−1𝐹 + 𝐾 [𝜓𝑗+1 − 2𝜓𝑗 + 𝜓𝑗−1] , ∀𝑗 ∈ Z. (4)

To overcome the “small divisor” problem, we need the
following nonresonance conditions:

(NR1) O𝛾,𝜏 fl {𝜔 ∈ Ω : |𝑘V (𝜔) − 1|
≥ 𝛾

|𝑘|𝜏 or |𝑘V (𝜔) + 1| ≥ 𝛾
|𝑘|𝜏 ∀𝑘 ∈ Z, 𝑘 ̸= 0} ̸= 0,

(NR2) O𝛾,𝜏 fl {𝜔 ∈ Ω : |𝑘V (𝜔) ± 1|
≥ 𝛾

|𝑘|𝜏 or 󵄨󵄨󵄨󵄨󵄨𝑘V (𝜔) ± 𝑖√1 − 4𝐾󵄨󵄨󵄨󵄨󵄨 ≥ 𝛾
|𝑘|𝜏 ∀𝑘 ∈ Z, 𝑘

̸= 0} ̸= 0,

(5)

whereΩ ⊂ R is a bounded region.
It is shown in [20] that if, for some 𝑙 > 0,

󵄨󵄨󵄨󵄨󵄨V(𝑙) (𝜔)󵄨󵄨󵄨󵄨󵄨 ≥ 𝑑 > 0 on 𝜔 ∈ Ω, (6)

then the Lebesgue measure

󵄨󵄨󵄨󵄨󵄨Ω \ O𝛾,𝜏󵄨󵄨󵄨󵄨󵄨 = 𝑂 (𝛾1/𝑙) 󳨀→ 0,
󵄨󵄨󵄨󵄨󵄨Ω \ O𝛾,𝜏󵄨󵄨󵄨󵄨󵄨 = 𝑂 (𝛾1/𝑙) 󳨀→ 0

as 𝛾 󳨀→ 0.
(7)

Now, we state our main result.

Theorem 1. Under the assumption (NR1), fixing any 𝐾 > 0
and sufficient small 𝐹 > 0, there exist Γ0 > 0, 𝜖0 > 0, and0 < 𝛾 < 1 ≤ 𝜏, such that, for any 𝜁 fl VΓ ∈ [0, Γ0], 𝜖 ∈[0, 𝜖0], and 𝜔 ∈ O𝛾,𝜏, (4) with periodic boundary condition (2)
possesses a unique traveling wave solution 𝑢(𝜃; 𝜁) + 𝜃, where𝜃 ∈ T fl R/2𝜋.

When Γ = 0, (4) is
𝜓󸀠󸀠𝑗 + 𝜖−1 sin (𝜖𝜓𝑗) = 𝜖−1𝐹 + 𝐾 [𝜓𝑗+1 − 2𝜓𝑗 + 𝜓𝑗−1] ,

∀𝑗 ∈ Z. (8)

The corresponding Hamiltonian of (8) is

𝐻 = ∑
𝑗

12 (𝑑𝜓𝑗𝑑𝑡 )2 + 𝜖−1 (1 − cos 𝜖𝜓𝑗) + 𝜖−1𝐹𝜓𝑗
+𝑊({𝜓𝑗}) ,

(9)

where the nearest-neighbor coupling potential is

𝑊({𝜓𝑗}) = 𝐾2 (𝜓𝑗+1 − 𝜓𝑗)2 . (10)

We have the following result about the existence of
traveling waves for (8).

Theorem 2. Under the assumption (NR2), fixing any 𝐾 > 0,
there exist 𝐹∗ > 0, 𝜖0 > 0, and 0 < 𝛾 < 1 ≤ 𝜏, such that, for any𝜖 ∈ [0, 𝜖0] and 𝜔 ∈ O𝛾,𝜏, (4) with periodic boundary condition
(2) possesses a unique traveling wave solution 𝑢(𝜃; 𝜁)+𝜃, where𝜃 ∈ T fl R/2𝜋.

This paper is organized as follows. In Section 2, we first
establish a Nash–Moser theorem for the case of Γ > 0. Then,
we apply this result to prove our main results. The case of Γ =0 is also considered.
2. Proof of the Main Results

2.1. The Case of Γ > 0. In numerical simulations or experi-
mental works on (4) with periodic boundary condition (2), it
is observed that solutions often converge to a traveling wave

𝜓𝑗 (𝑡) = 𝜑 (𝑡 + 𝑗𝑚𝑛 𝑇) , (11)

where the waveform 𝜑 : R → R is a function satisfying

𝜑 (𝑡 + 𝑇) = 𝜑 (𝑡) + 2𝜋, ∀𝑡 ∈ R. (12)

𝜑 is a waveform if and only if it satisfies (12) and

𝜑󸀠󸀠 (𝑡) + Γ𝜑󸀠 (𝑡) + 𝜖−1 sin (𝜖𝜑 (𝑡))
= 𝜖−1𝐹

+ 𝐾[𝜑(𝑡 + 𝑚𝑛 𝑇) − 2𝜑 (𝑡) + 𝜑 (𝑡 − 𝑚𝑛 𝑇)] .
(13)

Hence, as in [11], we investigate the traveling wave of the type

𝜑 (𝑡) = 𝑢 (V𝑡) + V𝑡, (14)

where the wave velocity V = 2𝜋/𝑇 = 2𝜋𝜔 and 𝑢 satisfies

𝑢 (𝜃 + 2𝜋) = 𝑢 (𝜃) , ∀𝜃 ∈ R. (15)
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Inserting (14) into (13), we get

V2𝑢󸀠󸀠 (𝜃) + 𝜁𝑢󸀠 (𝜃) + 𝜖−1 sin (𝜖𝜃 + 𝜖𝑢 (𝜃))
= 𝐾 [𝑢 (𝜃 + 2𝜋𝑚𝑛 ) − 2𝑢 (𝜃) + 𝑢 (𝜃 − 2𝜋𝑚𝑛 )]

+ 𝜖−1𝐹 − 𝜁.
(16)

Write

sin (𝜖𝜃 + 𝜖𝑢 (𝜃)) = sin (𝜖𝜃) + 2𝜖 cos (𝜖𝜃) 𝑢 + 𝑔 (𝑢) . (17)

We consider the following space:

𝑋𝜎 fl {𝑢 (𝜃) fl ∑
𝑘∈Z2

𝑢𝑘𝑒𝑖𝑘⋅𝜃 | ‖𝑢‖2𝜎 fl ∑
𝑘∈Z

󵄨󵄨󵄨󵄨𝑢𝑘󵄨󵄨󵄨󵄨2 𝑒2𝜎|𝑘|

< ∞} ,
(18)

where 𝑢𝑘 denotes the 𝑘the Fourier coefficient.
Obviously, for a nested family of Banach spaces {𝑋𝜎 : 𝜎 ≥0}, there holds

𝑋𝜎2 ⊂ 𝑋𝜎1 ,
‖𝑢‖𝜎1 ≤ ‖𝑢‖𝜎2

∀0 ≤ 𝜎1 ≤ 𝜎2.
(19)

For 𝜎 ≥ 0, the space 𝑋𝜎 is Banach algebra with respect
to multiplication of functions; that is, if 𝑢1, 𝑢2 ∈ 𝑋𝜎, then𝑢1𝑢2 ∈ 𝑋𝜎 and there exists a positive constant 𝐶, such that󵄩󵄩󵄩󵄩𝑢1𝑢2󵄩󵄩󵄩󵄩𝜎 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩𝜎 󵄩󵄩󵄩󵄩𝑢2󵄩󵄩󵄩󵄩𝜎 . (20)

It is obviously that each function in𝑋𝜎 has a bounded analytic
extension in the complex multistrip |Im 𝜃| < 𝜎, where 𝜃 ∈𝐶. By the definition of the space𝑋𝜎, the following inequality
holds: 󵄩󵄩󵄩󵄩󵄩𝜕ℎ𝜃𝑢󵄩󵄩󵄩󵄩󵄩𝜎 ≤ 󵄩󵄩󵄩󵄩󵄩𝜕𝑙𝜃𝑢󵄩󵄩󵄩󵄩󵄩𝜎 , ∀ℎ, 𝑙 ∈ 𝑁 : ℎ ≤ 𝑙. (21)

For uniqueness, we assume that 𝑢 satisfies

⟨𝑢⟩ fl ∫
T

𝑢 (𝑠) 𝑑𝑠 = 0, T = R2𝜋 . (22)

Now we define a function space with zero average by

𝑋0𝜎 fl {𝑢 ∈ 𝑋𝜎 s.t. 𝑢0 = ⟨𝑢⟩ = 0} , (23)

as the closed subspace of𝑋𝜎.
Let 𝜎̃ > 𝜎 > 0. Then, we define𝑌𝜎 denotes the set of functions 𝑢 ∈ C∞(T × [0, Γ0]) such

that, for all 𝜁 ∈ [0, Γ0], 𝜃 → 𝑢(𝜃; 𝜁) ∈ 𝑋0𝜎.
W𝜎 denotes the set 𝑌𝜎 × C∞([0, Γ0]).
Denote operatorAfl󸀠. Then (16) can be written as

V2A2𝑢 (𝜃) + 𝜁A𝑢 (𝜃) + sin (𝜃 + 𝑢 (𝜃))
= 𝐹 − 𝜁

+ 𝐾[𝑢(𝜃 + 2𝜋𝑚𝑛 ) − 2𝑢 (𝜃) + 𝑢 (𝜃 − 2𝜋𝑚𝑛 )] .
(24)

We define an operatorL : 𝑋𝜎 → 𝑋𝜎 by
L𝑢

fl V2A2𝑢 (𝜃) + 𝜁A𝑢 (𝜃)
− 𝐾[𝑢 (𝜃 + 2𝜋𝑚𝑛 ) − 2𝑢 (𝜃) + 𝑢 (𝜃 − 2𝜋𝑚𝑛 )]
+ (1 − 𝑖Γ) .

(25)

Then, (24) can be written as

F (𝑢, 𝜁) = L𝑢 + 𝜖 sin (𝜃 + 𝑢 (𝜃)) + (𝑖Γ − 1) 𝑢 (𝜃) + 𝜁
− 𝐹 = 0. (26)

We have the following properties about operatorL.

Lemma 3. Fix the following Γ > 0 and 𝐾 > 0. The “diagonal”
operatorL (on Fourier spaces) satisfies the following:

(1) ∀𝑢 ∈ X0𝜎,

L𝑢 = L(∑
𝑘∈Z

𝑎𝑙𝑒𝑖𝑘𝜃) = ∑
𝑘∈Z

𝜆𝑎𝑙𝑒𝑖𝑘𝜃, (27)

where
𝜆 fl (𝑘V − 1) (𝑖Γ − 1 − 𝑘V)

− 2𝐾(cos(2𝑚𝑘𝜋𝑛 ) − 1) . (28)

(2) Let 0 ≤ 𝜎̃ < 𝜎 and V ∈ O𝛾,𝜏. The operatorL is bounded
and invertible, andL−1 maps𝑋0𝜎 onto𝑋0𝜎,

L
−1𝑢 = L

−1(∑
𝑘∈Z

𝑎𝑘𝑒𝑖𝑘𝜃) = ∑
𝑘∈Z

𝜆−1𝑎𝑘𝑒𝑖𝑘𝜃 ∈ 𝑋0𝜎. (29)

If 𝑛 divides𝑚, that is,𝑚/𝑛 ∈ Z, then,
󵄩󵄩󵄩󵄩󵄩L−1𝑢󵄩󵄩󵄩󵄩󵄩𝜎 ≤ 𝜇 (𝜎 − 𝜎̃) ‖𝑢‖𝜎 , (30)

where
𝜇 (𝜎) fl 𝜇 (𝜎; V, Γ)

fl sup
𝑘∈Z\{0}

(|V𝑘 − 1|−1 |𝑖Γ − 1 − V𝑘|−1 𝑒−𝜎|𝑘|) . (31)

If 𝑛 does not divide𝑚, then
󵄩󵄩󵄩󵄩󵄩L−1𝑢󵄩󵄩󵄩󵄩󵄩𝜎 ≤ 𝜇 (𝜎 − 𝜎̃) ‖𝑢‖𝜎 , (32)

where

𝜇 (𝜎) fl 𝜇 (𝜎; V, Γ) fl sup
𝑘∈Z\{0}

(Γ−1 |V𝑘 − 1|−1 𝑒−𝜎|𝑘|) . (33)

Furthermore,

𝜇 (𝜎) ≤ 1𝜎2𝜏𝛾2 (2𝜏𝑒 )2𝜏 ,
𝜇 (𝜎) ≤ 1Γ𝛾𝜎𝜏 (𝜏𝑒)

𝜏 .
(34)
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Proof. By the definition of operator L, we can easily get (1)
and (29). Now we prove (30), (32), and (34).

If 𝑛 divides 𝑚, that is, 𝑚/𝑛 ∈ Z and 2𝐾(cos(2𝑚𝑘𝜋/𝑛) −1) = 0, then we have
󵄩󵄩󵄩󵄩󵄩L−1𝑢󵄩󵄩󵄩󵄩󵄩𝜎

= ∑
𝑘∈Z\{0}

(|V𝑘 − 1|−1 |𝑖Γ − 1 − V𝑘|−1 𝑒−(𝜎−𝜎)|𝑘|) 󵄨󵄨󵄨󵄨𝑎𝑘󵄨󵄨󵄨󵄨
⋅ 𝑒|𝑘|𝜎 ≤ 𝜇 (𝜎 − 𝜎̃) ‖𝑢‖𝜎 .

(35)

Since

|𝑖Γ − 1 − V𝑘| ≥ |1 + V𝑘| ≥ 𝛾
|𝑘|𝜏 ,

|V𝑘 − 1| ≥ 𝛾
|𝑘|𝜏 ,

(36)

and sup𝑥>0(𝑥𝑎𝑒−𝑥) = (𝑎/𝑒)𝑎, ∀𝑎 ≥ 0, we obtain
𝜇 (𝜎) ≤ 1𝜎2𝜏𝛾2 (2𝜏𝑒 )2𝜏 . (37)

If 𝑛 does not divide𝑚, that is, 2𝐾(cos(2𝑚𝑘𝜋/𝑛) − 1) ̸= 0,
then operatorL is invertible and no “small divisor” appears.
We have

󵄩󵄩󵄩󵄩󵄩L−1𝑢󵄩󵄩󵄩󵄩󵄩𝜎 = ∑
𝑘∈Z\{0}

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑖Γ (V𝑘 − 1) + 1 − V2𝑘2

− 2𝐾(cos(2𝑚𝑘𝜋𝑛 ) − 1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−1 𝑒−(𝜎−𝜎)|𝑘|) 󵄨󵄨󵄨󵄨𝑎𝑘󵄨󵄨󵄨󵄨 𝑒|𝑘|𝜎

≤ ∑
𝑘∈Z\{0}

(|Γ (V𝑘 − 1)|−1 𝑒−(𝜎−𝜎)|𝑘|) 󵄨󵄨󵄨󵄨𝑎𝑘󵄨󵄨󵄨󵄨 𝑒|𝑘|𝜎 ≤ 𝜇 (𝜎
− 𝜎̃) ‖𝑢‖𝜎 .

(38)

By sup𝑥>0(𝑥𝑎𝑒−𝑥) = (𝑎/𝑒)𝑎, ∀𝑎 ≥ 0, and (36), we obtain

𝜇 (𝜎) ≤ 1Γ𝛾𝜎𝜏 (𝜏𝑒)
𝜏 . (39)

This completes the proof.

Remark 4. By the estimate (39), we have that Γ ̸= 0 in our
Nash–Moser algorithm. However, when𝜔 = 0, we have V = 0
and 𝜁 fl VΓ = 0.

Our method of finding traveling waves comes from the
idea of Newton scheme, which is an approximation method.
If we choose first step (𝑢0, 𝜁0) suitable, by finding a “quadrat-
ically better approximation,” we can move forward a single
step to our target. Hence, the critical point is to construct
“second step,” that is, to get (𝑢1, 𝜁1); then, the method of
making “next step” is the same. Finally, our solution of (26)
can be written as

(𝑢, 𝜁) = (𝑢0 + ∞∑
𝑠=1

𝑢𝑠, 𝜁0 + ∞∑
𝑠=1

𝜁𝑠) . (40)

For convenience, we define

T (𝑢0, 𝜁0) fl (𝑢0 + 𝑢1, 𝜁0 + 𝜁1) , for (𝑢0, 𝜁0) ∈ W𝜎, (41)

𝐸 fl F (𝑢0, 𝜁0) ,
𝐸1 fl F (𝑢0 + 𝑢1, 𝜁0 + 𝜁1) = F (T (𝑢0, 𝜁0)) . (42)

Now, we construct the “first step approximation” to find(𝑢1, 𝜁1).
Lemma 5. Fix any 𝐾 > 0, 𝐹 > 0, and Γ0 > 0. Assume that𝜔 ∈ O𝛾,𝜏. Then, for any 𝜁 ∈ [0, Γ0], one obtains the “first step
approximation”:

𝑢1 fl −L−1𝐸 + ⟨L−1𝐸⟩ ,
𝜁1 fl (𝑖Γ − 1) ⟨L−1𝐸⟩ . (43)

Proof. We define

𝑅 fl 𝜖 sin (𝜃 + 𝑢0 + 𝑢1) − 𝜖 sin (𝜃 + 𝑢0) + (𝑖Γ − 1) 𝑢1. (44)

Then we have

F (𝑢0 + 𝑢1, 𝜁0 + 𝜁1) = L (𝑢0 + 𝑢1)
+ 𝜖 sin (𝜃 + 𝑢0 + 𝑢1)
+ (𝑖Γ − 1) (𝑢0 + 𝑢1) + 𝜁0 + 𝜁1

= L𝑢0 + 𝜖 sin (𝜃 + 𝑢0)
+ (𝑖Γ − 1) 𝑢0 + 𝜁0 +L𝑢1
+ 𝜖 sin (𝜃 + 𝑢0 + 𝑢1)
− 𝜖 sin (𝜃 + 𝑢0) + (𝑖Γ − 1) 𝑢1
+ 𝜁1 = 𝐸 +L𝑢1 + 𝜁1 + 𝑅.

(45)

Based on our approximation method, we need to solve the
following equation:

𝐸 +L𝑢1 + 𝜁1 = 0. (46)

If 𝑛 divides𝑚, that is,𝑚/𝑛 ∈ Z, operatorL is not invert-
ible, the “small divisor” appears.Therefore, the removing of a
“small set” (in Lebesgue measure sense) is needed; that is, we
require 𝜔 ∈ O𝛾,𝜏. Then, we construct

𝑢1 fl −L−1𝐸 + ⟨L−1𝐸⟩ ,
𝜁1 fl (𝑖Γ − 1) ⟨L−1𝐸⟩ . (47)

If 𝑛 dose not divide 𝑚, operatorL is invertible. Then we
can also construct (𝑢1, 𝜁1) as the same form.

It is easy to verify that (𝑢1, 𝜁1) is the solution of (46) and
satisfies condition (22). This completes the proof.

Remark 6. In fact, to obtain 𝑠th step approximation (𝑢𝑠,𝜁𝑠) (𝑠 ≥ 1), we need to solve

𝐸𝑠 +L𝑢𝑠 + 𝜁𝑠 = 0, (48)
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where

𝐸𝑠 = F (T𝑠 (𝑢0, 𝜁0)) . (49)

By the method in Lemma 3, we can construct 𝑠th step
solution for (48) as

𝑢𝑠 fl −L−1𝐸𝑠 + ⟨L−1𝐸𝑠⟩ ,
𝜁𝑠 fl (𝑖Γ − 1) ⟨L−1𝐸𝑠⟩ . (50)

Now, in order to prove the convergence of our algorithm,
we need the following KAM estimates.

Lemma7 (KAMestimates). Assume that (𝑢0, 𝜁0) ∈ W𝜎.Then
there exist 𝛽 fl 𝛽(𝜏) > 1 and 𝐶0 fl 𝐶0(Γ0, 𝜏) > 1 such that,
for any 0 < 𝛼 < 𝜎 and any Γ ∈ [0, Γ0], the following estimates
hold: 󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩𝜎−(2/3)𝛼 , 󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨 , 󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩𝜎−𝛼 ≤ 𝐶0𝛼−𝛽 ‖𝐸‖𝜎 . (51)

Proof. We first estimate the case that 𝑛 divides 𝑚. It follows
from (30) that

sup
T

󵄨󵄨󵄨󵄨󵄨L−1𝐸󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩󵄩L−1𝐸󵄩󵄩󵄩󵄩󵄩0 ≤ 𝜇 (𝜎) ‖𝐸‖𝜎 . (52)

By the definition of (𝑢1, 𝜁1) and (52), we have

󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩𝜎−(2/3)𝛼 ≤ 󵄩󵄩󵄩󵄩󵄩L−1𝑒󵄩󵄩󵄩󵄩󵄩𝜎−(2/3)𝛼 + 𝜇(𝛼3 ) ‖𝐸‖𝜎
≤ 2𝜇 (𝛼3 ) ‖𝐸‖𝜎 ≤ 𝐶1𝛼−6𝜏 ‖𝐸‖𝜎 ,

(53)

󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨 ≤ 𝐶2𝜎−𝜏 ‖𝐸‖𝜎 ≤ 𝐶2𝛼−𝜏 ‖𝐸‖𝜎 . (54)

By (53) and the definition 𝐸1 in (42), we get󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩𝜎−𝛼 = ‖𝑅‖𝜎−𝛼
≤ 𝜖 󵄩󵄩󵄩󵄩sin (𝜃 + 𝑢0 + 𝑢1) − sin (𝜃 + 𝑢0)󵄩󵄩󵄩󵄩𝜎−𝛼

+ √Γ2 + 1 󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩𝜎−𝛼 ≤ 𝐶3 󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩𝜎−𝛼
≤ 𝐶3𝜎−6𝜏 ‖𝐸‖𝜎 .

(55)

By (52), (53), and (55), there exist 𝛽 fl 𝛽(𝜏) > 1 and 𝐶0 fl𝐶0(Γ0, 𝜏) > 1 such that
󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩𝜎−(2/3)𝛼 , 󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨 , 󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩𝜎−𝛼 ≤ 𝐶0𝛼−𝛽 ‖𝐸‖𝜎 . (56)

For the case of 𝑛 not dividing 𝑚, we can also get the
estimate (51). The method is the same. So we omit it. This
completes the proof.

Now, we will give a sufficient condition on the conver-
gence of our algorithm. For 𝑠 ≥ 0 and 0 < 𝜎 < 𝜎 < 𝜎̃, we
set

𝜎𝑠 fl 𝜎 + 𝜎 − 𝜎2𝑠 ,
𝛼𝑠+1 fl 𝜎𝑠 − 𝜎𝑠+1 = 𝜎 − 𝜎2𝑠+1 .

(57)

Then, we have the following result about the convergence of
Nash–Moser algorithm.

Lemma 8. Assume that 𝐶4 ≥ 𝐶04𝛽(𝜎 − 𝜎)−𝛽 and 𝐶4‖𝐸‖𝜎 ≤𝜄 < 1. Then, (𝑢, 𝜁) ∈ W𝜎 defined in (40) is a solution of (26);
that is,F(𝑢; 𝜁) = 0, ∀𝜁 ∈ [0, Γ0].
Proof. We claim that, for 𝑠 ≥ 1,

(𝑢𝑠, 𝜁𝑠) fl T
𝑠 (𝑢0, 𝜁0) ∈ W𝜎𝑠 ,

𝐸𝑠 (𝜃) fl F (T𝑠 (𝑢0, 𝜁0)) ∈ 𝑋𝜎𝑠 ,
max {󵄩󵄩󵄩󵄩𝑢𝑠󵄩󵄩󵄩󵄩𝜎𝑠 , 󵄨󵄨󵄨󵄨𝜁𝑠󵄨󵄨󵄨󵄨 , 󵄩󵄩󵄩󵄩𝐸𝑠󵄩󵄩󵄩󵄩𝜎𝑠} ≤ (𝐶4 ‖𝐸‖𝜎)2𝑠−12𝛽 .

(58)

In fact, if (58) holds, then by the decay of (𝐶4‖𝐸‖𝜎)2𝑠 , we
obtain that
T
𝑠 (𝑢0, 𝜁0) 󳨀→ (𝑢, 𝜁) ∈ W𝜎𝑠

uniformly, as 𝑠 󳨀→ ∞,
F (𝑢, 𝜁) = lim

𝑠→∞
F (T𝑠 (𝑢0, 𝜁0)) = lim

𝑠→∞
𝐸𝑠 = 0.

(59)

In the following, we will prove (58) by induction. Firstly,
we check (58) for the case of 𝑠 = 1. Let 𝛼1 fl 𝛼 and 𝜎1 fl 𝜎−𝛼.
By (51), we have

󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩𝜎1 , 󵄨󵄨󵄨󵄨𝜁1󵄨󵄨󵄨󵄨 , 󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩𝜎1 ≤ 𝐶0𝑒−𝛽 ‖𝐸‖𝜎 = 𝐶02𝛽 ‖𝐸‖𝜎 , (60)

which implies that (𝑢1, 𝜁1) ∈ W𝜎1 , so, (58) holds for 𝑠 = 1.
Let 𝑠󸀠 ≥ 1. Assume that (58) holds true for 1 ≤ 𝑠 ≤ 𝑠󸀠. Now

we will prove that it also holds for 𝑠 = 𝑠󸀠 +1. Let 𝛼 fl 𝛼𝑠+1 and𝜎 fl 𝜎𝑠. Note that 𝐶𝛼−𝛽𝑠+1 = (𝐶/2𝛽)2𝑠𝛽. By (51), we get
󵄩󵄩󵄩󵄩𝑢𝑠+1󵄩󵄩󵄩󵄩𝜎𝑠+1 , 󵄨󵄨󵄨󵄨𝜁𝑠+1󵄨󵄨󵄨󵄨 , 󵄩󵄩󵄩󵄩𝐸𝑠+1󵄩󵄩󵄩󵄩𝜎𝑠+1 ≤ 𝐶4𝛼−𝛽𝑠+1 󵄩󵄩󵄩󵄩𝐸𝑠󵄩󵄩󵄩󵄩𝜎𝑠

= 𝐶42𝛽 2𝑠𝛽 󵄩󵄩󵄩󵄩𝐸𝑠󵄩󵄩󵄩󵄩𝜎𝑠 ≤
(𝐶4 󵄩󵄩󵄩󵄩𝐸𝑠󵄩󵄩󵄩󵄩𝜎𝑠)2

𝑠

2𝛽 ,
(61)

which shows that (𝑢𝑠+1, 𝜁𝑠+1) ∈ W𝜎𝑠+1 . Hence, our claim
holds. This completes the proof.

Remark 9. In this lemma, we do not care whether 𝑛 divides𝑚 or not. Because the convergence of Nash–Moser algorithm
is the same.

Lemma 10 (uniqueness). Assume that (𝑢, 𝜁) and (𝑢̃, 𝜁) are
solutions of (26) in the domain 𝐶54𝛽𝜏𝜎−𝛽𝜏‖𝑢‖𝜎 < 1. Then, (𝑢,𝜁) = (𝑢̃, 𝜁); that is, the solution of (26) is unique.

Proof. Let 𝑢 fl 𝑢 − 𝑢̃ and 𝜁 fl 𝜁 − 𝑢̃. Then

F (𝑢 + 𝑢̃, 𝜁 + 𝜁) = L (𝑢 + 𝑢̃) + 𝜖 sin (𝜃 + 𝑢 + 𝑢̃)
+ (𝑖Γ − 1) (𝑢 + 𝑢̃) + 𝜁 + 𝜁

= L𝑢̃ + 𝜖 sin (𝜃 + 𝑢̃) + (𝑖Γ − 1) 𝑢̃
+ 𝜁 +L𝑢 + 𝜖 sin (𝜃 + 𝑢 + 𝑢̃)
− 𝜖 sin (𝜃 + 𝑢̃) + (𝑖Γ − 1) 𝑢 + 𝜁

= 𝐸 +L𝑢 + 𝜁 + 𝑅,

(62)
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where

𝑅 = 𝜖 sin (𝜃 + 𝑢 + 𝑢̃) − 𝜖 sin (𝜃 + 𝑢̃) + (𝑖Γ − 1) 𝑢. (63)

Note thatF(𝑢, 𝜁) = 0. Therefore, by (62), we have

L𝑢 + 𝜁 + 𝑅 = 0. (64)

It follows from condition (22) that

𝜁 = (𝑖Γ − 1) ⟨L−1𝑅⟩ , (65)

𝑢 fl −L−1𝑅 + ⟨L−1𝑅⟩ . (66)

Note that ‖𝑅‖𝜎 ≤ 𝐶6‖𝑢‖𝜎, so we have that
󵄨󵄨󵄨󵄨𝜁󵄨󵄨󵄨󵄨 ≤ 𝐶7𝛼−𝛽 ‖𝑢‖𝜎 . (67)

Next we will estimate (66). By (63) and the similar
estimates in (53), for 0 < 𝛼 < 𝜎 ≤ 𝜎, we have

‖𝑢‖𝜎−𝛼 = 󵄩󵄩󵄩󵄩󵄩−L−1𝑅 + ⟨L−1𝑅⟩󵄩󵄩󵄩󵄩󵄩𝜎−𝛼 ≤ 𝐶8𝛼−𝛽𝜏 󵄩󵄩󵄩󵄩󵄩𝑅󵄩󵄩󵄩󵄩󵄩𝜎
≤ 𝐶8𝛼−𝛽𝜏 ‖𝑢‖𝜎 .

(68)

If we take 𝜎𝑠 fl 𝜎/2𝑠 and 𝛼𝑠 fl 𝜎/2𝑠+1 (𝑠 ≥ 0). Then, it
follows from (68) that

‖𝑢‖𝜎𝑠+1 ≤ 𝐶5𝛼−𝛽𝜏𝑠 ‖𝑢‖𝜎𝑠 = 𝐶5𝜎−𝛽𝜏2𝛽𝜏(𝑠+1) ‖𝑢‖𝜎𝑠
≤ 𝑎𝑏𝑠 ‖𝑢‖𝜎𝑠 ,

(69)

where 𝑎 fl 𝐶52𝛽𝜏𝜎−𝛽𝜏 and 𝑏 fl 2𝛽𝜏.
By (69), we have

𝑎𝑏𝑠+1 ‖𝑢‖𝜎𝑠+1 𝑏 ≤ (𝑎𝑏𝑠+1)2 ‖𝑢‖𝜎𝑠 = 𝑎𝑏𝑠+1 (𝑎𝑏𝑠 ‖𝑢‖𝜎𝑠 𝑏)
≤ (𝑎𝑏𝑠+1) (𝑎𝑏𝑠) (𝑎𝑏𝑠−1 ‖𝑢‖𝜎𝑠−1 𝑏) ≤ ⋅ ⋅ ⋅
≤ (𝑎𝑏𝑠+1) (𝑎𝑏𝑠) ⋅ ⋅ ⋅ (𝑎𝑏) ‖𝑢‖𝜎
= 𝑎𝑠+1𝑏(𝑠+1)2 ‖𝑢‖𝜎 ,

(70)

which shows that

‖𝑢‖𝜎𝑠+1 ≤ 𝑎𝑠𝑏𝑠2+𝑠−1 ‖𝑢‖𝜎 . (71)

There exists 𝜒 fl 𝜒(𝑠) ∈ 𝐶1(1,∞) such that

𝜒󸀠 (𝑠) > 0,
𝜒󸀠󸀠 (𝑠) = 0,

for 𝑠 ≥ 1, lim
𝑠→∞

𝜒 (𝑠) = ∞.
(72)

Then, it follows from (71) that

‖𝑢‖0 ≤ ‖𝑢‖𝜎𝑠 ≤ (𝑎𝑏 ‖𝑢‖1/𝜒(𝑠)
𝜎

)𝑠2+𝑠−1 . (73)

Note our assumption 𝐶54𝛽𝜏𝜎−𝛽𝜏‖𝑢‖𝜎 < 1 and ‖𝑢‖0 =∑𝑘∈Z |𝑢𝑘|. Therefore, by (73), we obtain

‖𝑢‖0 = 0, (74)

which implies that

𝑢 = 0,
that is., 𝑢 = 𝑢̃. (75)

This together with (65) means the uniqueness of solutions for
(26). This completes the proof.

The following result can be seen as a Nash–Moser theo-
rem for dissipative lattice systems.

Theorem 11. Let 0 < 𝛾 < 1 ≤ 𝜏, 0 < 𝜎 < 𝜎 ≤ 1, 𝜔 ∈
O𝛾,𝜏, and 𝜁 ∈ [0, Γ0] for some Γ0 > 0. Assume that “initial
approximate solution” (𝑢0, 𝜁0) ∈ 𝐶∞(T × [0, Γ0]) × 𝐶∞[0, Γ0]
and 𝜃 → 𝑢0(𝜃, Γ) ∈ 𝑋0𝜎, 󰜚‖𝐸‖𝜎 ≤ 1, ∀𝜁 ∈ [0, Γ0], and 󰜚 >1. Then, (26) possesses solutions (𝑢, 𝜁) ∈ 𝐶∞(T × [0, Γ0]) ×𝐶∞([0, Γ0]) and 𝑢 ∈ 𝑋0𝜎. Moreover, if (𝑢, 𝜁) ∈ 𝐶∞(T×[0, Γ0])×𝐶∞([0, Γ0]) is also the solution of (26) and satisfies 󰜚‖𝑢−𝑢‖𝜎 <1, then, (𝑢, 𝜁) = (𝑢, 𝜁); that is, the solution of (26) is unique.

Proof. This result is the conclusion of Lemmas 5–14. Let 𝛽(𝜏)
and 𝐶0 be defined in Lemma 7. We choose 󰜚 such that𝐶04𝛽(𝜎 − 𝜎)−𝛽 ≤ 󰜚 ≤ min{𝐶4, 𝐶54𝛽𝜏𝜎−𝛽𝜏}. Then, by our
assumption, Lemmas 8 and 10, we can get the existence and
uniqueness of solutions of (26).This completes the proof.

Remark 12. In fact, in this abstract result, we do not need
any assumption on 𝜖 > 0 in the case of 𝜖 = 1. Then,
the problem of finding traveling wave solutions for (4) with
periodic boundary condition (2) is another open problem
in [11]. By Theorem 11, we can see that, for fixing 𝐾 > 0,Γ > 0 and sufficient small 𝐹 > 0, there is a unique traveling
wave solution for (4). However, it is difficult to find the initial
approximation solution (𝑢0, 𝜁0) which must make the error
function 𝐸 satisfying 󰜚‖𝐸‖𝜎 ≤ 1 (󰜚 > 1).

Now, we will use Theorem 11 to prove our main result.

Proof of Theorem 1. Let 0 < 𝜎 < 𝜎, ∀𝜎, 𝜎 ∈ R+. We choose
the initial approximation solution

(𝑢0, 𝜁0) = (0, 0) . (76)

Let 𝜖0 ≤ 1/󰜚 − 𝐹 and 𝜖 ∈ [0, 𝜖0] (󰜚 > 1). Then, the error
function 𝐸 defined in (42) is given by

𝐸 fl F (0, 0) = 𝜖 sin (𝜃) − 𝐹,
‖𝐸‖𝜎 ≤ 𝜖 + 𝐹 ≤ 1󰜚 .

(77)

Here, we require that 𝐹 > 0 be sufficiently small so that 1/󰜚 −𝐹 > 0.
It follows from Theorem 11 that our result holds. This

completes the proof.
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Remark 13. By the proof of Theorem 1, we can see that our
result also holds for the case of 𝐹 = 0. It suffices to take 𝜖0 ≤1/󰜚 and 𝜖 ∈ [0, 𝜖0].
2.2. The Case of Γ = 0. We now focus on the proof of
Theorem 2 by the same method.

By strong monotonicity arguments, Baesens andMacKay
have obtained the existence and stability of travelingwaves for
(8) with periodic boundary condition (2). Here, we will use
Nash–Moser iteration to study the existence and uniqueness
of traveling wave solutions for (8) with periodic boundary
condition (2).

Note that a waveform 𝜑 satisfies the following equation:

𝜑󸀠󸀠 (𝑡) − 𝐾 [𝜑(𝑡 + 𝑚𝑛 𝑇) − 2𝜑 (𝑡) + 𝜑 (𝑡 − 𝑚𝑛 𝑇)]
+ 𝜖 sin (𝜑 (𝑡)) = 𝐹.

(78)

Hence, as in [11], we investigate the traveling wave of the type

𝜑 (𝑡) = 𝑢 (V𝑡) + V𝑡, (79)

where the wave velocity V = 2𝜋/𝑇 = 2𝜋𝜔 and 𝑢 satisfies

𝑢 (𝜃 + 2𝜋) = 𝑢 (𝜃) , ∀𝜃 ∈ R. (80)

Inserting (79) into (78), we get

V2𝑢󸀠󸀠 (𝜃)
− 𝐾 [𝑢 (𝜃 + 2𝜋𝑚𝑛 ) − 2𝑢 (𝜃) + 𝑢 (𝜃 − 2𝜋𝑚𝑛 )]
+ 𝜖 sin (𝜃 + 𝑢 (𝜃)) = 𝐹.

(81)

Define the operatorM : 𝑋𝜎 → 𝑋𝜎 as
M fl V2A2𝑢 (𝜃)

− 𝐾[𝑢 (𝜃 + 2𝜋𝑚𝑛 ) − 2𝑢 (𝜃) + 𝑢 (𝜃 − 2𝜋𝑚𝑛 )]
+ 1.

(82)

Then, (81) can be written as

G (𝑢, 𝐹) = M𝑢 + 𝜖 sin (𝜃 + 𝑢 (𝜃)) − 𝑢 (𝜃) − 𝐹 = 0. (83)

We will also use the idea of Newton scheme to obtain the
solution of (83). Firstly, we need to give some notations:

T (𝑢0, 𝐹0) fl (𝑢0 + 𝑢1, 𝐹0 + 𝐹1) ,
for (𝑢0, 𝐹0) ∈ W𝜎,

𝐸 fl G (𝑢0, 𝐹0) ,
𝐸𝑠 fl G( 𝑠∑

𝑖=0

𝑢𝑖, 𝑠∑
𝑖=0

𝐹𝑖) = G (T𝑠 (𝑢0, 𝐹0)) ,
(84)

where (𝑢𝑠, 𝐹𝑠) denotes the 𝑠th step approximation solution.
Next, the spectrum analysis of operatorM is essential.

Lemma 14. Fix𝐾 > 0.The “diagonal” operatorM (on Fourier
spaces) satisfies the following:

(1) ∀𝑢 ∈ 𝑋0𝜎,
M (𝑢) = M(∑

𝑘∈Z

𝑎𝑙𝑒𝑖𝑘𝜃) = ∑
𝑘∈Z

𝜆𝑎𝑙𝑒𝑖𝑘𝜃, (85)

where

𝜆 fl −𝑘2V2 + 1 − 2𝐾(cos(2𝑚𝑘𝜋𝑛 ) − 1) . (86)

(2) Let 0 ≤ 𝜎̃ < 𝜎 and V ∈ O𝛾,𝜏.The operatorM is bounded
and invertible, andM−1 maps𝑋0𝜎 onto 𝑋0𝜎,

M
−1𝑢 = M

−1(∑
𝑘∈Z

𝑎𝑘𝑒𝑖𝑘𝜃) = ∑
𝑘∈Z

𝜆−1𝑎𝑘𝑒𝑖𝑘𝜃 ∈ 𝑋0𝜎. (87)

If 𝑛 divides𝑚, that is,𝑚/𝑛 ∈ Z, then
󵄩󵄩󵄩󵄩󵄩M−1𝑢󵄩󵄩󵄩󵄩󵄩𝜎 ≤ 𝜗 (𝜎 − 𝜎̃) ‖𝑢‖𝜎 , (88)

where

𝜗 (𝜎) fl sup
𝑘∈Z\{0}

(|V𝑘 + 1|−1 |V𝑘 − 1|−1 𝑒−𝜎|𝑘|) . (89)

If 𝑛 does not divide𝑚, then

󵄩󵄩󵄩󵄩󵄩M−1𝑢󵄩󵄩󵄩󵄩󵄩𝜎 ≤ 𝜗 (𝜎 − 𝜎̃) ‖𝑢‖𝜎 , (90)

where

𝜗 (𝜎) fl sup
𝑘∈Z\{0}

(󵄨󵄨󵄨󵄨󵄨V𝑘 − 𝑖√1 − 4𝐾󵄨󵄨󵄨󵄨󵄨−1 𝑒−𝜎|𝑘|) . (91)

Furthermore,

𝜗 (𝜎) , 𝜗 (𝜎) ≤ 1𝜎2𝜏𝛾2 (2𝜏𝑒 )2𝜏 . (92)

Proof. The idea of this proof is similar to the proof of
Lemma 3. Here, we only need to verify (88), (90), and (92).

Note that sup𝑥>0(𝑥𝑎𝑒−𝑥) = (𝑎/𝑒)𝑎, ∀𝑎 ≥ 0, and
|𝑘V (𝜔) ± 1| ,

󵄨󵄨󵄨󵄨󵄨𝑘V (𝜔) ± 𝑖√1 − 4𝐾󵄨󵄨󵄨󵄨󵄨 ≥ 𝛾
|𝑘|𝜏 ,

∀𝑘 ∈ Z.
(93)

Hence, in the case that 𝑛 divides𝑚,
󵄩󵄩󵄩󵄩󵄩M−1𝑢󵄩󵄩󵄩󵄩󵄩𝜎

= ∑
𝑘∈Z\{0}

(|V𝑘 + 1|−1 |V𝑘 − 1|−1 𝑒−(𝜎−𝜎)|𝑘|) 󵄨󵄨󵄨󵄨𝑎𝑘󵄨󵄨󵄨󵄨 𝑒|𝑘|𝜎
≤ 𝜗 (𝜎 − 𝜎̃) ‖𝑢‖𝜎 ;

(94)



8 Discrete Dynamics in Nature and Society

in the case that 𝑛 does not divide𝑚,
󵄩󵄩󵄩󵄩󵄩M−1𝑢󵄩󵄩󵄩󵄩󵄩𝜎

= ∑
𝑘∈Z\{0}

(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−V2𝑘2 + 1 − 2𝐾(cos(2𝑚𝑘𝜋𝑛 ) − 1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−1

⋅ 𝑒−(𝜎−𝜎)|𝑘|) 󵄨󵄨󵄨󵄨𝑎𝑘󵄨󵄨󵄨󵄨 𝑒|𝑘|𝜎 ≤ ∑
𝑘∈Z\{0}

(󵄨󵄨󵄨󵄨󵄨V𝑘 − 𝑖√1 − 4𝐾󵄨󵄨󵄨󵄨󵄨−1

⋅ 󵄨󵄨󵄨󵄨󵄨V𝑘 + 𝑖√1 − 4𝐾󵄨󵄨󵄨󵄨󵄨−1 𝑒−(𝜎−𝜎)|𝑘|) 󵄨󵄨󵄨󵄨𝑎𝑘󵄨󵄨󵄨󵄨 𝑒|𝑘|𝜎 ≤ 𝜗 (𝜎 − 𝜎̃)
⋅ ‖𝑢‖𝜎 ,

(95)

where

𝜗 (𝜎) , 𝜗 (𝜎) ≤ 1𝜎2𝜏𝛾2 (2𝜏𝑒 )2𝜏 . (96)

This completes the proof.

Lemma 15. Fix any 𝐾 > 0 and 𝐹0 > 0. Assume that 𝜔 ∈ O𝛾,𝜏.
Then, for any 𝐹 ∈ [0, 𝐹0], one obtains the “first step approxi-
mation”:

𝑢1 fl −M−1𝐸 + ⟨M−1𝐸⟩ ,
𝐹1 fl ⟨M−1𝐸⟩ . (97)

Proof. Define

𝑅̃ fl 𝜖 sin (𝜃 + 𝑢0 + 𝑢1) − 𝜖 sin (𝜃 + 𝑢0) + 𝑢1 (𝜃) . (98)

Then we have

G (𝑢0 + 𝑢1, 𝜁0 + 𝜁1) = M (𝑢0 + 𝑢1)
+ 𝜖 sin (𝜃 + 𝑢0 + 𝑢1) + 𝑢0 + 𝑢1
+ 𝐹0 + 𝐹1

= M𝑢0 + 𝜖 sin (𝜃 + 𝑢0) + 𝑢0 + 𝐹0
+M𝑢1 + 𝜖 sin (𝜃 + 𝑢0 + 𝑢1)
− 𝜖 sin (𝜃 + 𝑢0) + 𝑢1 + 𝐹1

= 𝐸 +M𝑢1 + 𝐹1 + 𝑅̃.

(99)

For getting (𝑢1, 𝐹1), we need to solve the following equation:

𝐸 +M𝑢1 + 𝐹1 = 0. (100)

By condition (22), we can construct “the first approximation
solution”:

𝑢1 fl −M−1𝐸 + ⟨M−1𝐸⟩ ,
𝐹1 fl ⟨M−1𝐸⟩ . (101)

This completes the proof.

Remark 16. In fact, we can construct the 𝑠th step approxima-
tion solution as

𝑢𝑠 fl −M−1𝐸𝑠 + ⟨M−1𝐸𝑠⟩ ,
𝐹𝑠 fl ⟨M−1𝐸𝑠⟩ , (102)

by solving the following equation:

𝐸𝑠 +M𝑢𝑠 + 𝐹𝑠 = 0. (103)

Lemma 17 (KAM estimates). Assume that (𝑢0, 𝐹0) ∈ W𝜎.
Then, there exist 𝛽 fl 𝛽 > 1 and 𝐶9 fl 𝐶9(𝐹∗, 𝜏, 𝛾) > 1 such
that, for any 0 < 𝛼 < 𝜎 and any 𝐹 ∈ [0, 𝐹∗], the following
estimates hold:

󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩𝜎−(2/3)𝛼 , 󵄨󵄨󵄨󵄨𝐹1󵄨󵄨󵄨󵄨 , 󵄩󵄩󵄩󵄩󵄩𝐸1󵄩󵄩󵄩󵄩󵄩𝜎−𝛼 ≤ 𝐶9𝛼−𝛽 󵄩󵄩󵄩󵄩󵄩𝐸󵄩󵄩󵄩󵄩󵄩𝜎 . (104)

Proof. The proof is the same as Lemma 7, so we omitted it.

Lemma 18. Assume that𝐶10 ≥ 𝐶94𝛽(𝜎−𝜎)−𝛽 and 𝐶10‖𝐸‖𝜎 ≤𝜄 < 1. Then, (𝑢, 𝐹) = (∑∞𝑠=0 𝑢𝑠, ∑∞𝑠=0 𝐹𝑠) ∈ W𝜎 is a solution of
(83); that is, F(𝑢; 𝐹) = 0, ∀𝐹 ∈ [0, 𝐹∗]. Furthermore, in the
domain

{(𝑢, 𝐹) ∈ 𝐶∞ (T × [0, 𝐹∗])
× 𝐶∞ ([0, 𝐹∗]) | 𝐶114𝛽𝜏𝜎−𝛽𝜏 ‖𝑢‖𝜎 < 1} , (105)

(83) admits a unique solution (𝑢, 𝐹).
Proof. This proof is also similar to Lemmas 8 and 10, so we
omitted it.

Based on Lemma 18, we show the following Nash–Moser
theorem for the conservative lattice systems.

Theorem 19. Let 0 < 𝛾 < 1 ≤ 𝜏, 0 < 𝜎 < 𝜎 ≤ 1, 𝜔 ∈ O𝛾,𝜏, and𝐹 ∈ [0, 𝐹∗] for some 𝐹∗ > 0. Assume that “initial approximate
solution” (𝑢0, 𝐹0) ∈ 𝐶∞(T × [0, Γ0]) × 𝐶∞[0, 𝐹∗] and 𝜃 →𝑢0(𝜃, 𝐹) ∈ 𝑋0𝜎, 󰜚‖𝐸‖𝜎 ≤ 1, ∀𝐹 ∈ [0, 𝐹∗], and 󰜚 > 1. Then, (83)
possesses solutions (𝑢, 𝐹) ∈ 𝐶∞(T × [0, 𝐹∗]) ×𝐶∞([0, 𝐹∗]) and𝑢 ∈ 𝑋0𝜎. Moreover, the solution of (83) is unique in the domain{(𝑢, 𝐹) ∈ 𝐶∞(T ×[0, 𝐹∗])×𝐶∞([0, 𝐹∗]) | 󰜚‖𝑢‖𝜎 < 1, ∀󰜚 > 1}.
Proof of Theorem 2. Let 0 < 𝜎 < 𝜎, ∀𝜎, 𝜎 ∈ R+. We choose
the initial approximation solution

(𝑢0, 𝐹0) = (0, 0) . (106)

Let 𝜖0 ≤ 1/󰜚 and 𝜖 ∈ [0, 𝜖0] (󰜚 > 1). Then, the error
function 𝐸 defined in (84) is given by

𝐸 fl G (0, 0) = 𝜖 sin (𝜃) ,
󵄩󵄩󵄩󵄩󵄩𝐸󵄩󵄩󵄩󵄩󵄩𝜎 ≤ 𝜖 ≤ 1󰜚 .

(107)

It follows from Theorem 19 that our result holds. This
completes the proof.
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