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To understand the interaction between the insects and the plants, a system of delay differential equations is proposed and studied.
We prove that if 𝑅0 ≤ 1, the disease-free equilibrium is globally asymptotically stable for any length of time delays by constructing a
Lyapunov functional, and the system admits a unique endemic equilibrium if 𝑅0 > 1. We establish the sufficient conditions for the
stability of the endemic equilibrium and existence of Hopf bifurcation. Using the normal form theory and centermanifold theorem,
the explicit formulae which determine the stability, direction, and other properties of bifurcating periodic solutions are derived.
Some numerical simulations are given to confirm our analytic results.

1. Introduction

Plants are very important not only to man’s survival but
to every species on Earth; however, plants may contract a
disease by many different ways. Tremendous crop losses and
global threat to food security have been caused by plant
diseases [1, 2]. In recent years, plant diseases have attracted
the interest of many mathematical modeling researchers and
epidemiologists [3–7].

Mathematical models provide powerful tools for inves-
tigating how an infection propagates within a population
of plants. Shi et al. [8] have proposed an epidemic model
which describes vector-borne plant diseases, and the global
dynamics of the system have been analyzed in terms of the
basic reproduction number. Luo et al. [9] studied a discrete
plant virus disease model with roguing and replanting; they
proved that the basic reproduction number serves as a
threshold parameter in determining the global dynamics of
the model. The plant diseases epidemic models have been
extensively studied by many authors (see [10–14]).

In [15], a delay differential equations was proposed to
model the interaction between plants, a plant virus, and
the insect-vector that transfers the virus from one plant to

another. Since insects can only bite a limited number of
plants, then the interaction between vector and plant is of
predator-prey Holling type II [16]. In order to consider the
time it takes for the virus to spread throughout the plant
or insect-vector, a couple of delays were introduced to the
model (see [15] formore details).They obtained the following
model:

𝑑𝑆𝑑𝑡 = 𝜇 (𝐾 − 𝑆) − 𝛽𝑌 (𝑡 − 𝜏1)1 + 𝛼𝑌 (𝑡 − 𝜏1)𝑆 (𝑡 − 𝜏1) + 𝑑𝐼,
𝑑𝐼𝑑𝑡 = 𝛽𝑌 (𝑡 − 𝜏1)1 + 𝛼𝑌 (𝑡 − 𝜏1)𝑆 (𝑡 − 𝜏1) − (𝑑 + 𝜇 + 𝛾) 𝐼,
𝑑𝑅𝑑𝑡 = 𝛾𝐼 − 𝜇𝑅,
𝑑𝑋𝑑𝑡 = Λ − 𝛽1𝐼 (𝑡 − 𝜏2)1 + 𝛼1𝐼 (𝑡 − 𝜏2)𝑋 (𝑡 − 𝜏2) − 𝑚𝑋,
𝑑𝑌𝑑𝑡 = 𝛽1𝐼 (𝑡 − 𝜏2)1 + 𝛼1𝐼 (𝑡 − 𝜏2)𝑋 (𝑡 − 𝜏2) − 𝑚𝑌,

(1)
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where the state variables 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent the
number of susceptible, infected, and recovered plants at time𝑡, respectively. Because when a plant dies by the virus or
natural death in farms, it is replaced with a new healthy plant.
The new plant shares the same characteristics of the plant it
replaced, before it was infected. Then it is supposed that the
total number of plants stabilizes at 𝐾, 𝐾 = 𝑆 + 𝐼 + 𝑅. 𝜇 is the
natural death rate of plants;𝛽 is the infection rate of plants due
to vectors;𝛼 is the saturation constant of plants due to vectors;𝑑 is the death rate of infected plants due to the disease; 𝛾 is
the recovery rate of plants.The insect-vectors are divided into
two populations: susceptible and infective denoted by 𝑋(𝑡)
and 𝑌(𝑡), respectively. The total number of insects is denoted
by 𝑁(𝑡), and then 𝑁(𝑡) = 𝑋(𝑡) + 𝑌(𝑡). Λ is the replenishing
rate of vectors (birth and/or immigration); 𝛽1 is the infection
rate of vectors due to plants; 𝛼1 is the saturation constant of
vectors due to plants; 𝑚 is the natural death rate of vectors. 𝜏1
is the time it takes a plant to become infected after contagion,
and 𝜏2 is the time it takes a vector to become infected after
contagion.

Notice that

𝑑𝑁𝑑𝑡 = Λ − 𝑚𝑁, (2)

and then 𝑁(𝑡) → Λ/𝑚 as 𝑡 → ∞.
Thus, one can consider the following reduced system:

𝑑𝑆𝑑𝑡 = 𝜇 (𝐾 − 𝑆) − 𝛽𝑌 (𝑡 − 𝜏1)1 + 𝛼𝑌 (𝑡 − 𝜏1)𝑆 (𝑡 − 𝜏1) + 𝑑𝐼,
𝑑𝐼𝑑𝑡 = 𝛽𝑌 (𝑡 − 𝜏1)1 + 𝛼𝑌 (𝑡 − 𝜏1)𝑆 (𝑡 − 𝜏1) − 𝑎𝐼,
𝑑𝑌𝑑𝑡 = 𝛽1𝐼 (𝑡 − 𝜏2)1 + 𝛼1𝐼 (𝑡 − 𝜏2) ( Λ𝑚 − 𝑌 (𝑡 − 𝜏2)) − 𝑚𝑌,

(3)

where 𝑎 = 𝑑 + 𝜇 + 𝛾.
For model (3), Jackson and Chen-Charpentier [15] gave

the basic reproduction number and found the equilibria of
the model, and then they studied the stability of equilibria
only for particular values of the parameters using numerical
methods. Therefore, in this paper, we reconsider the plant
disease model (3) in theoretical aspects, and we establish the
stability of equilibria, the existence of Hopf bifurcation, and
the stability, direction, and other properties of bifurcating
periodic solution will also be discussed.

This paper is organized as follows. In Section 2, we
discuss the stability of the equilibria and the existence of the
Hopf bifurcations occurring at the endemic equilibrium. In
Section 3, the formulae determining the direction of theHopf
bifurcations and the stability of bifurcating periodic solutions
on the centermanifold are obtained by using the normal form
theory and the centermanifold theorembyHassard et al. [17].
In Section 4, we perform numerical simulations to illustrate
the analytical results. We conclude with a brief discussion in
Section 5.

2. Stability Analysis and Hopf Bifurcation

Let 𝜏 = max{𝜏1, 𝜏2}, and the initial conditions for (3) are

(𝜙1 (𝜃) , 𝜙2 (𝜃) , 𝜙3 (𝜃)) ∈ 𝐶+ = 𝐶 ([−𝜏, 0] ,R3+) ,
𝜙𝑖 (0) > 0, 𝑖 = 1, 2, 3. (4)

By the fundamental theory of functional differential equa-
tions [18], it follows that, for any initial conditions (4), there
is a unique solution (𝑆(𝑡), 𝐼(𝑡), 𝑌(𝑡)) of (3) for all 𝑡 ≥ 0.

Let Ω be the following subset of R3+:

Ω = {(𝑆, 𝐼, 𝑌) ∈ R
3
+ : 𝑆 + 𝐼 ≤ 𝐾, 𝑌 ≤ Λ𝑚} . (5)

Using a proof process similar to that in [19, 20], we obtain
the following lemma.

Lemma 1. The solutions of system (3) which satisfy the initial
conditions (4) are positive. The set Ω is positively invariant.

In [15], the basic reproduction number for (3) has been
identified as

𝑅0 = √ 𝛽𝛽1Λ𝐾𝑚2𝑎 . (6)

Equation (3) always has a disease-free equilibrium𝐸0(𝐾, 0, 0). If 𝑅0 > 1, then (3) admits a unique endemic
equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑌∗), where

𝑆∗ = 𝑎 (𝛼𝛽1𝐾Λ𝜇 + 𝑚 (𝑚𝑎 + 𝐾𝜇 (𝛽1 + 𝛼1𝑚) − 𝑑𝑚))𝛽1𝛽Λ (𝜇 + 𝛾) + 𝑎𝛽1Λ𝜇𝑎 + 𝛽1𝑚𝜇𝑎 + 𝛼1𝑚2𝜇𝑎 ,
𝐼∗ = 𝛽1𝛽𝐾Λ𝜇 − 𝑚2𝜇𝑎𝛽1𝛽Λ (𝜇 + 𝛾) + 𝑎𝛽1Λ𝜇𝑎 + 𝛽1𝑚𝜇𝑎 + 𝛼1𝑚2𝜇𝑎 ,
𝑌∗ = 𝛽1𝛽𝐾Λ𝜇 − 𝑚2𝜇𝑎𝑚 (𝛼𝑚𝜇𝑎 + 𝛽 (𝑚𝑎 + 𝐾𝜇 (𝛽1 + 𝛼1𝑚) − 𝑑𝑚)) .

(7)

However, Jackson and Chen-Charpentier [15] did not give
detailed dynamical analysis to this model. Theoretical anal-
ysis makes the model dynamics clear and enhances our
understanding to the mathematical models. In this paper, we
will give some analytic results of model (3).

Linearizing system (3) at 𝐸0 gives characteristic equation
(𝜆 + 𝜇) [𝜆2 + (𝑚 + 𝑎) 𝜆 + 𝑚𝑎 − 𝛽𝛽1𝐾Λ𝑚 𝑒−𝜆𝜏] = 0,

𝜏 = 𝜏1 + 𝜏2. (8)

It is clear that −𝜇 is one root of (8). Let𝐺(𝜆) = 𝜆2+(𝑚+𝑎)𝜆+𝑚𝑎−(𝛽𝛽1𝐾Λ/𝑚)𝑒−𝜆𝜏. If𝑅0 > 1, we get𝐺(0) = 𝑚𝑎(1−𝑅20) < 0,
and lim𝜆→+∞𝐺(𝜆) = +∞, then𝐺(𝜆) = 0 has one positive real
root, and, hence, 𝐸0 is unstable.

If𝑅0 < 1, it is easy to show that𝐸0 is locally asymptotically
stable when 𝜏 = 0, and then, by Theorem 3.4.1 in Kuang [21],𝐸0 is locally asymptotically stable for all 𝜏 ≥ 0.
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Theorem 2. If 𝑅0 ≤ 1, then 𝐸0 is globally asymptotically stable
for all 𝜏1 ≥ 0 and 𝜏2 ≥ 0.
Proof. Constructing the following Lyapunov functional:

𝑉 (𝑡) = 𝐼 (𝑡) + 𝛽𝐾𝑚 𝑌 (𝑡) + ∫𝑡
𝑡−𝜏1

𝛽𝑆 (𝜌) 𝑌 (𝜌)1 + 𝛼𝑌 (𝜌) 𝑑𝜌
+ 𝛽𝛽1𝐾Λ𝑚2 ∫𝑡

𝑡−𝜏2

𝐼 (𝜌)1 + 𝛼1𝐼 (𝜌)𝑑𝜌, (9)

then

𝑉󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨(2) = 𝛽𝑆𝑌1 + 𝛼𝑌 − 𝛽𝐾𝑌
− 𝛽𝛽1𝐾𝐼 (𝑡 − 𝜏2) 𝑌 (𝑡 − 𝜏2)𝑚 [1 + 𝛼1𝐼 (𝑡 − 𝜏2)]
+ 𝛽𝛽1𝐾Λ𝑚2 𝐼1 + 𝛼1𝐼 − 𝑎𝐼

≤ 𝛽𝑆𝑌 − 𝛽𝐾𝑌 + 𝛽𝛽1𝐾Λ𝑚2 𝐼1 + 𝛼1𝐼 − 𝑎𝐼
≤ 𝛽𝛽1𝐾Λ𝑚2 𝐼 − 𝑎𝐼 = (𝑅20 − 1) 𝑎𝐼 ≤ 0.

(10)

If we set {(𝑆, 𝐼, 𝑌) | 𝑉󸀠(𝑡) = 0}, then the largest invariant set is
the singleton {𝐸0}.Therefore, by LaSalle’s invariance principle
[22], 𝐸0 is globally asymptotically stable for all 𝜏1 ≥ 0 and𝜏2 ≥ 0.

We now consider the local stability of the coexistence
equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) and the existence of Hopf bifur-
cation at 𝐸∗. The linearized system of (3) at 𝐸∗ is given by

𝑑𝑆𝑑𝑡 = 𝑎11𝑆 (𝑡) + 𝑏11𝑆 (𝑡 − 𝜏1) + 𝑎12𝐼 (𝑡)
+ 𝑏13𝑌 (𝑡 − 𝜏1) ,𝑑𝐼𝑑𝑡 = 𝑏21𝑆 (𝑡 − 𝜏1) + 𝑏23𝑌 (𝑡 − 𝜏1) + 𝑎22𝐼 (𝑡) ,

𝑑𝑌𝑑𝑡 = 𝑏32𝐼 (𝑡 − 𝜏2) + 𝑎33𝑌 (𝑡) + 𝑏33𝑌 (𝑡 − 𝜏2) ,
(11)

with

𝑎11 = −𝜇,
𝑏11 = − 𝛽𝑌∗1 + 𝛼𝑌∗ ,𝑎12 = 𝑑,
𝑏13 = − 𝛽𝑆∗(1 + 𝛼𝑌∗)2 ,
𝑏21 = 𝛽𝑌∗1 + 𝛼𝑌∗ ,

𝑏23 = 𝛽𝑆∗(1 + 𝛼𝑌∗)2 ,𝑎22 = −𝑎,
𝑏32 = 𝛽1(1 + 𝛼1𝐼∗)2 ( Λ𝑚 − 𝑌∗) ,
𝑎33 = −𝑚,
𝑏33 = − 𝛽1𝐼∗1 + 𝛼1𝐼∗ .

(12)

Therefore, we obtain the following characteristic equation:𝜆3 + 𝑚2𝜆2 + 𝑚1𝜆 + 𝑚0 + 𝑒−𝜆𝜏1 (𝑛2𝜆2 + 𝑛1𝜆 + 𝑛0)
+ 𝑒−𝜆𝜏2 (𝑝2𝜆2 + 𝑝1𝜆 + 𝑝0)
+ 𝑒−𝜆(𝜏1+𝜏2) (𝑞1𝜆 + 𝑞0) = 0,

(13)

where 𝑚2 = − (𝑎11 + 𝑎22 + 𝑎33) ,𝑚1 = 𝑎11𝑎22 + 𝑎11𝑎33 + 𝑎22𝑎33,𝑚0 = −𝑎11𝑎22𝑎33,𝑛0 = 𝑏21𝑎33 (𝑎12 + 𝑎22) ,
𝑛1 = −𝑏21 (𝑎12 + 𝑎22 + 𝑎33) ,𝑛2 = 𝑏21,𝑝2 = −𝑏33,𝑝1 = 𝑏33 (𝑎11 + 𝑎22) ,𝑝0 = −𝑏33𝑎11𝑎22,𝑞1 = − (𝑏21𝑏33 + 𝑏23𝑏32) ,
𝑞0 = 𝑏21𝑏33 (𝑎12 + 𝑎22) + 𝑏23𝑏32𝑎11.

(14)

Case 1 (𝜏1 = 𝜏2 = 0). Characteristic equation (13) becomes𝜆3 + 𝑚12𝜆2 + 𝑚11𝜆 + 𝑚10 = 0, (15)

where 𝑚12 = 𝑚2 + 𝑛2 + 𝑝2,𝑚11 = 𝑚1 + 𝑛1 + 𝑝1 + 𝑞1,𝑚10 = 𝑚0 + 𝑛0 + 𝑝0 + 𝑞0.
(16)

Note that

( 𝛽1𝐼∗1 + 𝛼1𝐼∗) ( Λ𝑚 − 𝑌∗) = 𝑚𝑌∗,
𝛽𝑌∗𝑆∗1 + 𝛼𝑌∗ = 𝑎𝐼∗, (17)



4 Discrete Dynamics in Nature and Society

then we get (𝛽𝑆∗/(1+𝛼𝑌∗))(𝛽1/(1+𝛼1𝐼∗))(Λ/𝑚−𝑌∗) = 𝑚𝑎,
and thus

𝑚12 = 𝜇 + 𝑎 + 𝑚 + 𝛽𝑌∗1 + 𝛼𝑌∗ + 𝛽1𝐼∗1 + 𝛼1𝐼∗ > 0,
𝑚11 = 𝜇𝑎 + 𝜇𝑚 + 𝑚𝑎 + 𝛽𝑌∗1 + 𝛼𝑌∗ (𝑚 + 𝜇 + 𝛾)

+ 𝛽1𝐼∗1 + 𝛼1𝐼∗ (𝑎 + 𝜇) + 𝛽𝛽1𝑌∗𝐼∗(1 + 𝛼𝑌∗) (1 + 𝛼1𝐼∗)
− 𝛽𝑆∗(1 + 𝛼𝑌∗)2 𝛽1(1 + 𝛼1𝐼∗)2 ( Λ𝑚 − 𝑌∗) > 0,

𝑚10 = 𝑚𝑎𝜇 + (𝑚 + 𝛽1𝐼∗1 + 𝛼1𝐼∗) (𝜇 + 𝛾) 𝛽𝑌∗1 + 𝛼𝑌∗
+ 𝜇𝑎 𝛽1𝐼∗1 + 𝛼1𝐼∗
− 𝛽𝑆∗(1 + 𝛼𝑌∗)2 𝛽1(1 + 𝛼1𝐼∗)2 ( Λ𝑚 − 𝑌∗) 𝜇 > 0.

(18)

Since 𝑚11 > 𝜇𝑚 + (𝛽𝑌∗/(1 + 𝛼𝑌∗))(𝜇 + 𝛾) + 𝛽1𝐼∗𝑎/(1 + 𝛼1𝐼∗)
and 𝑚12 > 𝜇 + 𝑎 + 𝑚 + 𝛽1𝐼∗/(1 + 𝛼1𝐼∗), it is easy to show that𝑚11𝑚12−𝑚10 > 0, and, thus, all roots of (15) have negative real
parts. That is, 𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) is locally asymptotically stable.
Actually, by a similar proof as in [23], we can show that𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) is globally asymptotically stable for 𝜏1 = 𝜏2 = 0.
Case 2 (𝜏1 > 0, 𝜏2 = 0). Characteristic equation (13) becomes

𝜆3 + 𝑚22𝜆2 + 𝑚21𝜆 + 𝑚20+ (𝑛22𝜆2 + 𝑛21𝜆 + 𝑛20) 𝑒−𝜆𝜏1 = 0, (19)

where

𝑚22 = 𝑚2 + 𝑝2,𝑚21 = 𝑚1 + 𝑝1,𝑚20 = 𝑚0 + 𝑝0,𝑛22 = 𝑛2,𝑛21 = 𝑛1 + 𝑞1,𝑛20 = 𝑛0 + 𝑞0.
(20)

Suppose 𝜆 = 𝑖𝜔 (𝜔 > 0) is a root of (19), similar discussion as
those in [24], and we have

𝑔 (𝜌) = 𝜌3 + 𝑒22𝜌2 + 𝑒21𝜌 + 𝑒20 = 0, (21)

where 𝜌 = 𝜔2, 𝑒22 = 𝑚222 − 𝑛222 − 2𝑚21, 𝑒21 = 𝑚221 − 𝑛221 −2𝑚20𝑚22 + 2𝑛20𝑛22, and 𝑒20 = 𝑚220 − 𝑛220.
Note that 𝑔(0) = 𝑒20 and lim𝜌→+∞𝑔(𝜌) = +∞, and then,

by [25], we have the following lemma.

Lemma3. For polynomial equation (21), we have the following
results:

(1) If (H21) 𝑒20 ≥ 0 and Δ = 𝑒222 − 3𝑒21 ≤ 0, then (21) has
no positive root.

(2) If (H22) 𝑒20 ≥ 0, Δ = 𝑒222 − 3𝑒21 > 0, 𝜌∗ = (−𝑒21 +√Δ)/3 > 0, 𝑔󸀠(𝜌∗) = 3(𝜌∗)2 + 2𝑒22𝜌∗ + 𝑒21 ≤ 0, or (H23)𝑒20 < 0, then (21) has positive root.

Suppose that (21) has positive roots, and we assume
that (21) has three positive roots: 𝜌1, 𝜌2, and 𝜌3; then 𝜔𝑘 =√𝜌𝑘, 𝑘 = 1, 2, 3. The corresponding critical value of time
delay 𝜏(𝑗)1𝑘 is

𝜏(𝑗)1𝑘 = 1𝜔𝑘 arccos{𝐴24𝜔4𝑘 + 𝐴22𝜔2𝑘 + 𝐴20𝐵24𝜔4𝑘 + 𝐵22𝜔2𝑘 + 𝐵20 } + 2𝜋𝑗𝜔𝑘 ,
𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . . , (22)

where 𝐴24 = 𝑛21 − 𝑚22𝑛22,𝐴22 = 𝑛20 (𝑚22 + 𝑚20) − 𝑛21𝑚21,𝐴20 = −𝑛20𝑚20,𝐵24 = 𝑛222,𝐵22 = 𝑛221 − 2𝑛20𝑛22,𝐵20 = 𝑛220.

(23)

±𝑖𝜔𝑘 is a pair of purely imaginary roots of (19) with 𝜏1 = 𝜏(𝑗)1𝑘 .
Let 𝜏∗10 = min𝑘∈{1,2,3}{𝜏(0)1𝑘 }, when 𝜏1 = 𝜏∗10, and (19) has a pair
of purely imaginary roots ±𝑖𝜔∗10.

We now verify the transversality condition, again by the
analysis in [24], and we get

sign{𝑑 (Re 𝜆)𝑑𝜏1 }
𝜆=𝑖𝜔∗
10

= sign{Re( 𝑑𝜆𝑑𝜏1)
−1}
𝜆=𝑖𝜔∗
10

= 𝑔󸀠 ((𝜔∗10)2)(𝑛21𝜔∗10)2 + (𝑛20 − 𝑛22 (𝜔∗10)2)2 ,
(24)

assuming that

(𝐻24) 𝑔󸀠 ((𝜔∗10)2) ̸= 0. (25)

Therefore, we have the following result.

Theorem 4. For system (3), if 𝜏2 = 0,
(1) if (H21) holds, then the endemic equilibrium𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) is locally asymptotically stable for all 𝜏1 ≥ 0,
(2) if (H22) or (H23) and (H24) hold, then as 𝜏1 increases

from zero, there is a value 𝜏∗10 such that the endemic equilibrium𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) is locally asymptotically stable when 𝜏1 ∈[0, 𝜏∗10) and unstable when 𝜏1 > 𝜏∗10. Furthermore, system (3)
undergoes a Hopf bifurcation at 𝐸∗ when 𝜏1 = 𝜏∗10.
Case 3 (𝜏1 = 0, 𝜏2 > 0). With similar analysis as to Case 2, we
get the following theorem.
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Theorem 5. For system (3), if 𝜏1 = 0,
(1) if (H31) holds, then the endemic equilibrium𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) is locally asymptotically stable for all 𝜏2 ≥ 0,
(2) if (H32) or (H33) and (H34) hold, then as 𝜏2 increases

from zero, there is a value 𝜏∗20 such that the endemic equilibrium𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) is locally asymptotically stable when 𝜏2 ∈[0, 𝜏∗20) and unstable when 𝜏2 > 𝜏∗20. Furthermore, system (3)
undergoes a Hopf bifurcation at 𝐸∗ when 𝜏2 = 𝜏∗20.

Assumptions (H31)–(H34) are very similar to (H21)–
(H24), so we omit them.

Case 4 (𝜏1 > 0, 𝜏2 ∈ [0, 𝜏∗20)). We consider (3) with 𝜏2 in its
stable interval and regard 𝜏1 as a parameter. Let 𝜆 = 𝑖𝜔1 (𝜔1 >0) be a root of (13), separating real and imaginary parts, and
we have the following:

𝐴41 sin𝜔1𝜏1 + 𝐴42 cos𝜔1𝜏1 = 𝐴43,𝐴41 cos𝜔1𝜏1 − 𝐴42 sin𝜔1𝜏1 = 𝐴44, (26)

where𝐴41 = −𝑛1𝜔1 + 𝑞0 sin𝜔1𝜏2 − 𝑞1𝜔1 cos𝜔1𝜏2,𝐴42 = 𝑛2𝜔21 − 𝑛0 − 𝑞0 cos𝜔1𝜏2 − 𝑞1𝜔1 sin𝜔1𝜏2,𝐴43 = −𝜔21 (𝑚2 + 𝑝2 cos𝜔1𝜏2) + 𝑝1𝜔1 sin𝜔1𝜏2+ 𝑝0 cos𝜔1𝜏2 + 𝑚0,𝐴44 = −𝜔31 + 𝑝2𝜔21 sin𝜔1𝜏2 + 𝜔1 (𝑚1 + 𝑝1 cos𝜔1𝜏2)− 𝑝0 sin𝜔1𝜏2.

(27)

From (26), we have

𝜔61 + 𝑒42𝜔41 + 𝑒41𝜔21 + 𝑒40+ cos𝜔1𝜏2 (𝑐44𝜔41 + 𝑐42𝜔21 + 𝑐40)
+ sin𝜔1𝜏2 (𝑐45𝜔51 + 𝑐43𝜔31 + 𝑐41𝜔1) = 0,

(28)

where𝑒40 = 𝑚20 + 𝑝20 − 𝑞20 − 𝑛20,𝑒41 = 𝑚21 − 2𝑚0𝑚2 − 2𝑝0𝑝2 + 𝑝21 − 𝑛21 + 2𝑛0𝑛2 − 𝑞21,𝑒42 = 𝑚22 − 2𝑚1 + 𝑝22 − 𝑛22,𝑐40 = 2 (𝑚0𝑝0 − 𝑛0𝑞0) ,
𝑐41 = 2 (𝑚0𝑝1 − 𝑝0𝑚1 + 𝑛1𝑞0 − 𝑛0𝑞1) ,
𝑐42 = 2 (𝑚1𝑝1 − 𝑚0𝑝2 − 𝑚2𝑝0 − 𝑛1𝑞1 + 𝑞0𝑛2) ,
𝑐43 = 2 (𝑚1𝑝2 − 𝑚2𝑝1 + 𝑝0 + 𝑛2𝑞1) ,
𝑐44 = 2 (𝑚2𝑝2 − 𝑝1) ,𝑐45 = −2𝑝2.

(29)

We make the following assumption.

(𝐻41) Equation (28) has finite positive roots 𝜔(1)1 ,𝜔(2)1 , . . . , 𝜔(𝑘)1 .
For every fixed𝜔(𝑖)1 , 𝑖 = 1, 2, . . . , 𝑘, there exists a sequence𝜏(𝑗)1𝑖 such that (28) holds, where

𝜏(𝑗)1𝑖 = 1𝜔(𝑖)1 arccos{𝐴41𝐴44 + 𝐴42𝐴43𝐴241 + 𝐴242 } + 2𝜋𝑗𝜔(𝑖)1 ,
𝑖 = 1, 2, . . . , 𝑘; 𝑗 = 0, 1, 2, . . . . (30)

Let 𝜏10 = min{𝜏(0)1𝑖 | 𝑖 = 1, 2, . . . , 𝑘}, when 𝜏1 = 𝜏10, and (13)
has a pair of purely imaginary roots ±𝑖𝜔10.

In addition to (𝐻41), we further assume that

(𝐻42) [ 𝑑𝑑𝜏1 (Re 𝜆)]
𝜆=𝑖𝜔10

̸= 0. (31)

Therefore, by the Hopf bifurcation theorem for functional
differential equations in Hale [18], the following result holds.

Theorem 6. For system (3), suppose (H41) and (H42) are
satisfied, and 𝜏1 > 0 and 𝜏2 ∈ [0, 𝜏∗20). Then the positive
equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) is asymptotically stable when 𝜏1 ∈(0, 𝜏10) and unstable when 𝜏1 > 𝜏10. Furthermore, system (3)
undergoes a Hopf bifurcation at 𝐸∗ when 𝜏1 = 𝜏10.

For the cases 𝜏2 > 0, and 𝜏1 ∈ [0, 𝜏∗10), we can get similar
results as those inTheorem 6.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we shall study the direction of the Hopf
bifurcation and stability of bifurcating periodic solutions
by using the normal form theory and the center manifold
theorem due to Hassard et al. [17]. In the previous section, we
have shown that system (3) undergoes the Hopf bifurcation
at 𝜏1 = 𝜏10, without loss of generality, and we assume that𝜏∗2 < 𝜏10, where 𝜏∗2 ∈ (0, 𝜏∗20).

Let 𝑥1 = 𝑆 − 𝑆∗, 𝑥2 = 𝐼 − 𝐼∗, 𝑥3 = 𝑌 − 𝑌∗, 𝜏1 =𝜏10 + V, and 𝑥𝑖(𝑡) = 𝑥𝑖(𝜏1𝑡) and, dropping the bars for
simplification of notations, system (3) is transformed into a
functional differential equation in 𝐶 = 𝐶([−1, 0],R3) as

𝑥̇ (𝑡) = 𝐿V (𝑥𝑡) + 𝐹 (V, 𝑥𝑡) , (32)

where 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡))𝑇 ∈ R3 and 𝐿V : 𝐶 → R3

and 𝐹 : R × 𝐶 → R3 are given, respectively, by

𝐿V (𝜙) = (𝜏10 + V) 𝐴𝜙 (0) + (𝜏10 + V) 𝐵𝜙 (−𝜏∗2𝜏1 )+ (𝜏10 + V) 𝐶𝜙 (−1) , (33)

𝐹 (V, 𝜙) = (𝜏10 + V) (𝐹1, 𝐹2, 𝐹3)𝑇 , (34)
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where

𝐴 = (𝑎11 𝑎12 00 𝑎22 00 0 𝑎33) ,

𝐵 = (0 0 00 0 00 𝑏32 𝑏33) ,

𝐶 = (𝑏11 0 𝑏13𝑏21 0 𝑏230 0 0 ) ,
𝐹1 = 𝐾11𝜙1 (−1) 𝜙3 (−1) + 𝐾12𝜙23 (−1)

+ 𝐾13𝜙1 (−1) 𝜙23 (−1) + 𝐾14𝜙33 (−1) + ⋅ ⋅ ⋅ ,
𝐹2 = 𝐾21𝜙1 (−1) 𝜙3 (−1) + 𝐾22𝜙23 (−1)

+ 𝐾23𝜙1 (−1) 𝜙23 (−1) + 𝐾24𝜙33 (−1) + ⋅ ⋅ ⋅ ,
𝐹3 = 𝐾31𝜙22 (−𝜏∗2𝜏1 ) + 𝐾32𝜙2 (−𝜏∗2𝜏1 ) 𝜙3 (−𝜏∗2𝜏1 )

+ 𝐾33𝜙32 (−𝜏∗2𝜏1 )
+ 𝐾34𝜙22 (−𝜏∗2𝜏1 ) 𝜙3 (−𝜏∗2𝜏1 ) + ⋅ ⋅ ⋅ ,

𝐾11 = − 𝛽(1 + 𝛼𝑌∗)2 ,
𝐾12 = 𝛼𝛽𝑆∗(1 + 𝛼𝑌∗)3 ,
𝐾13 = 𝛼𝛽(1 + 𝛼𝑌∗)3 ,
𝐾14 = − 𝛼2𝛽𝑆∗(1 + 𝛼𝑌∗)4 ,
𝐾21 = 𝛽(1 + 𝛼𝑌∗)2 ,
𝐾22 = − 𝛼𝛽𝑆∗(1 + 𝛼𝑌∗)3 ,
𝐾23 = − 𝛼𝛽(1 + 𝛼𝑌∗)3 ,
𝐾24 = 𝛼2𝛽𝑆∗(1 + 𝛼𝑌∗)4 ,
𝐾31 = 𝛼1𝛽1 (𝑌∗ − Λ/𝑚)(1 + 𝛼1𝐼∗)3 ,

𝐾32 = − 𝛽1(1 + 𝛼1𝐼∗)2 ,
𝐾33 = 𝛼21𝛽1 (Λ/𝑚 − 𝑌∗)(1 + 𝛼1𝐼∗)4 ,
𝐾34 = 𝛼1𝛽1(1 + 𝛼1𝐼∗)3 .

(35)

By the Riesz representation theorem, there exists a func-
tion 𝜂(𝜃, V) of bounded variation for 𝜃 ∈ [−1, 0], such that

𝐿V (𝜙) = ∫0
−1

𝑑𝜂 (𝜃, V) 𝜙 (𝜃) for 𝜙 ∈ 𝐶. (36)

In fact, we can choose

𝜂 (𝜃, V)

=
{{{{{{{{{{{{{{{{{{{

(𝜏10 + V) (𝐴 + 𝐵 + 𝐶) , 𝜃 = 0,
(𝜏10 + V) (𝐵 + 𝐶) , 𝜃 ∈ [−𝜏∗2𝜏1 , 0) ,
(𝜏10 + V) 𝐶, 𝜃 ∈ (−1, −𝜏∗2𝜏1 ) ,0, 𝜃 = −1.

(37)

For 𝜙 ∈ 𝐶1([−1, 0],R3), define
𝐴 (V) 𝜙 = {{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , 𝜃 ∈ [−1, 0) ,
∫0
−1

𝑑𝜂 (𝑠, V) 𝜙 (𝑠) , 𝜃 = 0,
𝑅 (V) (𝜙) = {{{

0, 𝜃 ∈ [−1, 0) ,𝐹 (V, 𝜙) , 𝜃 = 0.
(38)

Then system (32) is equivalent to

𝑥̇𝑡 = 𝐴 (V) 𝑥𝑡 + 𝑅 (V) 𝑥𝑡, (39)

where 𝑥𝑡(𝜃) = 𝑥(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].
For 𝜓 ∈ 𝐶1([0, 1], (R3)∗), define

𝐴∗𝜓 (𝑠) = {{{{{{{
−𝑑𝜓 (𝑠)𝑑𝑠 , 𝑠 ∈ (0, 1] ,
∫0
−1

𝑑𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0, (40)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)
− ∫0
−1

∫𝜃
𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (41)

where 𝜂(𝜃) = 𝜂(𝜃, 0).Then𝐴(0) and𝐴∗ are adjoint operators.
By the discussion in Section 2, we know that ±𝑖𝜔10𝜏10 are



Discrete Dynamics in Nature and Society 7

eigenvalues of 𝐴(0). Hence, they are also eigenvalues of 𝐴∗.
We first need to compute the eigenvectors of 𝐴(0) and 𝐴∗
corresponding to 𝑖𝜔10𝜏10 and −𝑖𝜔10𝜏10, respectively.

Suppose 𝑞(𝜃) = (1, 𝑞2, 𝑞3)𝑇𝑒𝑖𝜔10𝜏10𝜃 is the eigenvector
of 𝐴(0) corresponding to 𝑖𝜔10𝜏10, and then 𝐴(0)𝑞(𝜃) =𝑖𝜔10𝜏10𝑞(𝜃). Then, from the definition of 𝐴(0) and (33), we
have

𝑞2 = 𝑎11 − 𝑖𝜔10𝑖𝜔10 − 𝑎22 − 𝑎12 ,
𝑞3 = 𝑏32𝑒−𝑖𝜔10𝜏∗2 (𝑎11 − 𝑖𝜔10)(𝑖𝜔10 − 𝑎33 − 𝑏33𝑒−𝑖𝜔10𝜏∗2 ) (𝑖𝜔10 − 𝑎22 − 𝑎12) . (42)

Similarly, we can obtain the eigenvector 𝑞∗(𝑠) =𝐷(1, 𝑞∗2 , 𝑞∗3 )𝑒𝑖𝜔10𝜏10𝑠 of 𝐴∗ corresponding to −𝑖𝜔10𝜏10,
where

𝑞∗2 = −𝑎11 + 𝑖𝜔10 + 𝑏11𝑒𝑖𝜔10𝜏10𝑏21𝑒𝑖𝜔10𝜏10 ,
𝑞∗3 = 𝑏23 (𝑎11 + 𝑖𝜔10)𝑏21 (𝑎33 + 𝑏33𝑒𝑖𝜔10𝜏∗2 + 𝑖𝜔10) . (43)

Choosing𝐷 as 𝐷 = {1+𝑞2𝑞∗2 +𝑞3𝑞∗3 +𝜏10𝑒−𝑖𝜔10𝜏10(𝑏11+𝑞∗2𝑏21+𝑞3𝑏13 + 𝑞3𝑞∗2𝑏23) + 𝜏∗2 𝑞∗3 𝑒−𝑖𝜔10𝜏∗2 (𝑞2𝑏32 + 𝑞3𝑏33)}−1, then, by (41),
we see ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1.

In the remainder of this section, we use the algorithms
given in [17] and, using a computation process similar to that
in [24–27], we get the coefficients used in determining the
qualities of bifurcating periodic solutions:

𝑔20 = 2𝜏10𝐷 [𝑞3𝑒−2𝑖𝜔10𝜏10 (1 − 𝑞∗2 ) (𝐾11 + 𝑞3𝐾12)
+ 𝑞∗3𝑞2𝑒−2𝑖𝜔10𝜏∗2 (𝑞2𝐾31 + 𝑞3𝐾32)] ,

𝑔11 = 𝜏10𝐷 [(1 − 𝑞∗2 ) (𝐾11 (𝑞3 + 𝑞3) + 2𝐾12𝑞3𝑞3)+ 𝑞∗3 (𝐾32 (𝑞2𝑞3 + 𝑞2𝑞3) + 2𝐾31𝑞2𝑞2)] ,
𝑔02 = 2𝜏10𝐷 [𝑒2𝑖𝜔10𝜏10𝑞3 (1 − 𝑞∗2 ) (𝐾11 + 𝑞3𝐾12)

+ 𝑞∗3𝑞2𝑒2𝑖𝜔10𝜏∗2 (𝑞2𝐾31 + 𝑞3𝐾32)] ,
𝑔21 = 2𝜏10𝐷 {(1 − 𝑞∗2 )

⋅ [𝐾11((𝑊(1)20 (−1)2 𝑞3 + 𝑊(3)20 (−1)2 ) 𝑒𝑖𝜔10𝜏10
+ (𝑊(1)11 (−1) 𝑞3 + 𝑊(3)11 (−1)) 𝑒−𝑖𝜔10𝜏10)
+ 𝐾12 (𝑊(3)20 (−1) 𝑞3𝑒𝑖𝜔10𝜏10 + 2𝑊(3)11 (−1) 𝑞3𝑒−𝑖𝜔10𝜏10)
+ 𝐾13 (𝑞23 + 2𝑞3𝑞3) 𝑒−𝑖𝜔10𝜏10 + 3𝐾14𝑞23𝑞3𝑒−𝑖𝜔10𝜏10]
+ 𝑞∗3 [𝐾31 (𝑊(2)20 (− 𝜏∗2𝜏10) 𝑞2𝑒𝑖𝜔10𝜏∗2
+ 2𝑊(2)11 (− 𝜏∗2𝜏10) 𝑞2𝑒−𝑖𝜔10𝜏∗2 )
+ 𝐾32(𝑒𝑖𝜔10𝜏∗2 (𝑊(2)20 (−𝜏∗2 /𝜏10)2 𝑞3 + 𝑊(3)20 (−𝜏∗2 /𝜏10)2 𝑞2)
+ 𝑒−𝑖𝜔10𝜏∗2 (𝑊(2)11 (− 𝜏∗2𝜏10) 𝑞3 + 𝑊(3)11 (− 𝜏∗2𝜏10) 𝑞2))
+ 3𝐾33𝑞22𝑞2𝑒−𝑖𝜔10𝜏∗2 + 𝐾34𝑞2 (𝑞2𝑞3 + 2𝑞2𝑞3) 𝑒−𝑖𝜔10𝜏∗2 ]} ,

(44)

where

𝑊20 (𝜃) = 𝑖𝑔20𝜔10𝜏10 𝑞 (0) 𝑒𝑖𝜔10𝜏10𝜃 + 𝑖𝑔023𝜔10𝜏10 𝑞 (0) 𝑒−𝑖𝜔10𝜏10𝜃 + 𝐸1𝑒2𝑖𝜔10𝜏10𝜃,
𝑊11 (𝜃) = − 𝑖𝑔11𝜔10𝜏10 𝑞 (0) 𝑒𝑖𝜔10𝜏10𝜃 + 𝑖𝑔11𝜔10𝜏10 𝑞 (0) 𝑒−𝑖𝜔10𝜏10𝜃 + 𝐸2,

𝐸(1)1 = 𝑀11𝑀1 ,
𝐸(2)1 = 𝑀12𝑀1 ,
𝐸(3)1 = 𝑀13𝑀1 ,
𝐸(1)2 = 𝑀21𝑀2 ,
𝐸(2)2 = 𝑀22𝑀2 ,
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𝐸(3)2 = 𝑀23𝑀2 ,
𝑀1 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2𝑖𝜔10 − 𝑎11 − 𝑏11𝑒−2𝑖𝜔10𝜏10 −𝑎12 −𝑏13𝑒−2𝑖𝜔10𝜏10−𝑏21𝑒−2𝑖𝜔10𝜏10 2𝑖𝜔10 − 𝑎22 −𝑏23𝑒−2𝑖𝜔10𝜏100 −𝑏32𝑒−2𝑖𝜔10𝜏∗2 2𝑖𝜔10 − 𝑎33 − 𝑏33𝑒−2𝑖𝜔10𝜏∗2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑀11 = 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞3𝑒−2𝑖𝜔10𝜏10 (𝐾11 + 𝑞3𝐾12) −𝑎12 −𝑏13𝑒−2𝑖𝜔10𝜏10−𝑞3𝑒−2𝑖𝜔10𝜏10 (𝐾11 + 𝑞3𝐾12) 2𝑖𝜔10 − 𝑎22 −𝑏23𝑒−2𝑖𝜔10𝜏10𝑞2𝑒−2𝑖𝜔10𝜏∗2 (𝑞2𝐾31 + 𝑞3𝐾32) −𝑏32𝑒−2𝑖𝜔10𝜏∗2 2𝑖𝜔10 − 𝑎33 − 𝑏33𝑒−2𝑖𝜔10𝜏∗2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑀12 = 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2𝑖𝜔10 − 𝑎11 − 𝑏11𝑒−2𝑖𝜔10𝜏10 𝑞3𝑒−2𝑖𝜔10𝜏10 (𝐾11 + 𝑞3𝐾12) −𝑏13𝑒−2𝑖𝜔10𝜏10−𝑏21𝑒−2𝑖𝜔10𝜏10 −𝑞3𝑒−2𝑖𝜔10𝜏10 (𝐾11 + 𝑞3𝐾12) −𝑏23𝑒−2𝑖𝜔10𝜏100 𝑞2𝑒−2𝑖𝜔10𝜏∗2 (𝑞2𝐾31 + 𝑞3𝐾32) 2𝑖𝜔10 − 𝑎33 − 𝑏33𝑒−2𝑖𝜔10𝜏∗2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑀13 = 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2𝑖𝜔10 − 𝑎11 − 𝑏11𝑒−2𝑖𝜔10𝜏10 −𝑎12 𝑞3𝑒−2𝑖𝜔10𝜏10 (𝐾11 + 𝑞3𝐾12)−𝑏21𝑒−2𝑖𝜔10𝜏10 2𝑖𝜔10 − 𝑎22 −𝑞3𝑒−2𝑖𝜔10𝜏10 (𝐾11 + 𝑞3𝐾12)0 −𝑏32𝑒−2𝑖𝜔10𝜏∗2 𝑞2𝑒−2𝑖𝜔10𝜏∗2 (𝑞2𝐾31 + 𝑞3𝐾32)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑀2 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑎11 + 𝑏11 𝑎12 𝑏13𝑏21 𝑎22 𝑏230 𝑏32 𝑎33 + 𝑏33

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑀21 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝐾11 (𝑞3 + 𝑞3) − 2𝐾12𝑞3𝑞3 𝑎12 𝑏13𝐾11 (𝑞3 + 𝑞3) + 2𝐾12𝑞3𝑞3 𝑎22 𝑏23−𝐾32 (𝑞2𝑞3 + 𝑞2𝑞3) − 2𝐾31𝑞2𝑞2 𝑏32 𝑎33 + 𝑏33
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑀22 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑎11 + 𝑏11 −𝐾11 (𝑞3 + 𝑞3) − 2𝐾12𝑞3𝑞3 𝑏13𝑏21 𝐾11 (𝑞3 + 𝑞3) + 2𝐾12𝑞3𝑞3 𝑏230 −𝐾32 (𝑞2𝑞3 + 𝑞2𝑞3) − 2𝐾31𝑞2𝑞2 𝑎33 + 𝑏33

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

𝑀23 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑎11 + 𝑏11 𝑎12 −𝐾11 (𝑞3 + 𝑞3) − 2𝐾12𝑞3𝑞3𝑏21 𝑎22 𝐾11 (𝑞3 + 𝑞3) + 2𝐾12𝑞3𝑞30 𝑏32 −𝐾32 (𝑞2𝑞3 + 𝑞2𝑞3) − 2𝐾31𝑞2𝑞2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(45)

Thus, we can determine𝑊20(𝜃) and𝑊11(𝜃). Furthermore,
we can compute 𝑔21 by (44). Then we can compute the
following values:

𝑐1 (0) = 𝑖2𝜔10𝜏10 (𝑔20𝑔11 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 ) + 𝑔212 ,
𝜇2 = − Re {𝑐1 (0)}

Re {𝜆󸀠 (𝜏10)} ,
𝑇2 = − Im {𝑐1 (0)} + 𝜇2Im {𝜆󸀠 (𝜏10)}𝜔10𝜏10 ,
𝛽2 = 2Re (𝑐1 (0)) .

(46)

From [17], we know that 𝜇2 determines the directions of
the Hopf bifurcation: if 𝜇2 > 0 (𝜇2 < 0), then the Hopf
bifurcation is supercritical (subcritical); 𝛽2 determines the
stability of the bifurcating periodic solutions: the bifurcating
periodic solutions are stable (unstable) if 𝛽2 < 0 (𝛽2 > 0);
and 𝑇2 determines the period of the bifurcating periodic
solutions: the period increases (decreases) if 𝑇2 > 0 (𝑇2 < 0).
4. Numerical Simulations

From Section 3, we can determine the direction of a Hopf
bifurcation and the stability of the bifurcating periodic solu-
tions. In this section, wewill give somenumerical simulations
of system (3) at different values of time delays.
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Figure 1: 𝐸∗ is asymptotically stable, where 𝜏1 = 4.3 < 𝜏∗10 = 4.4686 and 𝜏2 = 0.
We choose the coefficients as follows:𝜇 = 0.1,𝐾 = 50,𝛽 =0.1, 𝛼 = 0.2, 𝑑 = 0.2, 𝛽1 = 0.1, 𝛼1 = 0.1, Λ = 15, 𝛾 = 0.01, and𝑚 = 0.3. 𝛼, 𝑑, 𝛼1, and 𝛾 are taken from [15]. Then system (3)

has an endemic equilibrium 𝐸∗(19.5683, 27.6652, 35.5003).
When 𝜏2 = 0, we then have 𝜔∗10 = 0.312 and 𝜏∗10 = 4.4686.
From Theorem 4, we know that 𝐸∗ is asymptotically stable
when 𝜏1 < 𝜏∗10, which is illustrated in Figure 1.

When 𝜏1 passes through the critical value 𝜏∗10, 𝐸∗ loses
its stability and a Hopf bifurcation occurs; that is, a family of
periodic solutions bifurcate from 𝐸∗ (see Figure 2). Similarly,
we get 𝜔∗20 = 0.6679 and 𝜏∗20 = 2.4472.

Regard 𝜏1 as a parameter, for 𝜏2 = 2 ∈ (0, 2.4472), and
then we have 𝜔10 = 0.3116 and 𝜏10 = 7.4719. Theorem 6
shows that 𝐸∗ is asymptotically stable when 𝜏1 < 𝜏10 (see
Figure 3) and unstable when 𝜏1 > 𝜏10. From formulae (46)
in Section 3, it follows that 𝑐1(0) = −5.3591 × 10−5 + 2.2474 ×10−5𝑖, 𝜇2 = 0.0086, 𝛽2 = −1.0718 × 10−4, and 𝑇2 = 1.1427 ×10−4. Since 𝜇2 > 0 and 𝛽2 < 0, the Hopf bifurcation is
supercritical, and these bifurcating periodic solutions from𝐸∗ at 𝜏10 are stable, which are depicted in Figure 4.

5. Discussion

In this paper, we have studied the dynamics of a plant virus
propagation model with two delays (3) proposed by Jackson

and Chen-Charpentier [15]. The model describes the disease
transmission dynamics between the insects and the plants.

Jackson and Chen-Charpentier [15] studied model (3)
using numerical methods. However, the problem of the
theoretical analysis of this model remained unsolved and was
an open problem.

For this problem, first, by analyzing the characteristic
equation, constructing a Lyapunov functional, and using
LaSalle’s invariance principle, we prove that the disease-free
equilibrium 𝐸0 is globally asymptotically stable if 𝑅0 ≤ 1
(Theorem 2), regardless of the length of the time delays,
the sufficient conditions for the stability of the endemic
equilibrium, and existence of Hopf bifurcation if 𝑅0 > 1
have been given, respectively. Then, by using normal form
theory and center manifold theorem introduced by Hassard
et al. [17], regarding 𝜏1 as a parameter, we investigate the
direction and stability of theHopf bifurcation, and the explicit
formulae which determine the direction and stability of
the bifurcating periodic solutions are derived. Finally, the
numerical simulation results in Figures 1–4 have verified the
obtained analytic results.

Our simulation results show that, for the parameter values
considered, the disease will persist and exhibit oscillatory
bahavior, and this manifests that the densities of the plants
and insect-vectors will remain in an oscillatory case, and then
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Figure 2: System (3) undergoes a Hopf bifurcation at the endemic equilibrium 𝐸∗, where 𝜏1 = 7.3 > 𝜏∗10 = 4.4686 and 𝜏2 = 0.
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Figure 3: 𝐸∗ is asymptotically stable, where 𝜏1 = 7.1 < 𝜏10 = 7.4719 and 𝜏2 = 2.
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Figure 4: System (3) undergoes a Hopf bifurcation at the endemic equilibrium 𝐸∗, where 𝜏1 = 7.6 > 𝜏10 = 7.4719 and 𝜏2 = 2.
agricultureworkersmust be alert to the virus even if they have
noticed that fewer plants are becoming infected.
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