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This paper proposes a new fractional-order chaotic systemwith five terms. Firstly, basic dynamical properties of the fractional-order
system are investigated in terms of the stability of equilibrium points, Jacobian matrices theoretically. Furthermore, rich dynamics
with interesting characteristics are demonstrated by phase portraits, bifurcation diagrams numerically. Besides, the control problem
of the new fractional-order system is discussed via numerical simulations. Our results demonstrate that the new fractional-order
system has compound structure.

1. Introduction

Recently, the study of fractional calculus has attracted great
attention due to its potential applications in various fields [1–
3]. As a branch of mathematical analysis, fractional calculus
can be considered as the generalization of the conventional
calculus. Although the fractional-order derivative theory has
amore than 300-year-old history, its application of the theory
is just gaining attention [4–6]. In fact, most of the systems
in interdisciplinary fields can be described via fractional
calculus [7–9].Moreover, fractional-ordermodel can provide
an explicit description and give a further insight into physical
process. That is, fractional-order systems can serve as a
valuable tool in the modeling of many phenomena. In view
of the fact that fractional calculus provides another good way
to describe, predict, and control physical systems accurately, it
has been applied to control system, physics, and systemmod-
eling. Moreover, with the development of interdisciplinary
applications, people found that various research fields can
be elegantly described with the help of fractional derivatives,
such as viscoelastic bodies, quantitative finance, dielectric
polarization, electromagnetic waves, and polymer physics.

On the other hand, chaos and its applications have been
intensively investigated and developed in many fields of
science. In [9], the authors have presented analytical proofs

of fold Hopf bifurcation in hyperchaotic Chen system and
given sufficient conditions for stability and instability of the
bifurcation periodic orbits. Researchers have investigated
chaos synchronization of fractional-order systems via linear
control [10–12]. Fractional-order systems possess long-range
memory behavior and display complexity dynamics charac-
teristic compared to its integral-order counterpart. On the
other hand, there exist many significant differences between
fractional-order system and the corresponding integer-order
differential systems. Generally speaking, fractional-order
nonlinear system can display more rich dynamical behav-
iors such as various bifurcations under certain conditions
which are different from the corresponding integer-order
system [13, 14]. Several studies have explored the complex
dynamical properties in many fractional-order systems, such
as fractional-order Chen system [15] and fractional-order
Duffing system [16]. Until now, many researchers have
investigated the dynamics of several fractional-order chaotic
systems and obtained many excellent results [17–19]. In addi-
tion, searching for new chaotic systems with fewer terms in
autonomous differential equations has been developed with
much interest by scientists. In [20], the author has investi-
gated the dynamics of a five-term chaotic attractor. However,
this system with fractional order has not been actively and
deeply explored, and it is very interesting in a number
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of different fields. To the best of our knowledge, chaotic
attractors with fewer than five terms in three fractional-order
differential equations have never been investigated.

Motivated by the above, within this body of work,
we focus on the dynamical behaviors of this fractional-
order simplified system. This would be of mathematical and
practical interests. Rich dynamical behaviors are studied via
bifurcation diagrams with varying the system parameters
and the fractional derivative orders. Moreover, the control
problem of the new fractional system is also investigated.

The remainder of this paper is organized as follows. In
Section 2, the definition for the fractional calculus is given.
Section 3 is devoted to the investigation of the fractional-
order new system. In Section 4, the control of the new
fractional-order system is investigated. Conclusions of this
paper will be drawn in Section 5.

2. Fractional Calculus

Fractional calculus can be considered as a generalization of
integration and differentiation to a noninteger-order inte-
grodifferential operator 𝑎𝐷𝑞𝑡 which is described as

𝑎𝐷𝑞𝑡 =
{{{{{{{{{{{{{

𝑑𝑞
𝑑𝑡𝑞 𝑅 (𝑞) > 0
1 𝑅 (𝑞) = 0
∫𝑡
𝑎
(𝑑𝜏)−𝑞 𝑅 (𝑞) < 0,

(1)

where 𝑞 denotes derivative order and 𝑅(𝑞) corresponds to
the real part of 𝑞. The numbers 𝑎 and 𝑡 represent the limits
of the operator. At present, there are several definitions of
the fractional-order differential system. Riemann–Liouville
and Caputo definitions are considered the most common and
efficient fractional derivatives [21, 22].

Firstly, the Riemann–Liouville (RL) definition of frac-
tional derivatives can be written as follows.

𝑅𝐿

𝑎𝐷𝑞𝑡𝑓 (𝑡) = 𝑑𝑛
𝑑𝑡𝑛

1
Γ (𝑛 − 𝑞) ∫

𝑡

𝑎

𝑓 (𝜏)
(𝑡 − 𝜏)𝑞−𝑛+1𝑑𝜏,

𝑛 − 1 < 𝑞 < 𝑛
(2)

The Caputo fractional derivative is given by the following.

𝐶

𝑎𝐷𝑞𝑡𝑓 (𝑡) = 1
Γ (𝑛 − 𝑞) ∫

𝑡

𝑎
(𝑡 − 𝜏)𝑛−𝑞−1 𝑓(𝑛) (𝜏) 𝑑𝜏,

𝑛 − 1 < 𝑞 < 𝑛
(3)

In the above formulations, Γ(⋅) represents the Gamma func-
tion.

Γ (𝑠) = ∫∞
0
𝑡𝑠−1𝑒−𝑡𝑑𝑡. (4)

Note that the Caputo derivative guarantees a straightforward
connection between the types of the initial condition and the
fractional derivative. Hence, the Caputo derivative is adopted
in this paper.

3. An Unusual Five-Term
Fractional-Order System

At first, a simple chaotic integer-order system with five terms
is described as follows [20]:

̇𝑥 = 𝑎 (𝑦 − 𝑥)
𝑦̇ = −𝑥𝑧
𝑧̇ = −𝑏 + 𝑥𝑦,

(5)

when the parameters are selected as 𝑎 = 5, 𝑏 = 90, system(5) consists of two quadratic nonlinearities and displays
abundantly complex behaviors of chaotic dynamics.

In what follows, we suppose that the derivative orders are
fractional; the equations of the fractional-order system are
readily derived from the above integer-order counterpart

𝐷𝑞1∗ 𝑥 = 𝑎 (𝑥 − 𝑦)
𝐷𝑞2∗ 𝑦 = −𝑥𝑧
𝐷𝑞3∗ 𝑧 = −𝑏 + 𝑥𝑦,

(6)

where 𝑞𝑖 (𝑖 = 1, 2, 3) are the fractional derivatives orders.
In the next step, the dynamical behaviors of this new

fractional-order system are investigated.

3.1. Some Properties of the New Fractional-Order System. It
should be noted that most of the theory for the integer-
order dynamic system cannot be simply extended to the
fractional-order system. Therefore, the sufficient conditions
of the stability of the fractional-order systems are given [23].

Lemma 1. An autonomous fractional-order system is asymp-
totically steady at the equilibrium, if all the eigenvalues of the
Jacobian matrix of some equilibrium satisfy

󵄨󵄨󵄨󵄨arg (𝑒𝑖𝑔 (𝐽))󵄨󵄨󵄨󵄨 > 𝑞𝜋
2 , 𝑞 = max (𝑞1, 𝑞2, 𝑞3) , (7)

where 𝑒𝑖𝑔(𝐽) denotes the eigenvalues of matrix 𝐽.
Based on the above theorem, the equilibria of system (6)

can be calculated by solving the following equations

𝐷𝑞1∗ 𝑥 = 𝑎 (𝑥 − 𝑦) = 0
𝐷𝑞2∗ 𝑦 = −𝑥𝑧 = 0
𝐷𝑞3∗ 𝑧 = −𝑏 + 𝑥𝑦 = 0.

(8)

The system contains two equilibrium points, i.e.,

𝑃+ (𝑥, 𝑦, 𝑧) = (+√𝑏, +√𝑏, 0) ,
𝑃− (−𝑥, −𝑦, −𝑧) = (−√𝑏, −√𝑏, 0) , (9)

and, for the equilibrium 𝑃+(𝑥, 𝑦, 𝑧) = (+√𝑏, +√𝑏, 0), the
Jacobian matrix of (6) at points 𝑃+ is obtained as

𝐽+ = [[
[

−𝑎 𝑎 0
−𝑧 0 −𝑥
𝑦 𝑥 0

]]
]
= [[[
[

−𝑎 𝑎 0
0 0 −√𝑏
√𝑏 √𝑏 0

]]]
]
. (10)
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Then we can obtain the eigenvalues of the Jacobian matrix as
follows.

𝜆1 = −7.0943,
𝜆2 = 1.4701 + 10.5444𝑖
𝜆3 = 1.4701 − 10.5444𝑖

(11)

For the second equilibrium 𝑃−(𝑥, 𝑦, 𝑧) = (−√𝑏, −√𝑏, 0), the
Jacobian matrix of the fractional-order new system (6) is
defined as

𝐽− = [[
[

−𝑎 𝑎 0
−𝑧 0 −𝑥
𝑦 𝑥 0

]]
]
= [[[
[

−𝑎 𝑎 0
0 0 √𝑏

−√𝑏 −√𝑏 0
]]]
]
. (12)

By computing |𝜆𝐸 − 𝐽| = 0, it is found that the eigenvalues
of the Jacobian matrix 𝐽− are the same as those of the
Jacobian matrix 𝐽+. That is, 𝜆1 is a negative real number
and |arg(𝜆2,3)| = 1.4323; then according to Lemma 1, the
eigenvalues cannot satisfy (7) as 0.912 ≤ 𝑞 ≤ 1.0, and two
equilibrium points of the nonlinear fractional-order system
(6) are all unstable.

3.2. Chaos and Bifurcations with Fractional-Order Parameters.
To investigate the existence of new attractors in the fractional-
order system, this part is devoted to dynamics of system (6) by
considering several values of the fractional derivatives orders.

First, system parameters are selected as 𝑎 = 5, 𝑏 = 90, and
the order parameter 𝑞𝑖 (𝑖 = 1, 2, 3) is varied. Figure 1 shows
several typical attractors for 𝑞1 = 𝑞2 = 𝑞3 = 𝜃; in this case,
the fractional-order system is a commensurate-order system.
The initial states of the new fractional-order system are taken
as 𝑥(0) = 1, 𝑦(0) = 2, 𝑧(0) = 3. From these figures, one
can observe that the new fractional-order system exhibits rich
dynamical behaviors.

When the derivative order 𝜃 = 0.84 and 𝜃 = 0.86, system
(6) stabilizes to an equilibrium point, as shown in Figures 1(a)
and 1(b).When 𝜃 further increases to 0.88, there exists a single
attractor, as reflected in Figure 1(c). The system also shows a
chaotic attractor for 𝜃 = 0.98, but it is different from the case
of 𝜃 = 0.88, as shown in Figure 1(d).

In order to further study the complex dynamics of
the fractional-order system, consequently, the bifurcation
diagrams with fractional derivative orders are given. First of
all, we focus on the case of commensurate-order system. The
fractional derivative order 𝑞 varies from 0.88 to 1. Figure 2
represents the bifurcation diagram of the fractional-order
system. It is clearly shown that the new fractional-order
system is chaotic over most of the scopes 𝑞 ∈ [0.89, 0.95]
and 𝑞 ∈ [0.96, 1]. There exist tangent bifurcations when
parameter 𝑞 < 0.96. And the fractional-order system enters
into chaos again as 𝑞 > 0.96.

Phase portraits are shown in Figures 3(a) and 3(b); from
the two figures, it can be clearly seen that the system shows
distinguishable dynamical behaviors for different values of 𝑞.

As we know, for the incommensurate-order system,
dynamical behavior is more complex than the commensu-
rate-order system. Therefore, here, several typical differential

order values are selected. We focus our attention on bifurca-
tions versus the different derivative orders.

Fix the fractional derivative orders 𝑞2 = 𝑞3 = 0.98;
dynamical behavior of system (6) with fractional derivative
order 𝑞1 ∈ [0.91, 0.99] is presented as Figure 4. With
increasing of the order parameter 𝑞1 from 0.91, the fractional-
order system enters into chaos by a series of period-doubling
bifurcations. It can be seen that the system is period-2 for𝑞 = 0.92, period-4 for 𝑞 = 0.93. The route out of chaos for
the system is tangent bifurcation. Also, it can be observed that
saddle-node bifurcation occurs when 𝑞1 ∈ [0.975 0.983]. In
the next step, Figure 5 represents the bifurcation diagrams
with 𝑞2, 𝑞3 varying by numerical simulation. It is observed
that there exist tangent bifurcations for two parameters,
but the values of 𝑞2, 𝑞3 are different. The route out of
chaos for the system is through tangent bifurcation when𝑞2 < 0.92, but transient chaos is observed when 𝑞3 <0.96.
3.3. Chaos and Bifurcations with System Parameters. First,
fix fractional derivative orders 𝑞1 = 𝑞2 = 𝑞3 = 0.98,
and let system parameter 𝑎 vary. The parameter 𝑎 varies
from 5 to 8. The bifurcation diagram with parameter 𝑎 is
shown in Figure 6. System displays chaotic behavior when
parameter 𝑎 < 5.2, as shown in Figure 7(a).When bifurcation
parameter 𝑎 increases from 6 to 6.5, there exist a series of
period-doubling bifurcations, such as period-1 and period-4
[see Figures 7(b) and 7(c)]. If 𝑎 keeps increasing, bifurcation
occurs and the system switches to a periodic motion, as
Figure 7(d) shows.

To furthermore exhibit the bifurcation behavior of the
system (6), the expanded periodic window a ∈ [6.6 7.6]
and [5.8 6.2] are plotted in Figures 6(b) and 6(c). From
these figures, it can be seen that period bifurcation and Hopf
bifurcation happen under certain parameters. And different
attractors are shown in Figures 7(a)–7(d).

In what follows, let the fractional derivative orders 𝑞1 =𝑞2 = 𝑞3 = 0.91, system parameter 𝑎 = 5; the dynamical
behaviors of the system (6) with the variation of parameter𝑏 are discussed. Numerically we calculate the values of the
parameter 𝑏; the dynamical behaviors of (6) can be classified
as follows:

(i)When 𝑏 ≤ 175, system becomes period orbit, as shown
in Figure 8(a).

(ii) When 175 < 𝑏 < 193, system displays a limit cycle, as
shown in Figure 8(b).

(iii) When 𝑏 > 193, system demonstrates a chaotic
attractor, as shown in Figure 8(c).

It can be seen that the chaotic attractors structure changes
qualitatively with the variation of the parameter 𝑏 and the
order 𝑞. When the parameter 𝑏 increases from 175 to 200, the
dynamics of system (6) becomes more and more rich.

4. Control of New Fractional-Order System

In this subsection, the control problem of commensurate-
order fractional-order system is investigated. For simplicity,
we assume the derivative order 𝑞 = 0.96, a control parameter
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Figure 1: Attractors of system (6) for 𝑞1 = 𝑞2 = 𝑞3 = 𝜃. (a) 𝜃 = 0.84; (b) 𝜃 = 0.86; (c) 𝜃 = 0.88; (d) 𝜃 = 0.98.
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Figure 2: Bifurcation diagram of the fractional-order system (6)
with 𝑞 ∈ (0.88, 1).

𝑢 is added to the second equation of system (6), and the
controlled system can be written as

𝐷𝑞∗𝑥 = 𝑎 (𝑥 − 𝑦)
𝐷𝑞∗𝑦 = −𝑥𝑧 + 𝑢
𝐷𝑞∗𝑧 = −𝑏 + 𝑥𝑦.

(13)

Here, we use the predictor-corrector method to obtain
the numerical solution of system (13). In our simulations, the
time step and the running time are taken as ℎ = 0.001 and𝑇 = 100 sec, respectively. The initial conditions of fractional-
order system are selected as 𝑥(0) = 𝑦(0) = 𝑧(0) = 1.0.
If the control parameter 𝑢 = −70, one can obtain the left
half-image of the original chaotic attractor (Figure 1(d)), as
shown in Figure 9(a) for the x-z plane. However, when the
control parameter 𝑢 = 70, the right half-image of the original
chaotic attractor can be isolated as shown in Figure 9(b). It
implies that the new fractional-order system (6) consists of
compound structures under certain conditions.
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Figure 3: The phase portraits of the system for different values of 𝑞 (a) 𝑞 = 0.95; (b) 𝑞 = 0.98.
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Figure 4: Bifurcation diagram of the fractional-order system (6)
with 𝑞1 ∈ (0.91, 0.99).

In the following, fix system parameter 𝑎 = 5, 𝑏 = 90,
and the fractional derivatives order 𝑞 = 0.98; then we adjust
the values of the control parameter 𝑢; complex dynamical
behaviors of fractional-order system (13) can be summarized
as follows:

(i) When 98 ≤ |𝑢| ≤ 170, system (13) displays limit cycles.
For example, Figure 10(a) demonstrates a limit cycle at𝑢 = 98.

(ii) When 80 ≤ |𝑢| ≤ 90 and 71 ≤ |𝑢| ≤ 80, system
(13) displays period-doubling bifurcations. Figures 10(b) and
10(c) give different period dynamics.

(iii) When 65 ≤ |𝑢| ≤ 69, system (13) exhibits partial
attractors. Figure 10(d) shows a partially left, dominantly
right attractor.

(iv) When |𝑢| = 70, system (13) shows left and right half-
image attractors, respectively, as shown in Figures 9(a) and
9(b).

Our results demonstrate that there are different formats of
chaos with the variation of derivative order. One is a process

of period-doubling bifurcations and the other is an interior
crisis from single-scroll to double-scroll attractors. Certainly,
theminimumeffective dimension for fractional-order system
to keep chaos is different between commensurate-order and
incommensurate-order case. In order to know more about
the dynamics of the system and to make further study in the
future, the dynamics of system (6) with the variation of the
different derivative order in the incommensurate-order case
will be investigated in future work. In addition, future work
on the topic should include the analysis of chaos control of
the fractional-order system in detail.

5. Results and Discussion

In this paper, a novel fractional-order system is presented.
Complex dynamics with interesting characteristics of the
new fractional-order system are studied. Firstly, the basic
properties of the new fractional-order system are analyzed via
theoretical scheme. In addition, the phase diagrams for the
different values of the parameters are obtained to show the
rich dynamics of the system. Furthermore, the bifurcations
and chaos dynamical phenomena in this system are numer-
ically investigated by varying the fractional derivative orders
and system parameters, respectively. The new fractional-
order system displays several typical bifurcations, such as
tangent bifurcations, period bifurcations, and various chaotic
attractors. Meanwhile, the control problem of fractional-
order system is investigated. Moreover, forming mechanisms
of compound structures of the new fractional-order system is
demonstrated via numerical simulations.

Appendix

A Brief Explanation regarding
the Predictor-Corrector Algorithm

There are two approximation methods which can be used for
numerical computation on chaos with fractional differential
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equations. One is an improved version of Adams-Bashforth-
Moulton algorithm based on the predictor-correctors
scheme, which is a time-domain approach. The other
is frequency domain approximation, based on numerical

analysis of fractional-order systems in the frequency domain.
In this paper, we employ the improved predictor-corrector
algorithm for fractional-order differential equations. In what
follows, the predictor-corrector algorithm is introduced.
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To get the approximate solution of a fractional-order
chaotic system by the predictor-corrector algorithm, the
following equation is investigated

𝑑𝑞𝑥
𝑑𝑡𝑞 = 𝑓 (𝑡, 𝑥) 0 ≤ 𝑡 ≤ 𝑇

𝑥𝑘 (0) = 𝑥𝑘0 𝑘 = 0, 1, . . . , [𝑞] − 1,
(A.1)

which is equivalent to the Volterra integral equation.

𝑥 (𝑡) = [𝛼]−1∑
𝑘=0

𝑡𝑘
𝑘!𝑥0(𝑘)

+ 1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

(A.2)

Set ℎ = 𝑇/𝑁, 𝑡𝑗 = 𝑗ℎ, (𝑗 = 0, 1, . . . ,𝑁). Then the corrector
formula for (2) can be discretized as follows:

𝑥ℎ (𝑡𝑛+1) =
[𝛼]−1∑
𝑘=0

𝑡𝑘𝑛+1𝑘! 𝑥0 (𝑘)

+ ℎ𝛼
Γ (𝛼 + 2)𝑓 (𝑡𝑛+1, 𝑥𝑝ℎ (𝑡𝑛+1))
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Figure 9: (a) Left half-image attractor for 𝑢 = −70 (b) right half-image attractor for 𝑢 = 70.
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Figure 10: Attractors of system (13) at (a) 𝑢 = 98; (b) 𝑢 = 90; (c) 𝑢 = 88; (d) 𝑢 = 68.
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+ ℎ𝛼
Γ (𝛼 + 2) ∑𝑎𝑗,𝑛+1𝑓 (𝑡𝑗, 𝑥ℎ (𝑡𝑗))

(A.3)

where predicted values𝑥ℎ(𝑡𝑛+1) are determined by the follow-
ing formula.

𝑥𝑝
ℎ
(𝑡𝑛+1) =

[𝑞]−1∑
𝑘=0

𝑥(𝑘)0 𝑡
𝑘
𝑛+1𝑘!

+ 1
Γ (𝑞)

𝑛∑
𝑗=0

𝛽𝑗,𝑛+1𝑓 (𝑡, 𝑥ℎ (𝑡𝑗)) ,
(A.4)

Also

𝛼𝑗,𝑛+1

=
{{{{{{{{{

𝑛𝑞+1 − (𝑛 − 𝑞) (𝑛 + 1)𝑞 , 𝑗 = 0
(𝑛 − 𝑗 + 2)𝑞+1 + (𝑛 − 𝑗)𝑞+1 − 2 (𝑛 − 𝑗 + 1)𝑞+1 , 1 ≤ 𝑗 ≤ 𝑛
1, 𝑗 = 𝑛 + 1.

𝛽𝑗,𝑛+1 = ℎ𝑞
𝑞 ((𝑛 − 𝑗 + 1)𝑞 − (𝑛 − 𝑗)𝑞) , 1 ≤ 𝑗 ≤ 𝑛.

(A.5)

The error estimate of this approach can be presented:
max𝑗=0,1,...,𝑁|𝑥(𝑡𝑗) −𝑥ℎ(𝑡𝑗)| = 𝑂(ℎ𝑃), where 𝑝 = min(2, 1+ 𝑞).
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