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Let 𝑋 = {𝑋𝑖, 𝑖 ≥ 1} be a sequence of real valued random variables, 𝑆0 = 0 and 𝑆𝑘 = ∑𝑘
𝑖=1 𝑋𝑖 (𝑘 ≥ 1). Let 𝜎 = {𝜎(𝑥), 𝑥 ∈ Z} be

a sequence of real valued random variables which are independent of 𝑋’s. Denote by 𝐾𝑛 = ∑𝑛
𝑘=0 𝜎(⌊𝑆𝑘⌋) (𝑛 ≥ 0) Kesten-Spitzer

random walk in random scenery, where ⌊𝑎⌋ means the unique integer satisfying ⌊𝑎⌋ ≤ 𝑎 < ⌊𝑎⌋ + 1. It is assumed that 𝜎’s belong
to the domain of attraction of a stable law with index 0 < 𝛽 < 2. In this paper, by employing conditional argument, we investigate
large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random
walk in random scenery𝐾𝑛. The obtained results supplement to some corresponding results in the literature.

1. Introduction

Let 𝑋 = {𝑋𝑖, 𝑖 ≥ 1} be a sequence of real valued random
variables, 𝑆0 = 0 and 𝑆𝑘 = ∑𝑘

𝑖=1 𝑋𝑖 (𝑘 ≥ 1). Let 𝜎 = {𝜎(𝑥), 𝑥 ∈
Z} be a sequence of R-valued random variables which are
independent of 𝑋’s. We refer to 𝑆 = {𝑆𝑘, 𝑘 ≥ 0} as the
random walk and 𝜎 as the random scenery. Then the process𝐾 = {𝐾𝑛, 𝑛 ∈ N} is defined by

𝐾𝑛 = 𝑛∑
𝑘=0

𝜎 (⌊𝑆𝑘⌋) , 𝑛 ∈ N, (1)

where N = {0, 1, 2, . . .} and ⌊𝑎⌋ means the unique integer
satisfying ⌊𝑎⌋ ≤ 𝑎 < ⌊𝑎⌋ + 1, called a random walk in random
scenery (RWRS, in short), sometimes also referred to as the
Kesten-Spitzer random walk in random scenery; see Kesten
and Spitzer [1]. An interpretation is as follows. If a random
walker has to pay 𝜎(𝑥) units at any time he/she visits the site𝑥, then 𝐾𝑛 is the total amount he/she pays by time 𝑛.

RWRS was first introduced by Kesten and Spitzer [1]
and Borodin [2, 3] in order to construct new self-similar
stochastic processes. Kesten and Spitzer [1] proved that when

the random walk and the random scenery belong to the
domains of attraction of different stable laws of indices 1 <𝛼 ≤ 2 and 0 < 𝛽 ≤ 2, respectively, then there exists 𝛿 > 1/2
such that {𝑛−𝛿𝐾⌊𝑛𝑡⌋, 𝑡 ≥ 0} converges weakly as 𝑛 󳨀→ ∞ to a
continuous 𝛿-self-similar process with stationary increments,𝛿 being related to 𝛼 and 𝛽 by 𝛿 = 1 − 𝛼−1 + (𝛼𝛽)−1.
The limiting process can be seen as a mixture of 𝛽-stable
processes, but it is not a stable process. When 0 < 𝛼 < 1
and for arbitrary𝛽, the sequence {𝑛−1/𝛽𝐾⌊𝑛𝑡⌋, 𝑡 ≥ 0} converges
weakly, as 𝑛 󳨀→ ∞, to a stable process with index 𝛽 (see
Castell et al. [4]). Bolthausen [5] (see also Deligiannidis and
Utev [6]) gave a method to solve the case 𝛼 = 1 and 𝛽 = 2
and, especially, he proved that when 𝑆 is a recurrent Z2-
random walk, the sequence {(𝑛 log 𝑛)−1/2𝐾⌊𝑛𝑡⌋, 𝑡 ≥ 0} satisfies
a functional central limit theorem. More recently, the case 𝑆
one- or two-dimensional random walks and 𝛽 ∈ (0, 2) was
solved in Castell et al. [4]; the authors prove that the sequence{𝑛−1/𝛽(log 𝑛)1/𝛽−1𝐾⌊𝑛𝑡⌋, 𝑡 ≥ 0} converges weakly to a stable
process with index 𝛽. Finally for any arbitrary transient ran-
domwalk, it can be shown that the sequence {𝑛−1/2𝐾𝑛, 𝑛 ∈ N}
is asymptotically normal (see for instance Spitzer [7] page 53).

Hindawi
Discrete Dynamics in Nature and Society
Volume 2018, Article ID 8968947, 9 pages
https://doi.org/10.1155/2018/8968947

http://orcid.org/0000-0002-1768-1995
https://doi.org/10.1155/2018/8968947


2 Discrete Dynamics in Nature and Society

Among others, we can cite strong approximation results
[8–10], laws of the iterated logarithm [11–13], limit theorems
for correlated sceneries or walks [14–17], large and moderate
deviations results [18–22], and ergodic andmixing properties
(see the survey [23]).

The problem we investigate in the present paper has
already been studied in Lewis [24] in the case that random
sceneries 𝜎’s satisfy E[𝜎(0)] = 0 and E[𝜎2(0)] = 1, and the
random walk 𝑆 (which can beZ𝑑-valued) satisfies some mild
conditions. Lewis [24] established the following LIL:

lim sup
𝑛󳨀→∞

󵄨󵄨󵄨󵄨󵄨𝑉−1
2,𝑛𝐾𝑛

󵄨󵄨󵄨󵄨󵄨√2 log log 𝑛 = 1 a.s., (2)

where 𝜉𝑛(𝑥) is the number of visits of the random walk to the
point 𝑥 ∈ Z in the time interval [0, 𝑛], i.e.,
𝜉𝑛 (𝑥) fl # {0 ≤ 𝑘 ≤ 𝑛 : ⌊𝑆𝑘⌋ = 𝑥} = 𝑛∑

𝑘=0

𝐼 {⌊𝑆𝑘⌋ = 𝑥} ,
𝑛 ≥ 0, 𝑥 ∈ Z.

(3)

Here and in the sequel, the following notation is used: for 𝑎 >0 and 𝑛 ≥ 0,
𝑉𝑎,𝑛 = (∑

𝑥∈Z

E [𝜉𝑎𝑛 (𝑥)])
1/𝑎 . (4)

It is therefore natural to investigate limit behavior of
RWRS 𝐾𝑛 when the sceneries 𝜎’s do not have finite second
moment. For the sake of convenience, we are summarizing
here the main assumptions we are making on the sceneries𝜎’s. Assume that the sceneries 𝜎’s belong to the domain of
attraction of a stable law 𝐺𝛽 (0 < 𝛽 < 2); that is, 𝜎’s satisfy
that

lim
𝑛󳨀→∞

P(𝑛−1/𝛽
𝑛∑

𝑘=1

𝜎 (𝑘) ≤ 𝑥) = 𝐺𝛽 (𝑥) , (5)

where 𝐺𝛽 is a stable distribution of index 0 < 𝛽 < 2, with
characteristic function

exp {− |𝜃|𝛽 (𝐴1 + 𝑖𝐴2 sgn 𝜃)} (6)

for some 0 < 𝐴1 < ∞, |𝐴−1
1 𝐴2| ≤ tan(𝜋/2)𝛽. From the

known characterization of the domain of attraction of a stable
law 𝐺𝛽 (Feller [25], II, Chap. 17) it follows that, for 0 < 𝛽 < 2,
(5) and (6) are equivalent to

P (𝜎 (0) ≥ 𝑥) ∼ 𝑐1,1𝑥𝛽
,

P (𝜎 (0) ≤ −𝑥) ∼ 𝑐1,2𝑥𝛽

(7)

as 𝑥 󳨀→ ∞ for suitable constants 𝑐1,1 and 𝑐1,2. Note that (5)
and (6) imply

E [𝜎 (0)] = 0 if 𝛽 > 1. (8)

For 𝛽 = 1 we impose an additional condition (stronger than
(5) and (6)), namely, that for some positive constant 𝑐0,󵄨󵄨󵄨󵄨E [𝜎 (0) 𝐼 (|𝜎 (0)| ≤ 𝜌)]󵄨󵄨󵄨󵄨 ≤ 𝑐0 < ∞ ∀𝜌 > 0. (9)

It is well known that LILs for heavy tailed random vari-
ables are different from those for random variables attracted
to the normal law. We have to use power norming and the
resulting limit theorem is called Chover-type LIL (see Chover
[26]). The main results of this paper read as follows.

Theorem 1. Let 𝜎 = {𝜎(𝑥), 𝑥 ∈ Z} be a sequence of i.i.d.
random variables satisfying (5) and (9), and 𝑋 = {𝑋𝑖, 𝑖 ≥1} be a sequence of i.i.d. random variables with a common
distribution 𝐹 and independent of 𝜎’s. Assume that 𝐹 is
supported on [0,∞), absolutely continuous, and 1 − 𝐹(𝑥) ∼𝑐1,1𝑥−𝛼, 0 < 𝛼 < 2. Then

lim sup
𝑛󳨀→∞

󵄨󵄨󵄨󵄨󵄨𝑉−1
𝛽,𝑛𝐾𝑛

󵄨󵄨󵄨󵄨󵄨1/ log log 𝑛 = 𝑒1/𝛽 a.s. (10)

Theorem 1 gives the following information about the
maximal growth rate of RWRS 𝐾𝑛.

Corollary 2. We have for all 𝜀 > 0, with probability one,󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨 > 𝑉𝛽,𝑛 (log 𝑛)(1+𝜀)/𝛽

for at most finitely many 𝑛 (11)

and 󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨 > 𝑉𝛽,𝑛 (log 𝑛)(1−𝜀)/𝛽 for infinitely many 𝑛. (12)

Remark 3. It follows from Corollary 2 that the maximal
growth rate of 𝐾𝑛 is of the order 𝑉𝛽,𝑛(log 𝑛)1/𝛽. Equation (10)
is equivalent to (11) and (12). In fact, (11) implies that

log (𝑉−1
𝛽,𝑛

󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨) − ((1 + 𝜀)𝛽 ) log log 𝑛 ≤ 0 a.s. (13)

for all large 𝑛. Letting 𝜀 ↓ 0, it yields that the limit superior on
left-hand side of (10) is less than 𝑒1/𝛽. Equation (12) implies
that

log (𝑉−1
𝛽,𝑛

󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨) − ((1 − 𝜀)𝛽 ) log log 𝑛 ≥ 0 a.s. (14)

for infinitely many 𝑛. Letting 𝜀 ↓ 0, it yields that the
limit superior on left-hand side of (10) is greater than 𝑒1/𝛽.
Moreover, from the proof of Theorem 1 below, the upper
bound of (10) does not need the assumptions that 𝐹 is
supported on [0,∞) and absolutely continuous.

Complementary to Theorem 1 we have the following
clustering statement, which gives additional information
about the path behavior of RWRS 𝐾𝑛.

Theorem 4. Under the assumptions ofTheorem 1, with proba-
bility one, every point in the interval (1, 𝑒1/𝛽] is a cluster point
of the sequence:

{󵄨󵄨󵄨󵄨󵄨𝑉−1
𝛽,𝑛𝐾𝑛

󵄨󵄨󵄨󵄨󵄨1/ log log 𝑛 : 𝑛 ≥ 1} . (15)
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Throughout this paper, we use the notations: 𝑎𝑛 = 𝑜(𝑏𝑛)
if 𝑎𝑛/𝑏𝑛 󳨀→ 0, 𝑎𝑛 ∼ 𝑏𝑛 if lim 𝑎𝑛/𝑏𝑛 = 1 and 𝑎𝑛 ≍ 𝑏𝑛 if 𝑐1,2 ≤
lim inf 𝑎𝑛/𝑏𝑛 ≤ lim sup 𝑎𝑛/𝑏𝑛 ≤ 𝑐1,3. Let i.o. mean infinitely
often, a.s. mean almost surely, E[⋅] mean expectation, and
EF[⋅] mean conditional expectation given 𝜎-field F. An
unspecified positive and finite constant will be denoted by 𝑐,
which may not be the same in each occurrence. More specific
constants in Section 𝑖 are numbered as 𝑐𝑖,1, 𝑐𝑖,2, . . .. The sign⌊⋅⌋ sometimes denotes the integer part anf at other times
denotes usual brackets; it will be clear from the context. Since
we shall deal with index 𝑛 which ultimately tends to infinity,
our statements, sometimeswithout furthermention, are valid
only when 𝑛 is sufficiently large.

2. Preliminaries

In this sectionwe investigate some technical results necessary
for our argumentation. We will first present a version of the
Borel-Cantelli lemma to sums of conditional probabilities
(see, e.g., Theorem 2.8.5 in Stout [27]).

Lemma 5. Let {𝐸𝑛, 𝑛 ≥ 1} be a sequence of arbitrary events
and {G𝑛, 𝑛 ≥ 1} be an increasing sequence of 𝜎-fields such that𝐸𝑛 ∈ G𝑛 for each 𝑛 ≥ 1. Then

[𝐸𝑛 𝑖.𝑜.] = [ ∞∑
𝑛=1

P (𝐸𝑛 | G𝑛−1) = ∞] , (16)

that is, ∑∞
𝑛=1 P(𝐸𝑛 | G𝑛−1) < ∞ implies that 𝐸𝑛 occur at most

finitely often and∑∞
𝑛=1 P(𝐸𝑛 | G𝑛−1) = ∞ implies that𝐸𝑛 occur

infinitely often.

Wewill need the following large deviation inequalities for
RWRS, which may be of independent interest.

Lemma 6. Let {𝜎(𝑥), 𝑥 ∈ Z} be a sequence of i.i.d. random
variables satisfying (5) and (9), and {𝑋𝑖, 𝑖 ≥ 1} be a sequence of
arbitrary random variables and independent of 𝜎’s. Let {𝑡𝑛, 𝑛 ≥1} be a sequence of positive numbers such that 𝑡𝑛 󳨀→ ∞. Then

0 < lim inf
𝑛󳨀→∞

𝑡𝛽𝑛P (󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨 ≥ 𝑡𝑛𝑉𝛽,𝑛)

≤ lim sup
𝑛󳨀→∞

𝑡𝛽𝑛P (󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨 ≥ 𝑡𝑛𝑉𝛽,𝑛) < ∞. (17)

Proof. We denote byF = 𝜎(𝑋1, 𝑋2, . . .) the 𝜎-field generated
by the random walk and

𝜂𝑛 (𝑥) = 𝜉𝑛 (𝑥) 𝜎 (𝑥) 𝐼 (|𝜎 (𝑥)| ≤ 𝑡𝑛𝑉𝛽,𝑛𝜉−1𝑛 (𝑥)) ,
𝑛 ≥ 0, 𝑥 ∈ Z. (18)

By (7), for all 𝑢 > 0 and 0 < 𝛽 < 2,
𝑐2,1𝑢−𝛽 ≤ P (|𝜎 (0)| > 𝑢) ≤ 𝑐2,2𝑢−𝛽. (19)

Thus,

∑
𝑥∈Z

P (|𝜎 (𝑥)| ≥ 𝑡𝑛𝑉𝛽,𝑛𝜉−1𝑛 (𝑥))
= ∑

𝑥∈Z

E [P (|𝜎 (𝑥)| ≥ 𝑡𝑛𝑉𝛽,𝑛𝜉−1𝑛 (𝑥) | F)]
≤ 𝑐2,3𝑡−𝛽𝑛 .

(20)

By (19), for all 𝑥 ∈ Z,

EF [(𝜂𝑛 (𝑥))2]
≤ EF [𝜉2𝑛 (𝑥) 𝜎2 (𝑥) 𝐼 (|𝜎 (𝑥)| ≤ 𝑡𝑛𝑉𝛽,𝑛𝜉−1𝑛 (𝑥))]
= 𝜉2𝑛 (𝑥) ∫𝑡𝑛𝑉𝛽,𝑛𝜉

−1
𝑛 (𝑥)

0
𝑢P (|𝜎 (𝑥)| ≥ 𝑢) 𝑑𝑢

≤ 𝑐2,4𝜉2𝑛 (𝑥) ∫𝑡𝑛𝑉𝛽,𝑛𝜉
−1
𝑛 (𝑥)

0
𝑢1−𝛽𝑑𝑢

≤ 𝑐2,5𝑡2−𝛽𝑛 𝑉2−𝛽

𝛽,𝑛 𝜉𝛽𝑛 (𝑥) .

(21)

It follows that

E [(𝜂𝑛 (𝑥))2] ≤ 𝑐2,5𝑡2−𝛽𝑛 𝑉2−𝛽

𝛽,𝑛 E [𝜉𝛽𝑛 (𝑥)] . (22)

On the other hand, if 𝛽 ∈ (0, 1),
EF [𝜂𝑛 (𝑥)]

≤ EF [𝜉𝑛 (𝑥) |𝜎 (𝑥)| 𝐼 (|𝜎 (𝑥)| ≤ 𝑡𝑛𝑉𝛽,𝑛𝜉−1𝑛 (𝑥))]
= 𝜉𝑛 (𝑥) ∫𝑡𝑛𝑉𝛽,𝑛𝜉

−1
𝑛 (𝑥)

0
P (|𝜎 (𝑥)| > 𝑢) 𝑑𝑢

≤ 𝑐2,6𝜉𝑛 (𝑥) ∫𝑡𝑛𝑉𝛽,𝑛𝜉
−1
𝑛 (𝑥)

0
𝑢−𝛽𝑑𝑢 ≤ 𝑐2,7𝑡1−𝛽𝑛 𝑉1−𝛽

𝛽,𝑛 𝜉𝛽𝑛 (𝑥)
(23)

for all 𝑥 ∈ Z; if 𝛽 = 1, by (9),
E [𝜂𝑛 (𝑥)] ≤ E [󵄨󵄨󵄨󵄨EF [𝜂𝑛 (𝑥)]󵄨󵄨󵄨󵄨] ≤ 𝑐2,8E [𝜉𝑛 (𝑥)] (24)

for all 𝑥 ∈ Z; and, if 𝛽 ∈ (1, 2), by (8) and (19),

EF [𝜂𝑛 (𝑥)]
≤ EF [𝜉𝑛 (𝑥) |𝜎 (𝑥)| 𝐼 (|𝜎 (𝑥)| ≥ 𝑡𝑛𝑉𝛽,𝑛𝜉−1𝑛 (𝑥))]
= 𝜉𝑛 (𝑥) ∫∞

𝑡𝑛𝑉𝛽,𝑛𝜉
−1
𝑛 (𝑥)

P (|𝜎 (𝑥)| > 𝑢) 𝑑𝑢
≤ 𝑐2,9𝜉𝑛 (𝑥) ∫∞

𝑡𝑛𝑉𝛽,𝑛𝜉
−1
𝑛 (𝑥)

𝑢−𝛽𝑑𝑢
≤ 𝑐2,10𝑡1−𝛽𝑛 𝑉1−𝛽

𝛽,𝑛 𝜉𝛽𝑛 (𝑥)

(25)

for all 𝑥 ∈ Z. Hence, by (23)-(25) and making use of the fact
that E[𝜂𝑛(𝑥)] = E[EF[𝜂𝑛(𝑥)]], we have

(𝑡𝑛𝑉𝛽,𝑛)−1 ∑
𝑥∈Z

󵄨󵄨󵄨󵄨E [𝜂𝑛 (𝑥)]󵄨󵄨󵄨󵄨 󳨀→ 0 as 𝑛 󳨀→ ∞. (26)
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Thus, by (22) and (26),

P(∑
𝑥∈Z

𝜂𝑛 (𝑥) ≥ 𝑡𝑛𝑉𝛽,𝑛)
≤ P(∑

𝑥∈Z

(𝜂𝑛 (𝑥) − E [𝜂𝑛 (𝑥)]) ≥ 𝑡𝑛𝑉𝛽,𝑛2 )
≤ 4 (𝑡𝑛𝑉𝛽,𝑛)−2 ∑

𝑥∈Z

E [(𝜂𝑛 (𝑥) − E [𝜂𝑛 (𝑥)])2]
≤ 4 (𝑡𝑛𝑉𝛽,𝑛)−2 ∑

𝑥∈Z

E [(𝜂𝑛 (𝑥))2] ≤ 𝑐2,11𝑡−𝛽𝑛 .

(27)

Noting that we can rewrite𝐾𝑛 as

𝐾𝑛 = ∑
𝑥∈Z

𝜉𝑛 (𝑥) 𝜎 (𝑥) , (28)

we have that

P (𝐾𝑛 ≥ 𝑡𝑛𝑉𝛽,𝑛) ≤ ∑
𝑥∈Z

P (|𝜎 (𝑥)| ≥ 𝑡𝑛𝑉𝛽,𝑛𝜉−1𝑛 (𝑥))
+ P(∑

𝑥∈Z

𝜂𝑛 (𝑥) ≥ 𝑡𝑛𝑉𝛽,𝑛) . (29)

It follows from (20), (27), and (29) that

P (𝐾𝑛 ≥ 𝑡𝑛𝑉𝛽,𝑛) ≤ 𝑐2,12𝑡−𝛽𝑛 . (30)

By replacing 𝜎(𝑥) with −𝜎(𝑥), we have
P (−𝐾𝑛 ≥ 𝑡𝑛𝑉𝛽,𝑛) ≤ 𝑐2,13𝑡−𝛽𝑛 . (31)

This, together with (30), yields

P (󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨 ≥ 𝑡𝑛𝑉𝛽,𝑛) ≤ 𝑐2,14𝑡−𝛽𝑛 . (32)

It yields the right-hand side of (17).
To verify the left-hand side of (17), we denote by 𝐴𝑥

and 𝐵𝑥 the events {|𝜉𝑛(𝑥)𝜎(𝑥)| ≥ (1 + 𝜀)𝑡𝑛𝑉𝛽,𝑛} and{| ∑𝑦∈Z,𝑦 ̸=𝑥 𝜉𝑛(𝑦)𝜎(𝑦)| < 𝜀𝑡𝑛𝑉𝛽,𝑛}, 𝜀 > 0, 𝑥 ∈ Z, respectively.
By (19) and some conditional argument, we have

∑
𝑥∈Z

P (𝐴𝑥) ≍ 𝑡−𝛽𝑛 󳨀→ 0. (33)

On the other hand, by (28),

P (𝐵𝑥) ≥ P(󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨 ≤ ( 𝜀2) 𝑡𝑛𝑉𝛽,𝑛)

− P(󵄨󵄨󵄨󵄨𝜉𝑛 (𝑥) 𝜎 (𝑥)󵄨󵄨󵄨󵄨 ≥ ( 𝜀2) 𝑡𝑛𝑉𝛽,𝑛) . (34)

This, together with (20) and (32), yields that

P (𝐵𝑥) 󳨀→ 1 ∀𝑥 ∈ Z. (35)

Note that

P (󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨 > 𝑡𝑛𝑉𝛽,𝑛) ≥ E[P(⋃

𝑥∈Z

(𝐴𝑥 ∩ 𝐵𝑥) | F)]
= E[ lim

𝑀󳨀→∞
P( 𝑀⋃

𝑥=−𝑀

(𝐴𝑥 ∩ 𝐵𝑥) | F)]
≥ E[[ lim

𝑀󳨀→∞

{{{
𝑀∑

𝑥=−𝑀

P (𝐴𝑥 ∩ 𝐵𝑥 | F)

− ∑
−𝑀≤𝑥<𝑦≤𝑀

P ((𝐴𝑥 ∩ 𝐵𝑥) ∩ (𝐴𝑦 ∩ 𝐵𝑦) | F)}}}]]
≥ ∑

𝑥∈Z

P (𝐴𝑥𝐵𝑥) − ∑
−∞≤𝑥<𝑦≤∞

P (𝐴𝑥𝐴𝑦)
= ∑

𝑥∈Z

P (𝐴𝑥)P (𝐵𝑥) − (∑
𝑥∈Z

P (𝐴𝑥))2 .

(36)

Thus, by (33)-(36),

P (󵄨󵄨󵄨󵄨𝐾𝑛
󵄨󵄨󵄨󵄨 > 𝑡𝑛𝑉𝛽,𝑛) ≥ 𝑐2,15 ∑

𝑥∈Z

P (𝐴𝑥) ≥ 𝑐2,16𝑡−𝛽𝑛 . (37)

It yields the left-hand side of (17). The proof of Lemma 6 is
completed.

We will also need the following two technical results.

Lemma 7. Let {𝑋𝑖, 𝑖 ≥ 1} be a sequence of i.i.d. nonnegative
random variables with a common distribution 𝐹. Assume that𝐹 is absolutely continuous and 1 − 𝐹(𝑥) ∼ 𝑐2,17𝑥−𝛼, 0 < 𝛼 < 2.
Then, for all 𝑟 > 0,

𝑆𝑛 ≥ 𝑛1/𝛼 (log 𝑛)−𝑟 a.s. (38)

Proof. Let𝑀𝑛 = max{𝑋1, . . . , 𝑋𝑛}, 𝐹(𝑥) = 1−𝐹(𝑥) = 𝑃(𝑋1 >𝑥), and 𝐹∗ be the inverse of 𝐹. Let 𝑈,𝑈1, 𝑈2, . . . , 𝑈𝑛 be i.i.d.
random variables with the distribution of 𝑈 uniform over(0, 1) and𝑀∗

𝑛 = max{𝑈1, 𝑈2, . . . , 𝑈𝑛}. Let 𝜃 > 1 be a constant
whichwill be chosen later on and 𝑛𝑘 = ⌊𝜃𝑘⌋, 𝑘 ≥ 1. Bymaking
use of the fact that 𝐹(𝑋𝑛) is a uniform (0, 1) random variable,
we have 𝑀∗

𝑛

d󳨐󳨐󳨐 𝐹(𝑀𝑛), 𝑛 ≥ 1. On the other hand, 𝐹∗(𝑦) ∼𝑐2,18𝑦−1/𝛼, 0 < 𝑦 ≤ 1. Thus, since 𝑋𝑖’s are nonnegative, 𝐹 and𝐹∗ are nonincreasing:

𝑃 (𝑆𝑛𝑘 ≤ 𝑛1/𝛼
𝑘 (log 𝑛𝑘)−𝑟) ≤ 𝑃 (𝑀𝑛𝑘

≤ 𝑛1/𝛼
𝑘 (log 𝑛𝑘)−𝑟)

≤ 𝑃 (𝐹∗ (𝐹 (𝑀𝑛𝑘
) ≤ 𝐹∗ (𝑐2,19𝑛−1

𝑘 (log 𝑛𝑘)𝛼𝑟))
= 𝑃 (𝐹 (𝑀𝑛𝑘

) ≥ 𝑐2,19𝑛−1
𝑘 (log 𝑛𝑘)𝛼𝑟)

= 𝑃 (1 −𝑀∗
𝑛𝑘

≥ 𝑐2,19𝑛−1
𝑘 (log 𝑛𝑘)𝛼𝑟)

= 𝑃 (𝑀∗
𝑛𝑘

≤ 1 − 𝑐2,19𝑛−1
𝑘 (log 𝑛𝑘)𝛼𝑟)
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= (𝑃 (𝑈 ≤ 1 − 𝑐2,19𝑛−1
𝑘 (log 𝑛𝑘)𝛼𝑟))𝑛𝑘

≤ exp (−𝑐2,19 (log 𝑛𝑘)𝛼𝑟) .
(39)

By making use of Borel-Cantelli lemma,

lim inf
𝑘󳨀→∞

𝑛−1/𝛼
𝑘 (log 𝑛𝑘)𝑟 𝑆𝑛𝑘 ≥ 1 a.s. (40)

To each 𝑛, there exists an integer 𝑘 such that 𝑛𝑘 ≤ 𝑛 ≤ 𝑛𝑘+1.
Thus, by (40),

lim inf
𝑛󳨀→∞

𝑛−1/𝛼 (log 𝑛)𝑟 𝑆𝑛
≥ lim inf

𝑘󳨀→∞
min

𝑛𝑘≤𝑛≤𝑛𝑘+1
𝑛−1/𝛼 (log 𝑛)𝑟 𝑆𝑛

≥ lim inf
𝑘󳨀→∞

(𝑛1/𝛼
𝑘 𝑛−1/𝛼

𝑘+1 ) 𝑛−1/𝛼
𝑘 (log 𝑛𝑘)𝑟 𝑆𝑛𝑘 ≥ 𝜃−1/𝛼

a.s.
(41)

Letting 𝜃 ↓ 1, (38) is proved. The proof of Lemma 7 is
completed.

Lemma 8. Let {𝜎(𝑥), 𝑥 ∈ Z} be a sequence of i.i.d. random
variables satisfying (5) and (9), and {𝑋𝑖, 𝑖 ≥ 1} be a sequence
of arbitrary random variables and independent of 𝜎’s. Let{𝑎𝑛, 𝑛 ≥ 1} be a nondecreasing sequences of positive integers
such that 𝑎𝑛 󳨀→ ∞, 𝑊𝑛 = ∑𝑎𝑛

𝑥=−𝑎𝑛
𝜉𝑛(𝑥)𝜎(𝑥) and 𝛾𝑛 =(∑𝑎𝑛

𝑥=−𝑎𝑛
E[𝜉𝛽𝑛 (𝑥)])1/𝛽. Then

lim sup
𝑛󳨀→∞

󵄨󵄨󵄨󵄨󵄨𝛾−1
𝑛 𝑊𝑛

󵄨󵄨󵄨󵄨󵄨1/ log log 𝑛 ≤ 𝑒1/𝛽 a.s. (42)

Proof. Let 𝑛0 = 0 and 𝑛𝑘 = inf{𝑛 : 𝛾𝑛 ≥ 2𝑘} (𝑘 ≥ 1). Since𝛾𝑛 is increasing and 𝛾𝑛 󳨀→ ∞, we have that 𝑛𝑘 󳨀→ ∞ and2𝑘 ≤ 𝛾𝑛𝑘 < 2𝑘+1. Noting
𝛾𝑛 ≤ (∑

𝑥∈Z

𝜉2𝑛 (𝑥))
1/𝛽 ≤ (∑

𝑥∈Z

𝜉𝑛 (𝑥))2/𝛽 = 𝑛2/𝛽, (43)

we have

𝑛𝑘 ≥ 𝛾𝛽/2
𝑛k

≥ 2𝛽𝑘/2. (44)

For the sake of convenience, we denote 𝑢𝑘 =𝛾𝑛𝑘(log 𝑛𝑘−1)(1+𝜀)/𝛽, S𝑛 = {𝑥 ∈ Z : 𝑥 ∈ [−𝑎𝑛, 𝑎𝑛]},
𝜂𝑛 (𝑥) = 𝜂𝑛 (𝑘, 𝑥)
= {{{

𝜉𝑛 (𝑥) 𝜎 (𝑥) 𝐼 (𝜎 (𝑥) ≤ 𝑢𝑘𝜉−1𝑛𝑘
(𝑥)) if 0 < 𝛽 ≤ 1,

𝜉𝑛 (𝑥)min {𝜎 (𝑥) , 𝑢𝑘𝜉−1𝑛𝑘
(𝑥)} if 1 < 𝛽 < 2,

(45)

and 𝑊̃𝑛 = ∑𝑥∈S𝑛
𝜂𝑛(𝑥) for 𝜀 > 0, 𝑥 ∈ Z and 𝑛𝑘−1 < 𝑛 ≤ 𝑛𝑘.

By (19) and (44),

P (𝜎 (𝑥) > 𝑢𝑘𝜉−1𝑛𝑘
(𝑥) | F) ≤ 𝑐2,20𝑘−(1+𝜀)𝛾−𝛽

𝑛𝑘
𝜉𝛽𝑛𝑘 (𝑥) . (46)

It follows that
𝑎𝑛𝑘∑

𝑥=−𝑎𝑛𝑘

P (𝜎 (𝑥) > 𝑢𝑘𝜉−1𝑛𝑘
(𝑥)) ≤ c2,21𝑘−(1+𝜀). (47)

Since

min {𝜎 (𝑥) , 𝑢𝑘𝜉−1𝑛𝑘
(𝑥)}

= 𝜎 (𝑥) 𝐼 (𝜎 (𝑥) ≤ 𝑢𝑘𝜉−1𝑛𝑘
(𝑥))

+ 𝑢𝑘𝜉−1𝑛𝑘
(𝑥) 𝐼 (𝜎 (𝑥) > 𝑢𝑘𝜉−1𝑛𝑘

(𝑥)) ,
(48)

following the same argument as the proof of (29), we have

𝑢−1
𝑘 max

𝑛𝑘−1<𝑛≤𝑛𝑘

󵄨󵄨󵄨󵄨󵄨E [𝑊̃𝑛 | F]󵄨󵄨󵄨󵄨󵄨
≤ 𝑢−1

𝑘 max
𝑛𝑘−1<𝑛≤𝑛𝑘

𝑎𝑛∑
𝑥=−𝑎𝑛

󵄨󵄨󵄨󵄨E [𝜂𝑛 (𝑥) | F]󵄨󵄨󵄨󵄨 󳨀→ 0 (49)

as 𝑘 󳨀→ ∞ for 0 < 𝛽 < 2. On the other hand, by (22) and
noting

E [𝜂2
𝑛 (𝑥) | F]
≤ 2E [𝜉2𝑛𝑘 (𝑥) 𝜎2 (𝑥) 𝐼 (𝜎 (𝑥) ≤ 𝑢𝑘𝜉−1𝑛𝑘

(𝑥)) | F]
+ 2𝑢2

𝑘P (𝜎 (𝑥) ≥ 𝑢𝑘𝜉−1𝑛𝑘
(𝑥) | F) ,

(50)

we have for 𝑛𝑘−1 < 𝑛 ≤ 𝑛𝑘 and 0 < 𝛽 < 2,
E [(𝜂𝑛 (𝑥))2 | F] ≤ 𝑐2,22𝑢2−𝛽

𝑘 𝜉𝛽𝑛𝑘 (𝑥) . (51)

It follows that

∑
𝑥∈S𝑛𝑘

E [(𝜂𝑛𝑘 (𝑥))2 | F] ≤ 𝑐2,23𝑢2−𝛽

𝑘 𝛾𝛽
𝑛𝑘
. (52)

FromNewman andWright [28], we call a finite collection
of random variables 𝑍𝑖, 1 ≤ 𝑖 ≤ 𝑚, which is associated
if any two coordinatewise nondecreasing functions 𝑓1, 𝑓2

on R𝑚 such that 𝐹𝑖 = 𝑓𝑖(𝑍1, . . . , 𝑍𝑚) have finite variance
for 𝑖 = 1, 2, cov(𝐹1, 𝐹2) ≥ 0; an infinite collection is
associated if every finite subcollection is associated. It is
not difficult to demonstrate that independent variables are
always associated. Moreover, given F, 𝜂𝑛(𝑥) − E[𝜂𝑛(𝑥) | F]
are nonincreasing functions on 𝜎 and are also associated
variables by Esary et al. [29]. Consequently, by Theorem 2 of
Newman and Wright [28] and (52),

E [ max
𝑛𝑘−1<𝑛≤𝑛𝑘

(𝑊̃𝑛 − E [𝑊̃𝑛 | F])2 | F]
≤ E [(𝑊̃𝑛𝑘

− E [𝑊̃𝑛𝑘
| F])2 | F]

≤ ∑
𝑥∈S𝑛𝑘

E [(𝜂𝑛𝑘 (𝑥))2 | F] ≤ 𝑐2,23𝑢2−𝛽

𝑘 𝛾𝛽
𝑛𝑘
.

(53)
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Hence

𝑢−2
𝑘 E [ max

𝑛𝑘−1<𝑛≤𝑛𝑘
(𝑊̃𝑛 − E [𝑊̃𝑛 | F])2 | F]

≤ 𝑐2,24𝑘−(1+𝜀). (54)

Note that

P( max
𝑛𝑘−1<𝑛≤𝑛𝑘

𝑊𝑛 ≥ 𝑢𝑘) ≤ 𝑎𝑛𝑘∑
𝑥=−𝑎𝑛𝑘

P (𝜎 (𝑥) 𝜉𝑛𝑘 (𝑥) > 𝑢𝑘)
+ P( max

𝑛𝑘−1<𝑛≤𝑛𝑘
𝑊̃𝑛 ≥ 𝑢𝑘) ≤ 𝑎𝑛𝑘∑

𝑥=−𝑎𝑛𝑘

P (𝜎 (𝑥)
> 𝑢𝑘𝜉−1𝑛𝑘

(𝑥)) + E [P( max
𝑛𝑘−1<𝑛≤𝑛𝑘

(𝑊̃𝑛 − E [𝑊̃𝑛 | F])
≥ 2−1𝑢𝑘 | F)] ≤ 𝑎𝑛𝑘∑

𝑥=−𝑎𝑛𝑘

P (𝜎 (𝑥) > 𝑢𝑘𝜉−1𝑛𝑘
(𝑥))

+ E [𝑢−2
𝑘 E [ max

𝑛𝑘−1<𝑛≤𝑛𝑘
(𝑊̃𝑛 − E [𝑊̃𝑛 | F])2 | F]] .

(55)

Thus, by (47), (54), (55) and making use of Borel-Cantelli
lemma,

lim sup
𝑘󳨀→∞

max
𝑛𝑘−1<𝑛≤𝑛𝑘

𝑊𝑛𝛾−1
𝑛𝑘

(log 𝑛𝑘−1)−(1+𝜀)/𝛽 ≤ 𝑐2,25 a.s. (56)

By replacing 𝜎(𝑥) with −𝜎(𝑥), following the same argument,
we have that (56) also holds if 𝑊𝑛 is replaced with −𝑊𝑛. It
yields

lim sup
𝑘󳨀→∞

max
𝑛𝑘−1<𝑛≤𝑛𝑘

󵄨󵄨󵄨󵄨𝑊𝑛
󵄨󵄨󵄨󵄨 𝛾−1

𝑛𝑘
(log 𝑛𝑘−1)−(1+𝜀)/𝛽 ≤ 𝑐2,26

a.s. (57)

Therefore, by (57),

lim sup
𝑛󳨀→∞

󵄨󵄨󵄨󵄨𝑊𝑛
󵄨󵄨󵄨󵄨 𝛾−1

𝑛 (log 𝑛)−(1+𝜀)/𝛽
≤ lim sup

𝑘󳨀→∞

max
𝑛𝑘−1<𝑛≤𝑛𝑘

󵄨󵄨󵄨󵄨𝑊𝑛
󵄨󵄨󵄨󵄨 𝛾−1

𝑛 (log 𝑛)−(1+𝜀)/𝛽
≤ 𝑐2,27 lim sup

𝑘󳨀→∞

max
𝑛𝑘−1<𝑛≤𝑛𝑘

󵄨󵄨󵄨󵄨𝑊𝑛
󵄨󵄨󵄨󵄨 𝛾−1

𝑛𝑘
(log 𝑛𝑘−1)−(1+𝜀)/𝛽

≤ 𝑐2,28 a.s.

(58)

It follows that

log (󵄨󵄨󵄨󵄨𝑊𝑛
󵄨󵄨󵄨󵄨 𝛾−1

𝑛 ) − (1 + 2𝜀𝛽 ) log log 𝑛 ≤ 0 a.s. (59)

Letting 𝜀 ↓ 0, we obtain (49). The proof of Lemma 8 is
completed.

3. Proofs

Proof of Theorem 1 . Let 𝜀 ∈ (0, 1) and 𝜏 ∈ (0, 1/𝛼) be
two arbitrary constants. Let S𝑛, 𝑊𝑛, and 𝛾𝑛 be defined as in
Lemma 8 with 𝑎𝑛 = 𝑛1/𝛼(log 𝑛)1/𝛼+𝜏. By Chover’s law of the
iterated logarithm (see Chover [26] and Qi and Cheng [30])
we have 𝑆𝑛 = 𝑜(𝑎𝑛) a.s.Thus, for any sample point𝜔 for which
it holds, there exists𝑁0 = 𝑁0(𝜔) such that for all 𝑛 ≥ 𝑁0 and|𝑥| ≥ Card(S𝑛), where Card(S𝑛) is the number of integers
belonging to S𝑛, 𝜉𝑛(𝑥)(𝜔) = ∑𝑛

𝑖=0 𝐼[𝑆𝑖 = 𝑥](𝜔) = 0. It follows
that, for all 𝑛 ≥ 𝑁0,

∑
𝑥∉S𝑛

𝜎 (𝑥) 𝜉𝑛 (𝑥) = 0 a.s.,
∑

𝑥∉S𝑛

𝜉𝛽𝑛 (𝑥) = 0 a.s. (60)

By (28) and (60), we have that𝐾𝑛 = 𝑊𝑛 a.s. and 𝑉𝛽,𝑛 = 𝛾𝑛 a.s.
Hence, to prove (10), by (28), it suffices to prove that, for all0 < 𝜀 < 1,

lim sup
𝑛󳨀→∞

󵄨󵄨󵄨󵄨𝑊𝑛
󵄨󵄨󵄨󵄨 𝛾−1

𝑛 (log 𝑛)−(1+𝜀)/𝛽 ≤ 𝑐3,1 a.s. (61)

and

lim sup
𝑛󳨀→∞

󵄨󵄨󵄨󵄨𝑊𝑛
󵄨󵄨󵄨󵄨 𝛾−1

𝑛 (log 𝑛)−(1−𝜀)/𝛽 ≥ 𝑐3,2 a.s. (62)

By (42), (61) holds. Thus, it remains to prove (62). Let T𝑛 ={𝑥 ∈ Z : 𝑥 ∈ [0, 𝑎𝑛]}. Let 𝜃 > 1 be a constant. For 𝑘 ≥ 1,
let 𝑚𝑘 = 𝑒𝑘𝜃 and 𝑛𝑘 = inf{𝑛 : 𝑛 ∈ {𝑚1, 𝑚2, . . .}, 𝛾𝑛 ≥ 𝑒𝑘𝜃}.
Since 𝛾𝑛 is increasing and 𝛾𝑛 󳨀→ ∞, we have that 𝑛𝑘’s are
well-defined, 𝑛𝑘 󳨀→ ∞ and 𝑒𝑘𝜃 ≤ 𝛾𝑛𝑘 < 𝑒(𝑘+1)𝜃 . Noting 𝑛𝛽 ∼(∑𝑥∈T𝑛

𝜉𝑛(𝑥))𝛽 ≤ 𝛾𝛽
𝑛 if 0 < 𝛽 ≤ 1 and 𝑛 ∼ ∑𝑥∈T𝑛

𝜉𝑛(𝑥) ≤ 𝛾𝛽
𝑛

if 1 < 𝛽 < 2, we have, for 0 < 𝛽 < 2,
𝑛𝑘 ≤ 𝛾(𝛽∨1)

𝑛𝑘
≤ 𝑒(𝛽∨1)(𝑘+1)𝜃 . (63)

For 𝑘 ≥ 1, we denote 𝜆1,𝑘 fl ∑𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1
E[𝜉𝛽𝑛2𝑘+1(𝑥)],𝜆2,𝑘 fl ∑𝑥∈T𝑛2𝑘−1

E[𝜉𝛽𝑛2𝑘+1(𝑥)], and V𝑘 fl 𝜆1/𝛽

1,𝑘 (log 𝑛2𝑘+1)(1−𝜀)/𝛽.
Denote by 𝐶𝑥, 𝐷𝑥, and 𝐸𝑥 the events 𝐶𝑥 = {|𝜎(𝑥)𝜉𝑛2𝑘+1(𝑥)| ≥(1 + 𝜀)V𝑘}, 𝐷𝑥 = {| ∑𝑦∈T𝑛2𝑘+1 \T𝑛2𝑘−1 ,𝑦 ̸=𝑥 𝜎(𝑦)𝜉𝑛2𝑘+1(𝑦)| < 𝜀V𝑘},
and 𝐸𝑘 = {| ∑𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1

𝜎(𝑥)𝜉𝑛2𝑘+1(𝑥)| ≥ V𝑘}. LetG𝑘 be the𝜎-field generated by {𝜎(𝑥), 𝑥 ∈ T𝑛2𝑘+1
} ∪ F. Then, 𝐸𝑘 ∈ G𝑘.

By (19) and (63),

∑
𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1

P (𝐶𝑥 | G𝑘−1) ≥ 𝑐3,3 (log 𝑛2𝑘+1)−1+𝜀
≥ 𝑐3,4𝑘−(1−𝜀)𝜃.

(64)



Discrete Dynamics in Nature and Society 7

Similar to (36), we have

P (𝐸𝑘 | G𝑘−1)
≥ P( ⋃

𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1

(𝐶𝑥 ∩ 𝐷𝑥) | G𝑘−1)

≥ ∑
𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1

P (𝐶𝑥 | G𝑘−1){{{P (𝐷𝑥 | G𝑘−1)

− ∑
𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1

P (𝐶𝑥 | G𝑘−1)}}} .

(65)

Similar to (33) and (35), we have∑𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1
P(𝐶𝑥 | G𝑘−1)󳨀→ 0 and P(𝐷𝑥 | G𝑘−1) 󳨀→ 1 for all 𝑥 ∈ T𝑛2𝑘+1

\ T𝑛2𝑘−1
,

respectively. Thus, by (64) and (65), we have

P (𝐸𝑘 | G𝑘−1) ≥ 𝑐3,5 ∑
𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1

P (𝐶𝑥 | G𝑘−1)
≥ 𝑐3,6𝑘−(1−𝜀)𝜃.

(66)

By choosing 𝜃 > 1 small enough such that (1 − 𝜀)𝜃 < 1, and
making use of Lemma 5,

P (𝐸𝑘 i.o.) = 1. (67)

By the definitions of𝑚𝑘 and 𝑛𝑘, we have that

𝛾𝑛2𝑘𝛾𝑛2𝑘+1 ≤
𝑒(2𝑘)𝜃𝑒(2𝑘+1)𝜃 ≤ 𝑒−(2𝑘)𝜃−1 󳨀→ 0, (68)

and that there exist integers 𝑗 < 𝑙 such that 𝑛2𝑘−1 = 𝑚𝑗 and𝑛2𝑘 = 𝑚𝑙. It follows that

𝑛2𝑘−1 (log 𝑛2𝑘−1)2𝛼𝜏𝑛2𝑘

= 𝑗2𝛼𝜏𝜃𝑒𝑗𝜃𝑒𝑙𝜃 󳨀→ 0. (69)

By Lemma 7, we have almost surely 𝑆𝑛 > 𝑛1/𝛼(log 𝑛)−𝜏 for
all large 𝑛. This, together with (60), (68), and (69), yields

𝜆2,𝑘 = ∑
𝑥∈T𝑛2𝑘−1

E [𝜉𝛽
𝑛2𝑘−1(log 𝑛2𝑘−1)2𝛼𝜏

(𝑥)] ≤ 𝛾𝛽
𝑛2𝑘

= 𝑜 (𝛾𝛽
𝑛2𝑘+1

) .
(70)

Since 𝛾𝛽
𝑛2𝑘+1

= 𝜆1,𝑘 + 𝜆2,𝑘, by (70), we have 𝛾𝛽
𝑛2𝑘+1

∼ 𝜆1,𝑘. Thus,
(67) remains true when 𝜆1,𝑘 is replaced with 𝛾𝛽

𝑛2𝑘+1
. Hence, we

have

P(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∑
𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1

𝜎 (𝑥) 𝜉𝑛2𝑘+1 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝛾𝑛2𝑘+1 (log 𝑛2𝑘+1)(1−𝜀)/𝛽 i.o.) = 1.
(71)

By (68), (70) and following the same argument as the
proof of (32),

P(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∑
𝑥∈T𝑛2𝑘−1

𝜎 (𝑥) 𝜉𝑛2𝑘+1 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝑐3,7𝛾𝑛2𝑘+1 (log 𝑛2𝑘+1)(1−𝜀)/𝛽)

= P(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∑
𝑥∈T𝑛2𝑘−1

𝜎 (𝑥) 𝜉𝑛2𝑘+1 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝑐3,8𝜆2,𝑘

𝛾𝑛2𝑘+1𝜆2,𝑘

(log 𝑛2𝑘+1)(1−𝜀)/𝛽)

≤ P(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∑
𝑥∈T𝑛2𝑘−1

𝜎 (𝑥) 𝜉𝑛2𝑘+1 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≥ 𝑐3,9𝑒(2𝑘)𝜃−1𝜆2,𝑘)

≤ 𝑐3,10𝑒−𝛽(2𝑘)𝜃−1 .

(72)

Thus, by making use of Borel-Cantelli lemma,

P(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∑
𝑥∈T𝑛2𝑘−1

𝜎 (𝑥) 𝜉𝑛2𝑘+1 (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝑐3,7𝛾𝑛2𝑘+1 (log 𝑛2𝑘+1)(1−𝜀)/𝛽 i.o.) = 0.
(73)

Noting

𝑊(𝑛2𝑘+1) = ∑
𝑥∈T𝑛2𝑘+1 \T𝑛2𝑘−1

𝜎 (𝑥) 𝜉𝑛2𝑘+1 (𝑥)
+ ∑

𝑥∈T𝑛2𝑘−1

𝜎 (𝑥) 𝜉𝑛2𝑘+1 (𝑥) , (74)

by (71) and (73),

P (󵄨󵄨󵄨󵄨𝑊 (𝑛2𝑘+1)󵄨󵄨󵄨󵄨 ≥ 𝑐3,11𝛾𝑛2𝑘+1 (log 𝑛2𝑘+1)(1−𝜀)/𝛽 i.o.)
= 1. (75)

This yields (62). The proof of Theorem 1 is completed.

Proof of Theorem 4 . Fix 0 < 𝜆 ≤ 1/𝛽. Let ] = 1/𝛽𝜆 and𝑛𝑘 = 𝑒𝑘] (𝑘 ≥ 1). It is enough to prove that

lim sup
𝑘󳨀→∞

(𝑉−1
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨𝐾𝑛𝑘

󵄨󵄨󵄨󵄨󵄨)1/ log log 𝑛𝑘 = 𝑒𝜆 a.s. (76)

To prove (76), it suffices to prove that, for all 𝜀 > 0, with
probability one,

𝑉−1
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨𝐾𝑛𝑘

󵄨󵄨󵄨󵄨󵄨 > (log 𝑛𝑘)(1+𝜀)𝜆
for at most finitely many 𝑘 (77)
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and

𝑉−1
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨𝐾𝑛𝑘

󵄨󵄨󵄨󵄨󵄨 > (log 𝑛𝑘)(1−𝜀)𝜆 for infinitely many 𝑘. (78)

By Lemma 6,

P (𝑉−1
𝑛𝑘

󵄨󵄨󵄨󵄨󵄨𝐾𝑛𝑘

󵄨󵄨󵄨󵄨󵄨 > (log 𝑛𝑘)(1+𝜀)𝜆) ≤ 𝑐3,12 (log 𝑛𝑘)−(1+𝜀)𝛽𝜆
≤ 𝑐3,13𝑘−(1+𝜀). (79)

By making use of Borel-Cantelli lemma, we obtain (77).
It remains to prove (78). For the case 𝜆 = 1/𝛽, following

the same lines as the proof of (62), we have that there exists
a subsequence of the subsequence {𝑒𝑘, 𝑘 ≥ 1} such that (78)
holds. For the case 0 < 𝜆 < 1/𝛽, we have ] > 1. For 𝑘 ≥ 1, let𝑚𝑘 = inf{𝑛 : 𝑛 ∈ {𝑛1, 𝑛2, . . .}, 𝑉𝑛 ≥ 𝑒𝑘]}. Following the same
lines as the proof of (62), we have, with probability one,

𝑉−1
𝑚𝑘

󵄨󵄨󵄨󵄨󵄨𝐾𝑚𝑘

󵄨󵄨󵄨󵄨󵄨 > (log𝑚𝑘)(1−𝜀)𝜆 for infinitely many 𝑘. (80)

On the other hand, {𝑚𝑘} is a subsequence of the subsequence{𝑛𝑘}. Thus, we obtain (78) again. The proof of Theorem 4 is
completed.
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Henri Poincaré Probabilités et Statistiques, vol. 46, no. 4, pp.
1178–1194, 2010.

[17] W. Wang, “Weak convergence to fractional BROwnian motion
in BROwnian scenery,” Probability Theory and Related Fields,
vol. 126, no. 2, pp. 203–220, 2003.

[18] A. Asselah and F. Castell, “Random walk in random scenery
and selfintersection local times in dimensions d≥5,” Probability
Theory and Related Fields, vol. 138, no. 1-2, pp. 1–32, 2007.

[19] N. Gantert, R. van der Hofstad, and W. König, “Deviations of a
random walk in a random scenery with stretched exponential
tails,” Stochastic Processes and Their Applications, vol. 116, no. 3,
pp. 480–492, 2006.

[20] N. Gantert, W. König, and Z. Shi, “Annealed deviations of
random walk in random scenery,” Ann Inst Henri Poincare,
Probabilites et Statistiques, vol. 43, no. 1, pp. 47–76, 2007.

[21] Guillotin-Plantard. N., F. Pène, and M. Wendler, “Empirical
processes for recurrent and transient random walks in random
scenery,” https://arxiv.org/abs/1711.10202.

[22] M. Wendler, “The sequential empirical process of a random
walk in random scenery,” Stochastic Processes and Their Appli-
cations, vol. 126, no. 9, pp. 2787–2799, 2016.

[23] F. Den Hollander and J. E. Steif, “Random walk in random
scenery: a survey of some recent results,” in Dynamics &
stochastics, vol. 48 of IMS Lecture Notes Monogr. Ser., pp. 53–65,
Inst. Math. Statist., Beachwood, OH, 2006.

[24] T. M. Lewis, “A law of the iterated logarithm for random walk
in random scenery with deterministic normalizers,” Journal of
Theoretical Probability, vol. 6, no. 2, pp. 209–230, 1993.

https://arxiv.org/abs/1711.10202


Discrete Dynamics in Nature and Society 9

[25] W. Feller, An Introduction to Probability Theory and Its Applica-
tions, vol. 2, Wiley, 3rd edition, 1971.

[26] J. Chover, “A law of the iterated logarithm for stable summands,”
Proceedings of the American Mathematical Society, vol. 17, pp.
441–443, 1966.

[27] W. F. Stout,Almost Sure Convergence, Academic Pres, NewYork,
NY, USA, 1974.

[28] C. M. Newman and A. L. Wright, “An invariance principle for
certain dependent sequences,” Annals of Probability, vol. 9, no.
4, pp. 671–675, 1981.

[29] J. D. Esary, F. Proschan, and D. W. Walkup, “Association of
random variables, with applications,” Annals of Mathematical
Statistics, vol. 38, pp. 1466–1474, 1967.

[30] Y. C.Qi and P. Cheng, “A law of the iterated logarithm for partial
sums in the field of attraction of a stable law,” Chinese Annals of
Mathematics. Series A. Shuxue Niankan. A Ji, vol. 17, no. 2, pp.
195–206, 1996.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

