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Many media channels such as broadcast, newspaper, and social networks diffuse a variety of information which can cause spread
of many rumors.There are social damage and economic damage due to the spread of rumors.Thus one needs to establish strategies
for controlling the rumors. We first propose rumor model with three control strategies for preventing the spread of rumor, (1)
announcing the truth before ignorant receives rumor, (2) punishing spreaders, and (3) deleting information of the rumor in media,
and consider optimal control problems to minimize the number of spreaders while minimizing the cost of three control strategies
for preventing the spread of rumors. The analysis of optimal control problems is conducted as Pontryagin’s Maximum Principle.
Furthermore, adapted optimal control is performed to investigate the effect of three controls under isoperimetric constraints. By
using numerical simulations, we compare the number of spreaders before and after applying the three controls and confirm when
and how each control should be applied with respect to the interest level of rumor. The lower the interest level of rumor is, the
greater the number of spreaders drops after the three controls are applied. In terms of timing of three controls, control (1) should
be applied in the early stage of rumor spreading and control (2) is required when the rumors spread the most. After the rumors
spread the most, control (3) is needed. Commonly the higher the interest level is, the more controls (1) and (2) are required. On the
other hand, control (3) is needed a lot when the interest level is low.

1. Introduction

All kinds of rumors are overflowing in newspapers, TV,
Internet, and other mass media. There are too many spec-
ulative articles that we doubt whether we should believe.
The development of the Internet, social networking sites, and
blogs makes ordinary people as well as celebrities such as
politicians and entertainers be swept to the rumors. Rumors
especially spread so fast in social networks [1] that the
influence of rumors is beyond our imagination [2]. Once
rumors begin to spread, they are topics for the gossips and
are being accepted as true even if their certainty has not been
confirmed. So anyone can become a victim of the rumor or a
perpetrator. Sometimes it happened that some people could
not endure themalicious rumors about them and ended their
lives, and so it stirred up society. For example, recently, a team
of Mèdecins Sans Fróntiers (MSF) had to temporarily stop
work at the isolation ward in Macenta in Guinea, because of

the rumors that MSF had brought the Ebola virus to Guinea.
As the rumor becomes more socially serious, it attracts the
attention of many scholars and many attempts have been
made to express and interpret the spread of rumor as a
mathematical model.

Daley-Kendall’s model [3] and Maki-Thompson’s model
[4], the classical mathematical models of rumor, described
the spread of rumor by considering three categories (igno-
rants, spreaders, and stiflers). Kawachi suggested age-
independent rumor transmission models which are exten-
sions of Daley-Kendall’s model and age-structured rumor
transmission model. By using basic reproduction number𝑅0, he investigated sufficient conditions for the local stability
of equilibrium point and for the uniform strong persistence
[5]. For examining what influences the spread of rumor
from various angles, Kawachi et al. [6] suggested a rumor
transmission model with various contact interactions. Huo
et al. [7] analyzed the rumor model with incubation by
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using 𝑅0. Huo et al. [8] proposed the rumor transmission
model with a nonmonotone and nonlinear incidence rate that
describes psychological effect with rumor transmission in the
emergency.

Zhao and Wang [9] have included a quantity of rumor
in the medium state in Daley-Kendall’s model [3] because
the development of media has a great influence on the
propagation of rumors in modern society. They investigated
the influence of medium on the spread of the rumor by using
numerical simulation and found that to control the rumor
spreading, it is needed to control not only the rate of change of
the spreader subclass but also the change of the information
about a rumor in the medium. After that, Zhao and Wang
[10] proposed a mathematical model which was based on the
previousmodel [9] and included themeasures of government
which are to issue the actual message through the medium
and to punish the spreaders. Based on the extended model,
they investigated more effective strategies for controlling the
spread of rumor by using sensitivity analysis.

However, static control measures of government con-
ducted in Zhao and Wang [10] have difficulties in analyzing
the prevention for the rumor problem. When a government
takes measures for a social phenomenon, it must consider
when and how they should be applied. The phenomenon
such as rumor spreading is no exception. Therefore, optimal
control is one of the methods to analyze this phenomenon.
To authors’ best knowledge, nomathematical model has been
formulated to represent optimal control for rumor diffusion
problem. In addition, the types of rumors vary, and the rate
and extent of rumor spreading depend on the personality, age,
and occupation of the individual. So the government should
control the rumor problem according to the type or interest of
rumor. But the paper of Zhao andWang [10] lacks this point.

In this paper, we consider the rumor model with three
control strategies depending on interest level of rumor for
preventing the spread of rumor, unlike previous papers.
Three strategies are composed of announcing the truth before
ignorants receive rumor, punishing spreaders, and deleting
messages in media [2]. We investigate optimal strategies to
prevent the spread of rumor from three perspectives. First, we
focus on the interest level of rumor and confirm the change
of spreaders and controls depending on the level. The degree
of interest in rumors varies according to sex, occupation, and
age. A high interest level of rumor will lead to a rapid spread,
while at a low level it will be slow. So when controlling a
rumor, we need to consider the interest level of rumor. We
define the interest level as the parameter “𝜃” in our paper.

Second, to prevent the spread of rumor effectively, we
investigate when and how controls should be applied. This
perspective is important since each control has a different
characteristic and an optimal time point of application. To
see these contents, we consider the optimal control problem
and analyze it via Pontryagin’s Maximum Principle. By using
numerical simulation, we find the optimal strategy to prevent
the spread of rumor.

Finally, when the amount of controls is limited, we check
how three controls are applied, respectively. Since time, costs
and so on must be taken into account for implementing the
policy or strategy, the perspective is required. Therefore, the

adapted optimal control is used to show the effect of controls
under isoperimetric constraints.

The rest of this paper is organized as follows. Section 2
describes the mathematical model for the spread of rumor
with medium state and three control terms. The necessary
conditions for an optimal control and the corresponding
states are derived using Pontryagin’s Maximum Principle. In
Section 3, we consider the optimal control of limited strategy
for reality. Section 4 discusses the numerical simulation
results. Finally, discussion and conclusions are given in
Section 5.

2. Rumor Model with Three Strategies

In this section, we now introduce the rumormodel including
three controls for prevention of rumors (e.g., telling ignorants
the truth, punishing spreaders, and deleting messages in
media).Themodel is given as system (1) below, and themodel
flow diagram with three controls is shown in Figure 1.

𝑑𝐼 (𝑡)
𝑑𝑡 = −𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 − 𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝑢1 (𝑡) 𝐼 (𝑡) ,

𝑑𝑆 (𝑡)
𝑑𝑡 = 𝜃𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 + 𝜃𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝜉1𝑆2 (𝑡)𝑁

− 𝑚𝑆 (𝑡) − 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 − 𝑢2 (𝑡) 𝑆 (𝑡) ,

𝑑𝑅 (𝑡)
𝑑𝑡 = (1 − 𝜃) 𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 + (1 − 𝜃) 𝛼𝐼 (𝑡)𝑊 (𝑡)

+ 𝜉1𝑆2 (𝑡)𝑁 + 𝑚𝑆 (𝑡) + 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁

+ 𝑢1 (𝑡) 𝐼 (𝑡) + 𝑢2 (𝑡) 𝑆 (𝑡) ,
𝑑𝑊 (𝑡)
𝑑𝑡 = 𝜆𝑆 (𝑡) − 𝑘 (1 + 𝑢3 (𝑡))𝑊 (𝑡) .

(1)

𝐼(𝑡) is the population of ignorants, 𝑆(𝑡) is the population
of spreaders, 𝑅(𝑡) is the population of stiflers, and 𝑊(𝑡) is
quantity of rumor in medium, such as website news, mobile
phone, Facebook, Instagram, and twitter.They supposed that
the ignorant population turns to the spreader population at
direct transmission rate 𝜃𝛽(𝐼(𝑡)𝑆(𝑡)/𝑁) and at indirect trans-
mission rate 𝜃𝛼𝐼(𝑡)𝑊(𝑡) and turns to the stifler population at
direct transmission rate (1 − 𝜃)𝛽(𝐼(𝑡)𝑆(𝑡)/𝑁) and at indirect
transmission rate (1 − 𝜃)𝛼𝐼(𝑡)𝑊(𝑡). The spreader population
becomes stifler population at rates 2(𝜉1𝑆2(𝑡)/𝑁), 𝑚𝑆(𝑡), and𝜉2𝑆(𝑡)𝑅(𝑡)/𝑁 which represent the fact that the spreaders are
bored and lose interest in rumors. The control factor 𝑢1(𝑡)
represents the rate that ignorant becomes stifler by knowing
the truth of rumor. It is defined by the control factor 𝑢2(𝑡) that
spreader can become stifler via the punishment.Themessages
in media are reduced by control factor 𝑢3(𝑡). If there are no
three controls, the model is identical to Zhao and Wang’s
model [10].

The objective of our work is to minimize the number
of spreaders and efforts of three control strategies which
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Figure 1: Schematic diagram of the rumor model with three controls.

are presented above. Thus, an optimal control problem with
objective functional is given by

F (𝑢1, 𝑢2, 𝑢3) = ∫𝑡𝑓
0
𝐴𝑆 (𝑡) + 𝐵𝑢1 (𝑡)2 + 𝐶𝑢2 (𝑡)2

+ 𝐷𝑢3 (𝑡)2 𝑑𝑡.
(2)

The quantities 𝐴, 𝐵, 𝐶, and 𝐷 represent the weight constants
of spreader, 𝑢1, 𝑢2, and 𝑢3, in the objective cost functional,
respectively. The optimal control problem is to seek optimal
control functions (𝑢∗1 (𝑡), 𝑢∗2 (𝑡), 𝑢∗3 (𝑡)) such that

F (𝑢∗1 (𝑡) , 𝑢∗2 (𝑡) , 𝑢∗3 (𝑡))
= min {F (𝑢1, 𝑢2, 𝑢3) , (𝑢1, 𝑢2, 𝑢3) ∈ 𝑈} , (3)

subject to system (1) and appropriate initial conditions given
at 𝑡 = 0, where the control set is defined as

𝑈 = {𝑢
= (𝑢1, 𝑢2, 𝑢3) | 𝑢𝑖 (𝑡) is Lebesque measurable, 0
≤ 𝑢𝑖 (𝑡) ≤ 1, 𝑡 ∈ [0, 𝑇] for 𝑖 = 1, 2, 3} .

(4)

First we prove the existence of an optimal control for
problem (3) and then derive the optimality system.

Theorem 1. Given the cost functional F(𝑢1, 𝑢2, 𝑢3) =
∫𝑡𝑓
0
𝐴𝑆(𝑡)+𝐵𝑢1(𝑡)2+𝐶𝑢2(𝑡)2+𝐷𝑢3(𝑡)2𝑑𝑡 and the control set𝑈

(4), there exists an optimal control 𝑢∗ = (𝑢∗1 , 𝑢∗2 , 𝑢∗3 ) such that
F(𝑢∗1 , 𝑢∗2 , 𝑢∗3 ) = min{F(𝑢1, 𝑢2, 𝑢3), (𝑢1, 𝑢2, 𝑢3) ∈ 𝑈}.
Proof. To prove the existence of an optimal control, we
use the result in [11]. Note that the control and the state
variable are nonnegative values. The set of all the control
variables (𝑢1, 𝑢2, 𝑢3) ∈ 𝑈 is convex and closed by definition.
In this minimizing problem, the convexity of the objective
functional in 𝑢1, 𝑢2, and 𝑢3 is satisfied. The optimal system is
boundedwhich determines the compactness that is necessary
for the existence of the optimal control. Moreover, the

integrand in functional (2),𝐴𝑆(𝑡)+𝐵𝑢1(𝑡)2+𝐶𝑢2(𝑡)2+𝐷𝑢3(𝑡)2,
is convex on the control set 𝑈. Also we can easily check that
there exist a constant 𝛿 > 1 and numbers 𝜙1, 𝜙2 such that

F (𝑢1, 𝑢2, 𝑢3) ≥ 𝜙1 (𝑢21 + 𝑢22 + 𝑢23)𝛿/2 − 𝜙2, (5)

because the state variables are bounded, which completes the
existence of an optimal control.

In order to find an optimal solution of the system, first we
should find the Lagrangian for the optimal control problem
(1)-(2) [12, 13].The Lagrangian of the control problem is given
by

𝐿 = 𝐴𝑆 (𝑡) + 𝐵𝑢1 (𝑡)2 + 𝐶𝑢2 (𝑡)2 + 𝐷𝑢3 (𝑡)2 . (6)

To seek for the minimal value of the Lagrangian, we define
the Hamiltonian function 𝐻 for the system, where 𝜆𝑖, 𝑖 =1, 2, 3, 4, are the adjoint variables:

𝐻 = 𝐴𝑆 + 𝐵𝑢21 + 𝐶𝑢22 + 𝐷𝑢23 + 𝜆1 [−𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁
− 𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝑢1 (𝑡) 𝐼 (𝑡)] + 𝜆2 [𝜃𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁
+ 𝜃𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝜉1𝑆2 (𝑡)𝑁 − 𝑚𝑆 (𝑡) − 𝜉2𝑆 (𝑡) 𝑅 (𝑡)

𝑁
− 𝑢2 (𝑡) 𝑆 (𝑡)] + 𝜆3 [(1 − 𝜃) 𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁
+ (1 − 𝜃) 𝛼𝐼 (𝑡)𝑊 (𝑡) + 𝜉1𝑆2 (𝑡)𝑁 + 𝑚𝑆 (𝑡)

+ 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 + 𝑢1 (𝑡) 𝐼 (𝑡) + 𝑢2 (𝑡) 𝑆 (𝑡)]

+ 𝜆4 [𝜆𝑆 (𝑡) − 𝑘 (1 + 𝑢3 (𝑡))𝑊 (𝑡)] .

(7)

In order to derive the necessary conditions, we use
Pontryagin’s Maximum Principle [14] as follows. If (𝑥, 𝑢) is
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an optimal solution of an optimal control problem, then
there exists a nontrivial vector function 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛)
satisfying the following inequalities:

𝑑𝑥
𝑑𝑡 = 𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝜆 ,

0 = 𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)
𝜕𝑢 ,

𝑑𝜆
𝑑𝑡 = −𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝑥 .

(8)

We now drive the necessary conditions that optimal control
functions and corresponding states must satisfy. In the
following theorem, we present the adjoint system and control
characterization.

Theorem 2. Given an optimal control 𝑢∗ = (𝑢∗1 , 𝑢∗2 , 𝑢∗3 ) and
a solution 𝑦∗ = (𝐼∗, 𝑆∗, 𝑅∗,𝑊∗) of the corresponding state
system (1)-(2), there exist adjoint variables 𝜆𝑖, 𝑖 = 1, 2, 3, 4,
satisfying

𝜆󸀠1 (𝑡) = −𝜕𝐻𝜕𝐼
= −𝜆1 [−𝛽𝑆𝑁 − 𝛼𝑊 − 𝑢1] − 𝜆2 [𝜃𝛽𝑆𝑁 + 𝜃𝛼𝑊]

− 𝜆3 [(1 − 𝜃) 𝛽𝑆𝑁 + (1 − 𝜃) 𝛼𝑊 + 𝑢1]

𝜆󸀠2 (𝑡) = −𝜕𝐻𝜕𝑆
= −𝐴 − 𝜆1 [−𝛽𝐼𝑁 ]

− 𝜆2 [𝜃𝛽𝐼𝑁 − 2𝜉1𝑆𝑁 − 𝑚 − 𝜉2𝑅𝑁 − 𝑢2]

− 𝜆3 [(1 − 𝜃) 𝛽𝐼𝑁 + 2𝜉1𝑆𝑁 + 𝑚 + 𝜉2𝑅𝑁 + 𝑢2]
− 𝜆4 [𝜆]

𝜆󸀠3 (𝑡) = −𝜕𝐻𝜕𝑅 = −𝜆2 [−𝜉2𝑆𝑁 ] − 𝜆3 [𝜉2𝑆𝑁 ]

𝜆󸀠4 (𝑡) = − 𝜕𝐻
𝜕𝑊

= −𝜆1 [−𝛼𝐼] + 𝜆2 [𝜃𝛼𝐼] + 𝜆3 [(1 − 𝜃) 𝛼𝐼]
+ 𝜆4 [−𝑘 (1 + 𝑢3)]

(9)

with transversality conditions

𝜆𝑖 (𝑡end) = 0, 𝑖 = 1, 2, 3, 4. (10)

Furthermore, the control functions 𝑢∗1 , 𝑢∗2 , and 𝑢∗3 are given by

𝑢∗1 = min {1,max {0, 𝑅1}} where 𝑅1 = (𝜆1 − 𝜆3) 𝐼2𝐵 ,

𝑢∗2 = min {1,max {0, 𝑅2}} where 𝑅2 = (𝜆2 − 𝜆3) 𝑆2𝐶 ,

𝑢∗3 = min {1,max {0, 𝑅3}} where 𝑅3 = 𝑘𝜆4𝑊2𝐷 .

(11)

Proof. To determine the adjoint equations and the transver-
sality conditions we use the Hamiltonian (7). The adjoint
system results from Pontryagin’s Maximum Principle [14]:

𝜆󸀠1 (𝑡) = −𝜕𝐻𝜕𝐼 ,

𝜆󸀠2 (𝑡) = −𝜕𝐻𝜕𝑆 ,

𝜆󸀠3 (𝑡) = −𝜕𝐻𝜕𝑅 ,

𝜆󸀠4 (𝑡) = − 𝜕𝐻
𝜕𝑊,

(12)

with 𝜆𝑖(𝑡𝑓) = 0.
To get the characterization of the optimal control given

by (11), by solving the equations,

𝜕𝐻
𝜕𝑢1 = 0,
𝜕𝐻
𝜕𝑢2 = 0,
𝜕𝐻
𝜕𝑢3 = 0,

(13)

on the interior of the control set and using the property of the
control space 𝑈, we can derive the desired characterization
(11).

3. Optimal Control of Limited Strategy

For control strategies 𝑢1, 𝑢2, and 𝑢3 mentioned above, the
budget and range of strategies in country are limited. There-
fore to identify an effective strategy more actually, we limit
the quantity of control and compare it according to time and
effect of optimal control. This is represented mathematically
through the addition of an integral constraint on the control
andmay be included in the abovemodel by introducing a new
state variable 𝐺(𝑡) such that

𝐺𝑖 (𝑡) = ∫𝑡
0
𝑢𝑖 (𝑠) 𝑑𝑠, for 𝑖 = 1, 2, 3 (14)

with 𝐺𝑖(𝑡𝑓) = 𝑀𝑖, where𝑀𝑖 is a constant for 𝑖 = 1, 2, 3. This
type of constraint is known as an isoperimetric constraint.

Firstly, we consider the following problem about the
control 𝑢1 which represents that an ignorant becomes a stifler
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by knowing the truth of rumors.The optimal control problem
in which 𝑢1 is considered only is as follows:

min
𝑢1

∫𝑡𝑓
0
𝐴𝑆 (𝑡) + 𝐵𝑢1 (𝑡)2 𝑑𝑡 (15)

subject to

𝑑𝐼 (𝑡)
𝑑𝑡 = −𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 − 𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝑢1 (𝑡) 𝐼 (𝑡) ,

𝑑𝑆 (𝑡)
𝑑𝑡
= 𝜃𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 + 𝜃𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝜉1𝑆2 (𝑡)𝑁 − 𝑚𝑆 (𝑡)

− 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 ,

𝑑𝑅 (𝑡)
𝑑𝑡

= (1 − 𝜃) 𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 + (1 − 𝜃) 𝛼𝐼 (𝑡)𝑊 (𝑡)

+ 𝜉1𝑆2 (𝑡)𝑁 + 𝑚𝑆 (𝑡) + 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 + 𝑢1 (𝑡) 𝐼 (𝑡) ,

𝑑𝑊 (𝑡)
𝑑𝑡 = 𝜆𝑆 (𝑡) − 𝑘𝑊 (𝑡) ,

𝑑𝐺1 (𝑡)𝑑𝑡 = 𝑢1 (𝑡) ,

(16)

with 0 ⩽ 𝑢1 ⩽ 1, ∫𝑡𝑓
0
𝑢1(𝑡)𝑑𝑡 = 𝑀1. We begin by forming the

Hamiltonian𝐻1:
𝐻1 = 𝐴𝑆 (𝑡) + 𝐵𝑢1 (𝑡)2 + 𝜆1 [−𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁

− 𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝑢1 (𝑡) 𝐼 (𝑡)] + 𝜆2 [𝜃𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁
+ 𝜃𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝜉1𝑆2 (𝑡)𝑁 − 𝑚𝑆 (𝑡) − 𝜉2𝑆 (𝑡) 𝑅 (𝑡)

𝑁 ]

+ 𝜆3 [(1 − 𝜃) 𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 + (1 − 𝜃) 𝛼𝐼 (𝑡)𝑊 (𝑡)

+ 𝜉1𝑆2 (𝑡)𝑁 + 𝑚𝑆 (𝑡) + 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 + 𝑢1 (𝑡) 𝐼 (𝑡)]

+ 𝜆4 [𝜆𝑆 (𝑡) − 𝑘𝑊 (𝑡)] + 𝜆5 [𝑢1 (𝑡)] .

(17)

The adjoint equations are given by

𝜆󸀠1 (𝑡) = −𝜕𝐻𝜕𝐼
= −𝜆1 [−𝛽𝑆𝑁 − 𝛼𝑊 − 𝑢1]

− 𝜆2 [𝜃𝛽𝑆𝑁 + 𝜃𝛼𝑊]

− 𝜆3 [(1 − 𝜃) 𝛽𝑆𝑁 + (1 − 𝜃) 𝛼𝑊 + 𝑢1]

𝜆󸀠2 (𝑡) = −𝜕𝐻𝜕𝑆
= −𝐴 − 𝜆1 [−𝛽𝐼𝑁 ]

− 𝜆2 [𝜃𝛽𝐼𝑁 − 2𝜉1𝑆𝑁 − 𝑚 − 𝜉2𝑅𝑁 − 𝑢2]

− 𝜆3 [(1 − 𝜃) 𝛽𝐼𝑁 + 2𝜉1𝑆𝑁 + 𝑚 + 𝜉2𝑅𝑁 ]
− 𝜆4 [𝜆]

𝜆󸀠3 (𝑡) = −𝜕𝐻𝜕𝑅 = −𝜆2 [−𝜉2𝑆𝑁 ] − 𝜆3 [𝜉2𝑆𝑁 ]

𝜆󸀠4 (𝑡) = − 𝜕𝐻
𝜕𝑊

= −𝜆1 [−𝛼𝐼] + 𝜆2 [𝜃𝛼𝐼] + 𝜆3 [(1 − 𝜃) 𝛼𝐼]
+ 𝜆4 [−𝑘]

𝜆󸀠5 (𝑡) = − 𝜕𝐻
𝜕𝐺1 = 0

𝜆𝑖 (𝑡end) = 0, 𝑖 = 1, 2, 3, 4, 5.
(18)

The optimality condition is

𝜕𝐻
𝜕𝑢1 = 2𝐵𝑢1 (𝑡) + (𝜆3 − 𝜆1) 𝐼 (𝑡) + 𝜆5 = 0. (19)

By using similar method, the optimality system for cases
of 𝑢2, 𝑢3 can be derived. (See Appendix for details.)

4. Numerical Simulations

In this section, the system with three controls was solved
numerically by using the forward-backward sweep method.
In our simulation, we fixed the total population by 𝐼(𝑡) +𝑆(𝑡) + 𝑅(𝑡) = 𝑁(𝑡) = 5000000 and compared effects of two
scenarios in compliance with the initial spreader population.
The first scenario is when the rumors spread less at the initial
stage (𝑆(0) = 10). In the second scenario the rumors already
spread a lot (𝑆(0) = 100000). The parameter values of our
simulation were as those of Zhao and Wang [9] (Table 1).
However, the value of 𝜃 was not fixed because each interest
level for the rumor is different depending on age, sex, and
job, and so on.Therefore, we examined each quantity of three
controls and proportions of spreader by changing the value of𝜃 at constant scope.

Figure 2 shows the proportion of spreader to total
population in the case including and excluding three controls
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Table 1: Parameter values in the model.

Parameter Description Value Reference
𝛽 𝑆(𝑡)-to-𝐼(𝑡) transmission rate 10 [9]
𝛼 𝑊(𝑡)-to-𝐼(𝑡) transmission rate 0.00001 [9]
𝜃 The rate of being 𝑆(𝑡) after transmission 0.5 [9]
𝑚 The automatical transformation rate of 𝑆(𝑡) into 𝑅(𝑡) 0.1 [9]
𝑘 The submerged rate of message 2 [9]
𝜆 The discharge quantity of message into medium 5 [9]
𝜉1 𝑆(𝑡)-to-𝑆(𝑡) transmission rate 30 [9]
𝜉2 𝑅(𝑡)-to-𝐼(𝑡) transmission rate 15 [9]
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Figure 2: (a), (b) show the proportion of spreader to total population depending on 𝜃 in the first scenario without control and with control,
respectively, and (c), (d) show the proportion of spreader to total population in the second scenario without control and with control,
respectively. Other parameter values are given in Table 1.
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Figure 3: Distribution of controls (a) 𝑢1, (b) 𝑢2, and (c) 𝑢3 for various values of 𝜃 in the first scenario, respectively. Other parameter values
are given in Table 1.

while changing the value of 𝜃 in the range 0.1–0.9. Firstly,
we considered one scenario in Figures 2(a) and 2(b). Under
the absence of three controls, spreaders were distributed from𝑡 = 0.5 to 𝑡 = 1.5 if 𝜃 was more than 0.2. Also, the maximum
proportion of spreader was 0.25. But, in the case with three
controls, spreaders existed between 𝑡 = 0.5 and 𝑡 = 2 when 𝜃
was more than 0.3 and the maximum proportion was 0.12.

From Figures 2(c) and 2(d), the other scenario was
considered. If three controls were not applied, the spreaders
appeared from 𝑡 = 0.1 to 𝑡 = 0.5 when 𝜃 was more than
0.2 and the maximum proportion of spreaders was still 0.25.
With controls, the spreaders were in the time range 0–0.6
when 𝜃wasmore than 0.1.Themaximumproportionwas 0.23
and so there was no big difference from noncontrol.

And we found that the controls are needed in order
of 𝑢1, 𝑢2, and 𝑢3 by comparing each required quantity of
controls, respectively, at the first scenario, which can be seen
in Figure 3. For control 𝑢1, it was distributed from 𝑡 = 0.
Moreover the bigger 𝜃 was, the more it was needed. The
control 𝑢2 was applied from 𝑡 = 0.5 to 𝑡 = 2.5 when 𝜃 was
more than 0.2. If 𝜃was less than 0.5, the control 𝑢3 wasmostly
distributed between 𝑡 = 2 and 𝑡 = 3. In particular, it was
required most widely when 𝜃 was in the range 0.2–0.3.

In Figure 4, three controls were compared at the second
scenario.The control 𝑢1 was distributed from 𝑡 = 0 to 𝑡 = 0.6,
but mostly existed around 𝑡 = 0. For the control 𝑢2, it was
most applied between 𝑡 = 0.2 and 𝑡 = 0.4. In the case of
control 𝑢3, it was distributed between 𝑡 = 0.5 and 𝑡 = 2.3.The
bigger 𝜃was, the more 𝑢1 and 𝑢2 were needed. But the case of
control 𝑢3 was an opposite case. Therefore when comparing
Figures 3 and 4, we recognized that the quantity of control
at the second scenario had to be concentrated in the initial

stage during a shorter time than at the first scenario. Also for
the maximum of each required control, the cases of 𝑢1, 𝑢2
in 𝑆(0) = 100000 (Figure 4) were higher than 𝑆(0) = 10
(Figure 3), but the case of 𝑢3 was contrary. In other words,
the more the initial spreaders were, the more 𝑢1 and 𝑢2 have
to be applied, but the less 𝑢3 has to be applied.

Furthermore, we examined the effect of three controls at
both scenarios by limiting the total quantity of controls to 1,
2, and 3, respectively, in Figures 5 and 6. For this numerical
simulation, the adapted forward-backward sweep method
[15] was used. First, the control 𝑢1 was only considered. The
optimality system for cases of 𝑢2 and 𝑢3 can be also derived
using the similarmethod.The algorithm is as follows. At both
endpoints, all stages are free. For adjoint equations 𝜆1, . . . , 𝜆5,𝜆𝑗(𝑁 + 1) = 1, 𝑗 = 1, 2, 3, 4; but 𝜆5(𝑁 + 1) is unknown.
Suppose that we give a guess 𝜆5(𝑁 + 1) = 𝜎. Then, by using
forward-backward sweep method with Runge-Kutta 4, we
can solve the optimal control problem. Let𝑍 be a real-valued
function defined by

𝑍 (𝜎) = 𝑁∑
𝑛=0

∫𝑛+1
𝑛

𝑢1 (𝑡, 𝜎) 𝑑𝑡 − 𝑀1, (20)

where𝑀1 is the total quantity of the control 𝑢1. Since𝑍must
be zero for the guessed 𝜎 value, by assuming 𝑍 = 0 and
using the Secant method, we have to determine 𝜎. A rough
algorithm is given by Algorithm 1.

The effect of three controls at the first scenario is
described in Figure 5. The controls 𝑢2 and 𝑢3 appeared in a
similar aspect as requiring fixed quantity. On the other hand,
the control 𝑢1 was most required in the initial stages and
gradually paralleled as the limited total quantity of control
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Figure 4: Distribution of controls (a) 𝑢1, (b) 𝑢2, and (c) 𝑢3 for various values of 𝜃 in the second scenario, respectively. Other parameter values
are given in Table 1.

increases. Looking at the number of spreaders, in the case of𝑢1, spreaders decreased considerably in peak point in which
the number of spreaders reaches its maximum. In addition,
the peak point was getting ahead when the total quantity of𝑢1 increased.The end point in which the number of spreaders
is less than 1 was alsomore delayed than in noncontrol.When𝑢2 and 𝑢3 were applied, respectively, the peak point was put
forward in both cases, but the end point in the case of 𝑢2
was longer than the one in the case of 𝑢3. The more the total
quantity of 𝑢3 was, the more the end point was advanced.
For the number of spreaders, it was certainly decreased after
the peak point compared with noncontrol in both cases.
However, in spite of increasing the total quantity of 𝑢2 and 𝑢3,
respectively, there was no significant change of total spreader
population.

Figure 6 represents the case of the other scenario. We
noticed that there was little change of spreaders compared
with the first scenario even if the total quantity of controls was
increased. Also, all controls failed to advance the end point.

Lastly, we compared the cumulative spreader population
in two scenarios depending on the interest level of rumors
from Figure 7. When three controls were applied in the
first scenario, the spreader population diminished more than
noncontrol as the value of 𝜃 was less. On the other hand,
regardless of 𝜃, three controls could not decrease the spreader
population a lot in the second scenario.

5. Discussion and Conclusions

Modern people have been able to obtain information easily
and quickly by developing media such as the Internet and
SNS, but the rumors that are not so clear or true spread more

quickly than ever before. Therefore, the study of mathemat-
ical modeling of rumors that have been carried out in the
past could be extended considering the domain of media.
However, although we could express the proliferation of
rumors more specifically, the research on effective strategies
to prevent rumors from spreading is lacking. In this paper,
we considered the optimal control problem of rumor model.
Three types of control functions in connection with telling
the truth, punishing the spreaders, and deleting messages
in media are considered. The aim of optimal control is to
minimize the spreaders and messages in media by three
control functions above. For the existence of an optimal
control, we used Pontryagin’s Maximum Principle in order
to determine the necessary conditions. Furthermore, we
investigated the system by numerical simulation to find the
optimal strategies for reducing spreaders and preventing
rumors from spreading under two scenarios mentioned in
Section 4.

First, we demonstrated the effects of preventing the
spread of rumors before and after applying the controls. In
the first scenario, if applying the controls, the rumors spread
less no matter how high the interest level of a rumor is.
Furthermore, the spread of rumors was slower than before
applying the controls. On the other hand, the controls had
no effective result in the second scenario except that the
spreaders were slightly reduced. Thus, the spreaders were
reduced by the controls in both scenarios, but the controls
could prevent the spread of rumors more effectively in the
first scenario (see Figure 2).

Also, we compared the effects of three controls, respec-
tively, in two scenarios above. Looking at the case of 𝑢1, there
were differences in two scenarios. In the aspect of quantity,
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Figure 5: (a)The distribution of control 𝑢1 and (b) the change of spreader population with the variation of the total amount of 𝑢1 when there
are no 𝑢2 and 𝑢3 in the first scenario. (c)The distribution of control 𝑢2 and (d) the change of spreader population with the variation of the total
amount of 𝑢2 when there are no 𝑢1 and 𝑢3 in the first scenario. (e) The distribution of control 𝑢3 and (f) the change of spreader population
with the variation of the total amount of 𝑢3 when there are no 𝑢1 and 𝑢2 in the first scenario. Other parameters are given in Table 1.
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Figure 6: (a)The distribution of control 𝑢1 and (b) the change of spreader population with the variation of the total amount of 𝑢1 when there
are no 𝑢2 and 𝑢3 in the second scenario. (c) The distribution of control 𝑢2 and (d) the change of spreader population with the variation of
the total amount of 𝑢2 when there are no 𝑢1 and 𝑢3 in the second scenario. (e) The distribution of control 𝑢3 and (f) the change of spreader
population with the variation of the total amount of 𝑢3 when there are no 𝑢1 and 𝑢2 in the second scenario. Other parameters are given in
Table 1.
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(1) Suppose the transversality condition 𝜆5(𝑡𝑓) takes 𝜎 and give an initial guess for 𝑢1.𝜆5(𝑡𝑓) = 𝜎, 𝑢1(0) = 0
(2) Solve the system forward in time by using Runge-Kutta 4 method

𝑋𝑖(𝑡 + ℎ) = 𝑋𝑖(𝑡) + ℎ
6 (𝑘1𝑖 + 2𝑘2𝑖 + 2𝑘3𝑖 + 𝑘4𝑖), 𝑖 = 1, 2, 3, 4, 5

with the initial conditions:𝑋1(0) = 5000000 − 𝑋2(0), 𝑋2(0) = 10 or 100000, 𝑋3(0) = 0, 𝑋4(0) = 0, 𝑋5(0) = 0,
where𝑋1(𝑡) = 𝐼(𝑡), 𝑋2(𝑡) = 𝑆(𝑡), 𝑋3(𝑡) = 𝑅(𝑡), 𝑋4(𝑡) = 𝑊(𝑡), 𝑋5(𝑡) = 𝐺1(𝑡).

(3) Solve the system backward in time by using Runge-Kutta 4 method

𝜆𝑖(𝑡 − ℎ) = 𝜆𝑖(𝑡) − ℎ
6 (𝑙1𝑖 + 2𝑙2𝑖 + 2𝑙3𝑖 + 𝑙4𝑖), 𝑖 = 1, 2, 3, 4

with the transverality conditions:𝜆1(𝑡𝑓) = 0, 𝜆2(𝑡𝑓) = 0, 𝜆3(𝑡𝑓) = 0, 𝜆4(𝑡𝑓) = 0.
(4) Update 𝑢1 by entering the new state and adjoint values into the characterization of the optimal control.
(5) Output the current value as a solution if value of a variable in this iteration and the last iteration

are negligibly close. Otherwise, return to Step (2).|𝑢1 − old𝑢1||𝑢1| ≤ 𝛿,
where 𝛿 is the accepted tolerance.

(6) Calculate and check the 𝑍 values. If 𝑍 is negligibly close to 0, i.e. |𝑍(𝜎)| < 𝜖 for tolerance 𝜖,
output the value of 𝜎 as solution. Otherwise, reassume the value of 𝜎, not equal to the previous
value and then return to Step (3). However, after this step is repeated 𝑛 times, if 𝑍 is not
negligibly close to 0, i.e. |𝑍(𝜎𝑛+1)| ≥ 𝜖 for 𝑛 = 1, 2, . . ., update the new value of 𝜎𝑛+2 by using
the Secant method and return to Step (2). The Secant method is as follows:

𝜎𝑛+2 = 𝜎𝑛+1 − 𝑍(𝜎𝑛+1)𝑍󸀠(𝜎𝑛+1) , where 𝑍
󸀠(𝜎𝑛+1) = 𝑍(𝜎𝑛+1) − 𝑍(𝜎𝑛)𝜎𝑛+1 − 𝜎𝑛 .

Algorithm 1

𝑢1 was applied more in the second scenario than in the first
scenario under the rumor of same interest level; that is, time,
cost, and so on were used a lot to apply this control to the
second scenario. This means that it is hard to prevent the
rumors when the rumors already spread a lot. There was
also a difference in the aspect of time. In the first scenario,𝑢1 was applied for a long time until recently. On the other
hand, in the second scenario, 𝑢1 was concentrated most at
the beginning. This is because ignorants appear a lot later
when the number of spreaders in the initial stage is low.
Since we assumed that the total population was fixed and few
spreaders were in the first scenario, ignorants rarely moved
into spreaders or stiflers at the beginning and so still remained
a lot afterward. Namely, there were a lot of ignorants who
could not get rumors. Thus, the control 𝑢1 was applied for
a long time until late stage because it is the control for
ignorants. In the case of 𝑢2, two scenarios had something in
common; that is, 𝑢2 was required after the rumors somewhat
spread, unlike 𝑢1. This is because 𝑢1 is telling the truth
for ignorants before the rumors spread a lot, whereas 𝑢2 is
punishing spreaders after the rumors spread a lot. However,
there were two differences in two scenarios. One of them is
that 𝑢2 was almost unnecessary for uninteresting rumors in
the first scenario in contrast with the second scenario because
not only do not the rumors of low interest level spread well,
but also the number of spreaders at the initial stage is low.
The other difference is that, in the second scenario, 𝑢2 was
focused on the initial stage, but it was applied afterwards in
the first scenario. This difference happened due to a reason

similar to the case of 𝑢1. When the rumors spread less at
the beginning, spreaders appeared a lot late in fixed total
population. Therefore, 𝑢2 is required afterwards in the first
scenario. Lastly, in the case of 𝑢3, there were interesting
results unlike the cases of 𝑢1 and 𝑢2. The higher the interest
level of a rumor was, the more the spreaders appeared in
both scenarios commonly; that is, the number of ignorants
decreased a lot in the fixed total population. Then 𝑢3 was
not much needed since it prevents ignorants from moving
to spreaders by deleting the messages in media. In contrast
to this, if the interest level was lower, 𝑢3 was more applied
in both scenarios. In addition, there was a distinct difference
between two scenarios. Despite few spreaders in the initial
stage, 𝑢3 was more required in the first scenario than in the
second scenario. Generally, the controls are much applied to
prevent the spread of rumorswhen the rumors already spread
a lot.However,𝑢3was an opposite case because spreaderswho
appeared late posted information about rumors on media in
the first scenario. This means that, in the first scenario, many
ignorants remained until late and so plenty of rumors on
media could change them into spreaders. Therefore, 𝑢3 was
more required in the first scenario than in the second scenario
even if spreaders were few at the beginning (see Figures 3 and
4).

And we showed the effects of each control when restrict-
ing the total amount of controls, respectively, which means
that time, cost, and so on are limited if the government
implements policies or strategies. Thus, we analyzed the
results by increasing the total amount of each control within
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Figure 7: Cumulative spreader population for various values of 𝜃 and 𝑆(0). Other parameters are given in Table 1.

the certain range. In both scenarios, the distributions of 𝑢2
and 𝑢3 were applied almost constantly during the period of
control even if the total amount of each control increased.The
case of 𝑢1 was different. The control 𝑢1 was still concentrated
on the initial stage when the total amount of 𝑢1 increased.
This is because most of the ignorants existed at the beginning
and 𝑢1 is the control for ignorants. We could also confirm
the change of the number of spreaders depending on each
control. In both scenarios, the number of spreaders was
most declined via 𝑢1 among the three controls even if 𝑢1
reduced the spreaders a little in the second scenario. It
follows that 𝑢1 is the optimal strategy to decrease the number

of spreaders most. Furthermore, 𝑢1 could advance the end
point mentioned in Section 4 when the total amount of 𝑢1
increased. Namely, if 𝑢1 is applied a lot, we can reduce the
spreaders and so quash the rumors quickly. The control 𝑢3
could also put the end point forward, but was different from
the case of 𝑢1. The control 𝑢3 advanced the end point more
than noncontrol even if 𝑢3 could not diminish spreaders
much. This implies that the role of media is important
to dispel the rumors. If the total amount of 𝑢3 increases
abundantly in both scenarios, the rumors in media are wiped
out and so ignorants can not receive the rumors in media.
Then, since ignorants do not move into spreaders, the spread
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of rumors slows down and eventually ends sooner.Thus, 𝑢3 is
the optimal strategy to quash the rumors quickly (see Figures
5 and 6).

Consequently, our results in this paper can be summa-
rized as follows:

(i) The three controls are more effective at controlling
the spread of rumors when the rumors spread less
at the initial stage than when the rumors are already
widespread.

(ii) The control of announcing the truth before ignorants
receive rumor (𝑢1) must be applied in the early
stage of rumor spreading. When the rumors spread
the most, the control of punishing spreaders (𝑢2) is
required. Finally the control of deleting information
about the rumor inmedia (𝑢3) should be applied after
the rumors spread the most.

(iii) The higher the interest level is, the more the controls
of announcing the truth before ignorants receive
rumor (𝑢1) and punishing spreaders (𝑢2) are required.
On the other hand, the control of deleting informa-
tion about the rumor in media (𝑢3) is needed a lot at
a suitable point of low interest level.

(iv) The control of announcing the truth before ignorants
receive rumor (𝑢1) is a direct and effective way to
reduce the spreaders significantly. Also,The control of
deleting information about the rumor inmedia (𝑢3) is
an indirect and effective way to finish the rumor a bit
sooner.

(v) Therefore, if we apply different custom strategies
based on interest level and an initial value of spreader,
the rumors are controlled effectively.

There is also a weak point in this study. It is that the results
of the optimal control may vary depending on the parameter
or the initial value or the objective functional. However, we
could compare the three controls and determine when each
control has to be applied, depending on the extent of rumor
spreading. And since this study was proceeded without the
actual data, there can be reasonable results if we use the actual
data. We leave the analysis through the data as a future work.

Appendix

Optimal Control with an Isoperimetric
Constraint for 𝑢2 and 𝑢3
We consider the following problem about the control 𝑢2
which represents that a spreader becomes a stifler by punish-
ment of the spreader. The optimal control problem where 𝑢2
is considered only is as follows:

min
𝑢2

∫𝑡𝑓
0
𝐴𝑆 (𝑡) + 𝐶𝑢2 (𝑡)2 𝑑𝑡 (A.1)

subject to

𝑑𝐼 (𝑡)
𝑑𝑡 = −𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 − 𝛼𝐼 (𝑡)𝑊 (𝑡) ,

𝑑𝑆 (𝑡)
𝑑𝑡
= 𝜃𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 + 𝜃𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝜉1𝑆2 (𝑡)𝑁

− 𝑚𝑆 (𝑡) − 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 − 𝑢2 (𝑡) 𝑆 (𝑡) ,

𝑑𝑅 (𝑡)
𝑑𝑡

= (1 − 𝜃) 𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 + (1 − 𝜃) 𝛼𝐼 (𝑡)𝑊 (𝑡)

+ 𝜉1𝑆2 (𝑡)𝑁 + 𝑚𝑆 (𝑡) + 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁

+ 𝑢2 (𝑡) 𝑆 (𝑡) ,
𝑑𝑊 (𝑡)
𝑑𝑡 = 𝜆𝑆 (𝑡) − 𝑘𝑊 (𝑡) ,

𝑑𝐺2 (𝑡)𝑑𝑡 = 𝑢2,
(A.2)

with 0 ⩽ 𝑢2 ⩽ 1, ∫𝑡𝑓
0
𝑢2(𝑡)𝑑𝑡 = 𝑀2.

We begin by forming the Hamiltonian𝐻2.
𝐻2 = 𝐴𝑆 (𝑡) + 𝐶𝑢2 (𝑡)2 + 𝜆1 [−𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁

− 𝛼𝐼 (𝑡)𝑊 (𝑡)] + 𝜆2 [𝜃𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁
+ 𝜃𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝜉1𝑆2 (𝑡)𝑁 − 𝑚𝑆 (𝑡) − 𝜉2𝑆 (𝑡) 𝑅 (𝑡)

𝑁
− 𝑢2 (𝑡) 𝑆 (𝑡)] + 𝜆3 [(1 − 𝜃) 𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁
+ (1 − 𝜃) 𝛼𝐼 (𝑡)𝑊 (𝑡) + 𝜉1𝑆2 (𝑡)𝑁 + 𝑚𝑆 (𝑡)

+ 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 + 𝑢2 (𝑡) 𝑆 (𝑡)] + 𝜆4 [𝜆𝑆 (𝑡)

− 𝑘𝑊 (𝑡)] + 𝜆5 [𝑢2 (𝑡)] .

(A.3)

The adjoint equations are given by

𝜆󸀠1 (𝑡) = −𝜕𝐻𝜕𝐼
= −𝜆1 [−𝛽𝑆𝑁 − 𝛼𝑊] − 𝜆2 [𝜃𝛽𝑆𝑁 + 𝜃𝛼𝑊]

− 𝜆3 [(1 − 𝜃) 𝛽𝑆𝑁 + (1 − 𝜃) 𝛼𝑊]
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𝜆󸀠2 (𝑡) = −𝜕𝐻𝜕𝑆
= −𝐴 − 𝜆1 [−𝛽𝐼𝑁 ]

− 𝜆2 [𝜃𝛽𝐼𝑁 − 2𝜉1𝑆𝑁 − 𝑚 − 𝜉2𝑅𝑁 − 𝑢2]

− 𝜆3 [(1 − 𝜃) 𝛽𝐼𝑁 + 2𝜉1𝑆𝑁 + 𝑚 + 𝜉2𝑅𝑁 + 𝑢2]
− 𝜆4 [𝜆]

𝜆󸀠3 (𝑡) = −𝜕𝐻𝜕𝑅 = −𝜆2 [−𝜉2𝑆𝑁 ] − 𝜆3 [𝜉2𝑆𝑁 ]

𝜆󸀠4 (𝑡) = − 𝜕𝐻
𝜕𝑊

= −𝜆1 [−𝛼𝐼] − 𝜆2 [𝜃𝛼𝐼] − 𝜆3 [(1 − 𝜃) 𝛼𝐼]
+ 𝜆4 [𝑘]

𝜆󸀠5 (𝑡) = − 𝜕𝐻
𝜕𝐺2 = 0.

(A.4)

The optimality condition is

𝜕𝐻
𝜕𝑢2 = 2𝐶𝑢2 (𝑡) − (𝜆2 − 𝜆3) 𝑆 (𝑡) + 𝜆5 = 0. (A.5)

We consider following problem about the control 𝑢3
which represents deleting messages in media. The optimal
control problem where 𝑢3 is considered only is as follows:

min
𝑢3

∫𝑡𝑓
0
𝐴𝑆 (𝑡) + 𝐷𝑢3 (𝑡)2 𝑑𝑡 (A.6)

subject to

𝑑𝐼 (𝑡)
𝑑𝑡 = −𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 − 𝛼𝐼 (𝑡)𝑊 (𝑡) ,

𝑑𝑆 (𝑡)
𝑑𝑡
= 𝜃𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 + 𝜃𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝜉1𝑆2 (𝑡)𝑁

− 𝑚𝑆 (𝑡) − 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 ,

𝑑𝑅 (𝑡)
𝑑𝑡

= (1 − 𝜃) 𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁 + (1 − 𝜃) 𝛼𝐼 (𝑡)𝑊 (𝑡)

+ 𝜉1𝑆2 (𝑡)𝑁 + 𝑚𝑆 (𝑡) + 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 ,

𝑑𝑊 (𝑡)
𝑑𝑡 = 𝜆𝑆 (𝑡) − 𝑘 (1 + 𝑢3 (𝑡))𝑊 (𝑡) ,

𝑑𝐺3 (𝑡)𝑑𝑡 = 𝑢3,
(A.7)

with 0 ⩽ 𝑢3 ⩽ 1, ∫𝑡𝑓
0
𝑢3(𝑡)𝑑𝑡 = 𝑀3.

We begin by forming the Hamiltonian𝐻3.
𝐻3 = 𝐴𝑆 (𝑡) + 𝐷𝑢3 (𝑡)2 + 𝜆1 [−𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁

− 𝛼𝐼 (𝑡)𝑊 (𝑡)] + 𝜆2 [𝜃𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁
+ 𝜃𝛼𝐼 (𝑡)𝑊 (𝑡) − 𝜉1𝑆2 (𝑡)𝑁 − 𝑚𝑆 (𝑡)

− 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 ] + 𝜆3 [(1 − 𝜃) 𝛽𝐼 (𝑡) 𝑆 (𝑡)𝑁

+ (1 − 𝜃) 𝛼𝐼 (𝑡)𝑊 (𝑡) + 𝜉1𝑆2 (𝑡)𝑁 + 𝑚𝑆 (𝑡)

+ 𝜉2𝑆 (𝑡) 𝑅 (𝑡)
𝑁 ] + 𝜆4 [𝜆𝑆 (𝑡)

− 𝑘 (1 + 𝑢3 (𝑡))𝑊 (𝑡)] + 𝜆5 [𝑢3 (𝑡)] .

(A.8)

The adjoint equations are given by

𝜆󸀠1 (𝑡) = −𝜕𝐻𝜕𝐼
= −𝜆1 [−𝛽𝑆𝑁 − 𝛼𝑊] − 𝜆2 [𝜃𝛽𝑆𝑁 + 𝜃𝛼𝑊]

− 𝜆3 [(1 − 𝜃) 𝛽𝑆𝑁 + (1 − 𝜃) 𝛼𝑊]

𝜆󸀠2 (𝑡) = −𝜕𝐻𝜕𝑆
= −𝐴 − 𝜆1 [−𝛽𝐼𝑁 ]

− 𝜆2 [𝜃𝛽𝐼𝑁 − 2𝜉1𝑆𝑁 − 𝑚 − 𝜉2𝑅𝑁 ]

− 𝜆3 [(1 − 𝜃) 𝛽𝐼𝑁 + 2𝜉1𝑆𝑁 + 𝑚 + 𝜉2𝑅𝑁 + 𝑢2]
− 𝜆4 [𝜆]

𝜆󸀠3 (𝑡) = −𝜕𝐻𝜕𝑅 = −𝜆2 [−𝜉2𝑆𝑁 ] − 𝜆3 [𝜉2𝑆𝑁 ]



Discrete Dynamics in Nature and Society 15

𝜆󸀠4 (𝑡) = − 𝜕𝐻
𝜕𝑊

= −𝜆1 [−𝛼𝐼] − 𝜆2 [𝜃𝛼𝐼] − 𝜆3 [(1 − 𝜃) 𝛼𝐼]
+ 𝜆4 [𝑘 (1 + 𝑢3)]

𝜆󸀠5 (𝑡) = − 𝜕𝐻
𝜕𝐺3 = 0.

(A.9)

The optimality condition is

𝜕𝐻
𝜕𝑢3 = 2𝐷𝑢3 (𝑡) − 𝜆4𝑘𝑊 (𝑡) + 𝜆5 = 0. (A.10)
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