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Proactive hedging European option is an exotic option for hedgers in the options market proposed recently byWang et al. It extends
the classical European option by requiring option holders to continuously trade in underlying assets according to a predesigned
trading strategy, to proactively hedge part of the potential risk from underlying asset price changes. To generalize this option design
for practical application, in this study, a proactive hedging option with discrete trading strategy is developed and its pricing formula
is deducted assuming the underlying asset price follows Geometric Fractional Brownian Motion. Simulation studies show that
proactive hedging option with discrete trading strategy still enjoys strong price advantage compared to the classical European
option for majority of parameter space. The observed price advantage is stronger when the underlying asset has more volatility or
when the asset price follows closer to Geometric BrownianMotion. Additionally, we found that a higher frequency trading strategy
has stronger price advantage if there is no trading cost. The findings in this research strongly facilitate the practical application of
the proactive hedging option, making this lower-cost trading tool more feasible.

1. Introduction

Exotic options, such as Asian, lookback, barrier, and passport
options, have been a key focus of mathematical finance
research since the late 1980s and early 1990s [1–9]. In this
paper, we focus on an exotic option that is a proactive hedging
strategy bundled into the classical European option, called
proactive hedging European option. This exotic option has
a built-in condition that requires option holders to trade
the underlying asset and linearly adjust the holding position
according to its price fluctuation within the option period.
The potential loss of the underlying asset covered by such
proactive actions is no longer the responsibility of the option
writer. Therefore, compared to classical European options,
this proactive hedging European option can significantly
reduce the risk taken by the option writer, thus making it a
theoretically less expensive option. This type of exotic option
is particularly suitable to hedgers who seek to cover their risk
of exposure at a minimum cost. Although very promising
in theory, the continuous linear position strategy makes this
option not very practical for trading purposes. In this paper,

we try to improve the feasibility of this option to make it
more adaptable to a real market scenario by making the
continuous linear position strategy discrete. We then deduce
the theoretical pricing formula for guiding trading practice in
the market.

Proactive hedging European option with continuous
linear position was first introduced by Wang et al. [10].
With the addition of a mandatory condition to the classical
European option, option holders need to buy in (sell out)
the underlying asset when its price goes up (goes down).
Specifically, for a call option inwhich the prediction is that the
future value of the underlying stock will increase, the option
holder holds a certain amount of capital 𝐴 at the beginning
of the option period. When the price of the underlying stock
goes up to 𝑋𝑒 + 𝛿(𝛿 ≥ 0), the option holder spends 𝛽0 ∙ 𝐴 to
buy in the stock. The parameter 𝛽0 is called the initial capital
utilization coefficient and is a constant between 0 and 1. The
option holder linearly and continuously adjusts the capital
utilization to increase the holding if the price continues to
increase, until the price reaches (1 + 𝛼)(𝑋𝑒 + 𝛿)(𝛼 > 0, 𝛿 ≥ 0)
and the total capital spending reaches 𝛽 ∙ 𝐴, where 𝛼 is a

Hindawi
Discrete Dynamics in Nature and Society
Volume 2019, Article ID 1070873, 11 pages
https://doi.org/10.1155/2019/1070873

http://orcid.org/0000-0003-4617-7920
http://orcid.org/0000-0001-7454-9109
https://doi.org/10.1155/2019/1070873


2 Discrete Dynamics in Nature and Society

Capital
Utilization

Share Prices



0

Xe +  (1 + )(Xe + )

Figure 1: Capital utilization coefficient function with varying stock
price under a linear position strategy.

positive number and referred to as the investment strategy
index and 𝛽 is the maximum capital utilization coefficient.
Figure 1 describes this process. The expected loss resulting
from the asset price increasing from𝑋𝑒+𝛿 to (1+𝛼)(𝑋𝑒+𝛿),
which is supposed to borne by the option writer, is partly
retrieved by the dynamic strategy. The dynamic hedging
optionworks in a similar fashion for a put option in which the
prediction is that the future value of the underlying stock will
decrease.

Wang et al. [11, 12] obtained the pricing formula for
this exotic option by extending the Black-Scholes model
under the assumption that the asset price movement follows
Geometric Brownian Motion (GBM). Recently, numerous
studies indicate that some features of asset prices such as fat-
tails [13, 14] are more compatible with Geometric Fractional
Brownian Motion (GFBM)[15–17] rather than GBM. Li et al.
[18], following the work of Wang et al. [11, 12], derived the
theoretical pricing formulas of this exotic option and some of
its simplified special forms under the GFBM assumption by
using risk-neutral evaluation principle. They compared the
price of this exotic option with that of the classical European
option using simulations and found that this exotic option
almost always has a lower price than the classical European
option. This price advantage can be as large as 65% under
some parameter settings and may be greater if the asset price
distributes closer to the standard GBM.

Although this exotic option enjoys a significant price
advantage, it currently remains an unrealistic option choice
for hedgers since proactive hedging actions must be taken
continuously along a linear function. In this paper, we build
on the work of Li et al. [18] by making its proactive hedging
strategy discrete to increase its feasibility for practical use
and derive its pricing formulas under the GFBM assumption.
Even though making the proactive hedging strategy discrete
would likely sacrifice some price advantage, simulations
indicate that this discrete strategy still enjoys a strong price
advantage compared to the classical European option. This
advantage will be stronger when the underlying asset has
more uncertainty, or when the dynamic hedging strategy is
more frequent.

The rest of the paper is organized as follows. In Section 2,
we describe this exotic option with discrete proactive hedging
actions in detail and derive its value function. Section 3 gives
the theoretical pricing formula under the GFBM assumption

and the simplified formula for application to some special
cases. In Section 4, we use simulations to evaluate the price
premiumof this exotic optionwith discrete proactive hedging
actions compared to the exotic option with continuous linear
proactive hedging actions and the classical European option.
Since the pricing formula derivations are very similar for call
and put options, in this paper, we only present results for call
options.

2. Description of Proactive Hedging
European Option with Dynamic Discrete
Position Strategy

2.1. Constraints for the Proactive Hedging European Option.
Theproactive hedging European option is proposed based on
the following assumptions:

(1) A call option holder holds one piece of contract and
an initial capital of amount of 𝐴 = 𝑄 × 𝑋𝑒 at the beginning
of the option period, where 𝑄 is the number of stock units
for the piece of option contract and 𝑋𝑒 is the exercising price
according to the contract.

(2) The call option holder should buy in the underlying
stock according to the price changes subject to the dynamic
discrete position strategy attached to the option contract,
which will be presented in more detail in Section 2.2.

(3) The potential loss from the underlying asset covered
by such proactive actions is no longer the responsibility of the
option writer.

(4)There are no transaction costs for buying or selling the
stock or the option.

2.2. Dynamic Discrete Position Strategy. The option holder
holds a certain amount of capital 𝐴 at the beginning of the
option period.The dynamic discrete position strategy will be
activated when the underlying asset price reaches 𝑋𝑒. The
option holder will only buy in when the asset price hits a
series of equally spaced points 𝑆𝑛, {𝑆𝑛 : 𝑆𝑛 = 𝑋𝑒 + 𝑛 ∙
�, 𝑛 = 1, . . . , 𝑁}, where � is a positive constant representing
the price distance for two consecutive trading actions and𝑁 is the total number of trades of the stock in the entire
option period. Similar to previous studies, 𝛽 is themaximum
capital utilization coefficient, so the maximum amount of
capital tradable or available is 𝛽 ∙ 𝐴. The strategy also
assumes the option holder will evenly distribute the capital
over the 𝑁 trades, such that each buy-in trade will spend
a capital of 𝛽𝐴/𝑁 for 𝛽𝐴/(𝑁 ∙ 𝑆𝑛) pieces of stock. Please
refer to Figure 2 for an illustration of the discrete position
strategy.

2.3. The Value Function for Proactive Hedging European
Option with Dynamic Discrete Position Strategy. For the
classical European option, the option holder will suffer an
expected loss 𝐿 as

𝐿 = 𝑄 (𝑆 − 𝑋𝑒) = 𝐴𝑋𝑒 (𝑆 − 𝑋𝑒) (1)
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Figure 2: Graphical illustration of the discrete linear proactive hedging strategy.

for each piece of the option contract as the stock price rises
from 𝑋𝑒 to 𝑆, for 𝑆 > 𝑋𝑒. In an exotic option with proactive
hedging strategy, the option holder is required to actively buy
in the underlying stock to hedge the risk from the fluctuations
of the underlying asset. Assume the option holder trades with
the discrete position strategy described in Section 2.2 and
buys in (𝛽 ∙ 𝐴)/(𝑁∙𝑆𝑛) pieces of stock when the stock price
is 𝑆𝑛. Then, when the stock price increases from 𝑆𝑛 to 𝑆, with𝑆𝑛 < 𝑆 < 𝑆𝑛+1 ≤ 𝑆𝑁, the option holder will make a return 𝑅 of

𝑅 = 𝛽𝐴𝑁𝑆𝑛 (𝑆 − 𝑆𝑛) (2)

by holding the stocks. Since the discrete position requires the
option holder to buy in the underlying stock at every stock
price of {𝑆1, 𝑆2, . . . , 𝑆𝑁}, each with a capital of 𝛽𝐴/𝑁, when
the stock price reaches 𝑆with 𝑆𝑚 ≤ 𝑆 < 𝑆𝑚+1 ≤ 𝑆𝑁, the option
holder will make a cumulative return 𝑅(𝑆) of

𝑅 (𝑆) = 𝑚∑
𝑛=1

𝛽𝐴𝑁𝑆𝑛 (𝑆 − 𝑆𝑛) . (3)

Thus, when 𝑆𝑚 ≤ 𝑆 < 𝑆𝑚+1 ≤ 𝑆𝑁, the expected loss taken by
the option writer, 𝐿(𝑆), should be the expected total loss 𝐿 in
(1) minus the cumulative return 𝑅(𝑆) in (3), that is,

𝐿 (𝑆) = 𝐴𝑋𝑒 (𝑆 − 𝑋𝑒) −
𝑚∑
𝑛=1

𝛽𝐴𝑁𝑆𝑛 (𝑆 − 𝑆𝑛)

= 𝐴𝑋𝑒 (𝑆 − 𝑋𝑒) −
𝛽𝐴𝑆𝑁
𝑚∑
𝑛=1

1𝑆𝑛 +
𝑚𝛽𝐴𝑁

= 𝐴𝑆𝑋𝑒 −
𝛽𝐴𝑆𝑁
𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛� + (
𝑚𝛽𝑁 − 1)𝐴.

(4)

When 𝑆 ≥ 𝑆𝑁, the expected loss taken by the option writer is

𝐿 (𝑆) = 𝐴𝑆𝑋𝑒 −
𝛽𝐴𝑆𝑁
𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛� + (𝛽 − 1)𝐴. (5)

Therefore, the expected loss taken by the option writer is a
stepwise function of 𝑆, specifically,

𝐿 (𝑆) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0, 𝑆 < 𝑋𝑒
𝐴𝑋𝑒 (𝑆 − 𝑋𝑒) , 𝑋𝑒 ≤ 𝑆 < 𝑆1
𝐴𝑆𝑋𝑒 −

𝛽𝐴𝑆𝑁
𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛� + (
𝛽𝑚𝑁 − 1)𝐴, 𝑆𝑚 ≤ 𝑆 < 𝑆𝑚+1 ≤ 𝑆𝑁

𝐴𝑆𝑋𝑒 −
𝛽𝐴𝑆𝑁
𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛� + (𝛽 − 1)𝐴. 𝑆𝑁 ≤ 𝑆

(6)
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Since the option holder can buy 𝐴/𝑋𝑒 units of underlying
stocks at price of 𝑋𝑒 with all the initial capital, therefore, the

expected loss for each unit of stock is

𝐿𝑢 (𝑆) = 𝐿 (𝑆)𝐴/𝑋𝑒 =

{{{{{{{{{{{{{{{{{{{{{{{

0, 𝑆 < 𝑋𝑒
𝑆 − 𝑋𝑒, 𝑋𝑒 ≤ 𝑆 < 𝑆1
𝑆 − 𝛽𝑆𝑋𝑒𝑁

𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛� + (
𝛽𝑚𝑁 − 1)𝑋𝑒, 𝑆𝑚 ≤ 𝑆 < 𝑆𝑚+1 ≤ 𝑆𝑁

𝑆 − 𝛽𝑆𝑋𝑒𝑁
𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛� + (𝛽 − 1)𝑋𝑒, 𝑆𝑁 ≤ 𝑆
(7)

The pricing of an option is proportional to the units of
underlying stocks specified in the contract; therefore, without
loss of generality, in this study we set the intrinsic value
function, 𝑓(𝑆), of the option as the loss function per unit (per
share), 𝐿𝑢(𝑆), that is,

𝑓 (𝑆) = 𝐿𝑢 (𝑆) , (8)

where 𝐿𝑢(𝑆) is defined as in (7). The intrinsic value function𝑓(𝑆) will include the same four terms as 𝐿𝑢(𝑆) in (7), and
these four terms will be further denoted as 𝑓1, 𝑓2, 𝑓3, and 𝑓4.
3. Pricing of Proactive Hedging European
Option Based on GFBM

3.1. Asset Price Behavior Based on GFBM. Let 𝑆(𝑡) be the asset
price at time 𝑡. If 𝑆(𝑡) follows GFBM, then it satisfies the
following equation:

𝑑𝑆 (𝑡)𝑆 (𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝐵𝐻 (𝑡) (9)

where 𝑆(0), the draft 𝜇, and the volatility 𝜎 of the asset
price are all positive constants for 𝑡 ≥ 0. The Hurst
parameter 𝐻 is a measure of the long-range dependence in
the stochastic process of GFBM. If 𝐻 = 1/2, B𝐻(𝑡) reduces
to an uncorrelated Brownian motion series 𝐵(𝑡). A time
series with 𝐻 value larger than 0.5 has long-range positive
dependence, and a larger𝐻 value indicates stronger positive
dependence. A time series with 𝐻 value below 0.5 has long-
range negative dependence, and a smaller 𝐻 value indicates
stronger negative dependence. As described in Section 1,
many previous researchers have shown long-range positive
dependence of the price changes of financial assets, and
therefore we only present the case of𝐻 ≥ 0.5 here.

We assume the stochastic process 𝑆(𝑡) follows GFBM. By
applying the fractional Wick-Itô formula, Hu and Øksendal
proved that (9) can be rewritten as follows [19]:

𝑆 (𝑡) = 𝑆 (0) exp (𝜎𝐵𝐻 (𝑡) + 𝜇𝑡 − 12𝜎2𝑡2𝐻) . (10)

For any two time points 𝑡1 and 𝑡2, where 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇,
the relationship between 𝑆(𝑡1) and 𝑆(𝑡2) can be obtained by
applying (10):

𝑆 (𝑡2) = 𝑆 (𝑡1) exp [𝜇 (𝑡2 − 𝑡1) − 12𝜎2 (𝑡2𝐻2 − 𝑡2𝐻1 )
+ 𝜎 (𝐵𝐻 (𝑡2) − 𝐵𝐻 (𝑡1))] .

(11)

3.2. Fractional European Option Pricing Formula. Black and
Scholes (1973) derived the famous B-S partial differential
function for the theoretical price of a classical European
option by applying the Ito Lemma [20]:

𝜕𝑓𝜕𝑡 + 𝑟𝑆𝜕𝑓𝜕𝑆 + 12𝜎2𝑆2 𝜕
2𝑓𝜕𝑆2 = 𝑟𝑓, (12)

where 𝑓 is the option price, 𝑡 is time, 𝑟 is the risk-free return
rate, 𝜎 is the volatility of the stock return, and 𝑆 is the stock
price. The analytical solution to the B-S formula (12) under
GBM is as follows:

𝑉(𝑆 (𝑡) , 𝑡) = 𝑒−𝑟(𝑇−𝑡)√2𝜋
⋅ ∫+∞
−∞
𝑓(𝑆 (𝑡) e𝜎√𝑇−𝑡∙𝑍+(𝑇−𝑡)(𝑟−𝜎2/2) ∙ e−𝑍2/2) d𝑍,

(13)

where 𝑇 is the option period and 𝑓(∙) is the intrinsic value
function of the option. The intrinsic value of an option is the
value of the option at maturity date 𝑡 = 𝑇.

Equation (13) is the value function of a classical European
option under the GBM assumption. However, as discussed
earlier in Section 1, the GFBM assumption is more applicable
for practical purpose than the GBM assumption. Therefore,
we need to derive a function of form (13) that meets the
GFBM assumption with the intrinsic value function 𝑓(∙)
from Section 2.3. The work of Li et al. (2018) suggests a
path for similar derivation work. By applying the risk-neutral
evaluation principle, Li et al. (2018) obtained an analytical
solution of pricing formula when stock prices follow GFBM
and then validated this pricing formula through simulations.
However, one limitation is that their results require the
assumption of continuous hedging actions, an impractical
restriction. Thus, similar to the steps taken by Li et al. (2018)
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and applying the risk-neutral evaluation principle, here we
develop an analytical solution of pricing formula that allows
for dynamic discrete hedging actions.

The basic idea for pricing of exotic options is based on
the risk-neutral evaluation principle: at the maturity date 𝑇,
the value of the classical European option, 𝑉𝑇, is equal to its
intrinsic value, which can be written as follows:

𝑉𝑇 (𝑆 (𝑇)) = (𝑆 (𝑇) − 𝑋𝑒)+ , (14)

where 𝑋𝑒, the exercising price, is a given constant and 𝑆(𝑇),
the asset price at maturity date 𝑇, is a random variable. The
option pricing function at any time point 𝑡, 0 ≤ 𝑡 ≤ 𝑇, is then
equivalent to the solution of the following equation:

𝑉𝑡 = 𝑉 (𝑆 (𝑡) , 𝑡) , (15)

and is also equal to the solution of (14) when 𝑡 = 𝑇.
According to the risk-neutral evaluation principle, option

pricing 𝑉𝑡 before the maturity date should be equal to the
discounted value of the option value 𝑉𝑇 at the maturity date,
and the discount rate should be the risk-free interest rate 𝑟.
The pricing formula can then be obtained by solving (16):

𝑉𝑡 = e−𝑟(𝑇−𝑡)𝐸 [𝑉𝑇 (𝑆 (𝑇))] . (16)

where 𝑆(𝑇) is a function of 𝑆(𝑡) and 𝑡.
To obtain the analytical solution of the option pricing

formula of (16) under the GFBM assumption, Li et al. (2018)
applied a result by Necula [21], which is quoted here as
Theorem 1.

Theorem 1. Let 𝑓 be a function such that 𝐸[𝑓(𝐵𝐻(𝑇))] < ∞.
Then for every 0 ≤ 𝑡 ≤ 𝑇,
𝐸𝑡 [𝑓 (𝐵𝐻 (𝑇))]
= ∫+∞
−∞

1
√2𝜋 (𝑇2𝐻 − 𝑡2𝐻) exp(−

(𝑥 − 𝐵𝐻 (𝑡)2)2 (𝑇2𝐻 − 𝑡2𝐻))
⋅ 𝑓 (𝑥) 𝑑𝑥.

(17)

Combining Theorem 1 with (11), Li et al.(2018) also
obtained analytical solution to (16), and it is restated here as
Lemma 2 below. Lemma 2 will serve as the starting point for
derivations in this study.

Lemma 2. Assume the price of the underlying asset at time
point 𝑡, 𝑆(𝑡), satisfies (9). Then the valuation of the option at
time point 𝑡 is
𝑉 (𝑆 (𝑡) , 𝑡) = e−(𝑇−𝑡)𝑟√2𝜋
⋅ ∫+∞
−∞
𝑓(𝑆 (𝑡) e𝜎√𝑇2𝐻−𝑡2𝐻𝑍+(𝑇−𝑡)𝑟−(𝜎2/2)(𝑇2𝐻−𝑡2𝐻))

∙ e−(𝑍2/2)𝑑𝑍.
(18)

where𝑓(∙)is the intrinsic value function of the European option
at maturity 𝑇.

3.3. Pricing Formula of ProactiveHedgingOptionwithDiscrete
Position Based on GFBM. This section discusses the pricing
formula for the proactive hedging option when using the
dynamic discrete position strategy that was introduced in
Section 2.2. The pricing formula is obtained by solving
the integral expression after combining the intrinsic value
function in (7) and the pricing formula of the fractional
European option in 3.9).The intrinsic value function in (7) is
a stepwise function, thus the pricing formula consists of four
parts:

𝑉 (𝑆 (𝑡) , 𝑡) = 𝑉1 (𝑆 (𝑡) , 𝑡) + 𝑉2 (𝑆 (𝑡) , 𝑡) + 𝑉3 (𝑆 (𝑡) , 𝑡)
+ 𝑉4 (𝑆 (𝑡) , 𝑡) , (19)

where

𝑉1 ((𝑆 (𝑡) , 𝑡)) = e−𝑟(𝑇−𝑡)√2𝜋 ∫
𝑆<𝑋𝑒

𝑓1 (∙) e−𝑍2/2𝑑𝑧 = 0,
𝑉2 ((𝑆 (𝑡) , 𝑡)) = e−𝑟(𝑇−𝑡)√2𝜋 ∫

𝑋𝑒≤𝑆<𝑆1

𝑓2 (∙) e−𝑍2/2𝑑𝑧,
𝑉3 ((𝑆 (𝑡) , 𝑡)) = e−𝑟(𝑇−𝑡)√2𝜋 ∫

𝑆𝑚≤𝑆<𝑆𝑚+1≤𝑆𝑁

𝑓3 (∙) e−𝑍2/2𝑑𝑧,
𝑉4 ((𝑆 (𝑡) , 𝑡)) = e−𝑟(𝑇−𝑡)√2𝜋 ∫

𝑆𝑁≤𝑆
𝑓4 (∙) e−𝑍2/2𝑑𝑧.

(20)

We then derive the analytical forms for the four value
functions.

Since 𝑓1(∙) = 0, it is easy to see that 𝑉1((𝑆(𝑡), 𝑡)) = 0. For𝑉2(𝑆(𝑡), 𝑡), let 𝑈 = 𝑆(𝑡)𝑒𝜎√𝑇2𝐻−𝑡2𝐻𝑍+(𝑇−𝑡)𝑟−(𝜎2/2)(𝑇2𝐻−𝑡2𝐻). When𝑋𝑒 ≤ 𝑈 < 𝑆1, we have
ln (𝑋𝑒/𝑆 (𝑡)) − (𝑇 − 𝑡) 𝑟 + (𝜎2/2) (𝑇2𝐻 − 𝑡2𝐻)

𝜎√𝑇2𝐻 − 𝑡2𝐻 ≤ 𝑍

< ln (𝑆1/𝑆 (𝑡)) − (𝑇 − 𝑡) 𝑟 + (𝜎2/2) (𝑇2𝐻 − 𝑡2𝐻)
𝜎√𝑇2𝐻 − 𝑡2𝐻 .

(21)

By letting 𝑍0 = (ln(𝑋𝑒/𝑆(𝑡)) − (𝑇 − 𝑡)𝑟 + (𝜎2/2)(𝑇2𝐻 −𝑡2𝐻))/𝜎√𝑇2𝐻 − 𝑡2𝐻 and 𝑍1 = (ln(𝑆1/𝑆(𝑡)) − (𝑇 − 𝑡)𝑟 +(𝜎2/2)(𝑇2𝐻 − 𝑡2𝐻))/𝜎√𝑇2𝐻 − 𝑡2𝐻, we have
𝑉2 ((𝑆 (𝑡) , 𝑡)) = e−𝑟(𝑇−𝑡)√2𝜋
⋅ ∫𝑍1
𝑍0

(𝑆 (𝑡) e𝜎√𝑇2𝐻−𝑡2𝐻𝑍+(𝑇−𝑡)𝑟−(𝜎2/2)(𝑇2𝐻−𝑡2𝐻) − 𝑋𝑒)
⋅ e−𝑍2/2𝑑𝑍 = e−𝑟(𝑇−𝑡)√2𝜋 ∫𝑍1

𝑍0

𝑆 (𝑡)
⋅ e𝜎√𝑇2𝐻−𝑡2𝐻𝑍+(𝑇−𝑡)𝑟−(𝜎2/2)(𝑇2𝐻−𝑡2𝐻) ∙ e−𝑍2/2𝑑𝑍
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− 𝑋𝑒e−𝑟(𝑇−𝑡)√2𝜋 ∫𝑍1
𝑍0

e−𝑍
2/2𝑑𝑍 = 𝑆 (𝑡)√2𝜋

⋅ ∫𝑍1−𝜎√𝑇2𝐻−𝑡2𝐻
𝑍0−𝜎√𝑇

2𝐻−𝑡2𝐻
e−(1/2)(𝑍−𝜎√𝑇

2𝐻−𝑡2𝐻)2𝑑(𝑍
− 𝜎√𝑇2𝐻 − 𝑡2𝐻) − 𝑋𝑒e−𝑟(𝑇−𝑟) (𝑁 (𝑍1) − 𝑁 (𝑍0))
= 𝑆 (𝑡) [𝑁(𝑍1 − 𝜎√𝑇2𝐻 − 𝑡2𝐻) − 𝑁(𝑍0
− 𝜎√𝑇2𝐻 − 𝑡2𝐻)] − 𝑋𝑒𝑒−𝑟(𝑇−𝑟) (𝑁 (𝑍1)
− 𝑁 (𝑍0)) .

(22)

The condition 𝑆𝑚 ≤ 𝑈 < 𝑆𝑚+1 ≤ 𝑆𝑁 is equivalent to 𝑆𝑚 ≤𝑆(𝑡)𝑒𝜎√𝑇2𝐻−𝑡2𝐻𝑍+(𝑇−𝑡)𝑟−(𝜎2/2)(𝑇2𝐻−𝑡2𝐻) < 𝑆𝑚+1. Thus,

ln (𝑆𝑚/𝑆 (𝑡)) − (𝑇 − 𝑡) 𝑟 + (𝜎2/2) (𝑇2𝐻 − 𝑡2𝐻)
𝜎√𝑇2𝐻 − 𝑡2𝐻 ≤ 𝑍

< ln (𝑆𝑚+1/𝑆 (𝑡)) − (𝑇 − 𝑡) 𝑟 + (𝜎2/2) (𝑇2𝐻 − 𝑡2𝐻)
𝜎√𝑇2𝐻 − 𝑡2𝐻 .

(23)

Let 𝑍𝑚 = (ln(𝑆𝑚/𝑆(𝑡)) − (𝑇 − 𝑡)𝑟 + (𝜎2/2)(𝑇2𝐻 −𝑡2𝐻))/𝜎√𝑇2𝐻 − 𝑡2𝐻 and 𝜎√𝑇2𝐻 − 𝑡2𝐻𝑍 + (𝑇 − 𝑡)𝑟 −(𝜎2/2)(𝑇2𝐻 − 𝑡2𝐻) = Σ. Then we have

𝑉3 ((𝑆 (𝑡) , 𝑡)) = e−𝑟(𝑇−𝑟)√2𝜋
𝑁−1∑
𝑚=1

∫𝑍𝑚+1
𝑍𝑚

𝑆 (𝑡) eΣ (1

− 𝛽𝑋𝑒𝑁
𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛�) e−𝑍
2/2𝑑𝑍 + e−𝑟(𝑇−𝑟)√2𝜋

⋅ 𝑁−1∑
𝑚=1

∫𝑍𝑚+1
𝑍𝑚

(𝛽𝑚𝑁 − 1)𝑋𝑒e−𝑍2/2𝑑𝑍 = 𝑆 (𝑡)√2𝜋
⋅ 𝑁−1∑
𝑚=1

∫𝑍𝑚+1
𝑍𝑚

(1 − 𝛽𝑋𝑒𝑁
𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛�)
⋅ e𝜎√𝑇2𝐻−𝑡2𝐻𝑍−(𝜎2/2)(𝑇2𝐻−𝑡2𝐻)−𝑍2/2𝑑𝑍
+ e−𝑟(𝑇−𝑟)𝑋𝑒𝑁−1∑

𝑚=1

(𝛽𝑚𝑁 − 1) 1√2𝜋 ∫
𝑍𝑚+1

𝑍𝑚

e−𝑍
2/2𝑑𝑍

= 𝑆 (𝑡)𝑁−1∑
𝑚=1

1√2𝜋 ∫
𝑍𝑚+1−𝜎√𝑇

2𝐻−𝑡2𝐻

𝑍𝑚−𝜎√𝑇
2𝐻−𝑡2𝐻

(1

− 𝛽𝑋𝑒𝑁
𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛�) e−(1/2)(𝑍−𝜎√𝑇
2𝐻−𝑡2𝐻)𝑑𝑍

− 𝜎√𝑇2𝐻 − 𝑡2𝐻 + e−𝑟(𝑇−𝑟)𝑋𝑒𝑁−1∑
𝑚=1

(𝛽𝑚𝑁 − 1)

⋅ (𝑁 (𝑍𝑚+1) − 𝑁 (𝑍𝑚)) = 𝑆 (𝑡)𝑁−1∑
𝑚=1

(1 − 𝛽𝑋𝑒𝑁
⋅ 𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛�)(𝑁(𝑍𝑚+1 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)

− 𝑁(𝑍𝑚 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)) + e−𝑟(𝑇−𝑡)𝑋𝑒𝑁−1∑
𝑚=1

(𝛽𝑚𝑁
− 1) (𝑁 (𝑍𝑚+1) − 𝑁 (𝑍𝑚)) .

(24)

For 𝑉4(𝑆(𝑡), 𝑡), 𝑈 ≥ 𝑆𝑁 means that
𝑆(𝑡)𝑒𝜎√𝑇2𝐻−𝑡2𝐻𝑍+(𝑇−𝑡)𝑟−(𝜎2/2)(𝑇2𝐻−𝑡2𝐻) ≥ 𝑆𝑁. Therefore,

𝑉4 (𝑆 (𝑡) , 𝑡) = e−𝑟(𝑇−𝑡)√2𝜋 ∫+∞
𝑍𝑁

[𝑆 (𝑡) eΣ

− 𝛽𝑆(𝑡) eΣ𝑋𝑒𝑁
𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛� + (𝛽 − 1)𝑋𝑒] e
−𝑍2/2𝑑𝑍

= e−𝑟(𝑇−𝑡)√2𝜋 ∫+∞
𝑍𝑁

𝑆 (𝑡) eΣ (1 − 𝛽𝑋𝑒𝑁
𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛�)

⋅ e−𝑍2/2𝑑𝑍 + e−𝑟(𝑇−𝑡)√2𝜋 ∫+∞
𝑍𝑁

(𝛽 − 1)𝑋𝑒 ∙ e−𝑍2/2𝑑𝑍

= 𝑆 (𝑡) ∫+∞
𝑍𝑁−𝜎√𝑇

2𝐻−𝑡2𝐻
(1 − 𝛽𝑋𝑒𝑁

𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛�)
⋅ 1√2𝜋e−(𝑍−𝜎

√𝑇2𝐻−𝑡2𝐻)2/2𝑑𝑍 − 𝜎√𝑇2𝐻 − 𝑡2𝐻

+ (𝛽 − 1)𝑋𝑒∫+∞
𝑍𝑁

e−𝑟(𝑇−𝑡)√2𝜋 e−𝑍
2/2𝑑𝑍 = 𝑆 (𝑡) (1

− 𝛽𝑋𝑒𝑁
𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛�)(1 − 𝑁(𝑍𝑁
− 𝜎√𝑇2𝐻 − 𝑡2𝐻)) + (𝛽 − 1)𝑋𝑒
∙ e−𝑟(𝑇−𝑡) (𝑁 (−𝑍𝑁)) .

(25)

By adding the derived analytical parts from (22), (24), and
(25), we obtain the pricing formula of this exotic option as in
(26).

𝑉 (𝑆 (𝑡) , 𝑡) = 𝑉1 (𝑆 (𝑡) , 𝑡) + 𝑉2 (𝑆 (𝑡) , 𝑡) + 𝑉3 (𝑆 (𝑡) , 𝑡)
+ 𝑉4 (𝑆 (𝑡) , 𝑡) = 𝑆 (𝑡) [𝑁 (𝑍1 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)
− 𝑁(𝑍0 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)] − 𝑋𝑒e−𝑟(𝑇−𝑟) (𝑁 (𝑍1)
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− 𝑁(𝑍0)) + 𝑆 (𝑡)𝑁−1∑
𝑚=1

(1 − 𝛽𝑋𝑒𝑁
𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛�)
⋅ (𝑁(𝑍𝑚+1 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)
− 𝑁(𝑍𝑚 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)) + e−𝑟(𝑇−𝑡)𝑋𝑒𝑁−1∑

𝑚=1

(𝛽𝑚𝑁
− 1) (𝑁 (𝑍𝑚+1) − 𝑁 (𝑍𝑚)) + (𝛽 − 1)𝑋𝑒
∙ e−𝑟(𝑇−𝑡) (𝑁 (−𝑍𝑁)) + 𝑆 (𝑡) (1 − 𝛽𝑋𝑒𝑁
⋅ 𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛�)(1 − 𝑁(𝑍𝑁 − 𝜎√𝑇2𝐻 − 𝑡2𝐻))
(26)

3.4. Special Cases. In this section, we discuss a few special
cases of the exotic option. Specifically, by manipulating
parameter 𝐻 and the intensity of proactive hedging option
actions, we can obtain several simplified versions of the
pricing formula in Section 3.3.

3.4.1. Pricing of Proactive Hedging European Option Based on
GBM. By letting 𝐻 = 1/2 while keeping the same values
for the other parameters, the pricing formula (26) can be
simplified as a pricing formula under the GBM assumption,
as specified here in (27).

𝑉 (𝑆 (𝑡) , 𝑡) = 𝑉1 (𝑆 (𝑡) , 𝑡) + 𝑉2 (𝑆 (𝑡) , 𝑡) + 𝑉3 (𝑆 (𝑡) , 𝑡)
+ 𝑉4 (𝑆 (𝑡) , 𝑡) = 𝑆 (𝑡) [𝑁 (𝑍1 − 𝜎√𝑇 − 𝑡)
− 𝑁 (𝑍0 − 𝜎√𝑇 − 𝑡)] − 𝑋𝑒e−𝑟(𝑇−𝑟) (𝑁 (𝑍1)
− 𝑁 (𝑍0)) + 𝑆 (𝑡)𝑁−1∑

𝑚=1

(1 − 𝛽𝑋𝑒𝑁
𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛�)
⋅ (𝑁 (𝑍𝑚+1 − 𝜎√𝑇 − 𝑡) − 𝑁 (𝑍𝑚 − 𝜎√𝑇 − 𝑡))
+ e−𝑟(𝑇−𝑡)𝑋𝑒𝑁−1∑

𝑚=1

(𝛽𝑚𝑁 − 1) (𝑁 (𝑍𝑚+1) − 𝑁 (𝑍𝑚))

+ 𝑆 (𝑡) (1 − 𝛽𝑋𝑒𝑁
𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛�)(1
− 𝑁 (𝑍𝑁 − 𝜎√𝑇 − 𝑡)) + (𝛽 − 1)𝑋𝑒
∙ e−𝑟(𝑇−𝑡) (𝑁 (−𝑍𝑁))

(27)

It can be verified easily that the same result can be obtained
by including the value function (7) in the B-S formula (13).

3.4.2. Pricing of Classical European Option Based on GFBM.
Classical European option can be taken as a special case
of this exotic option without proactive hedging strategy. By

letting 𝛽 = 0, pricing formula (26) can be simplified into that
of the classical European option as shown in (28).

𝑉 (𝑆 (𝑡) , 𝑡) = 𝑉1 (𝑆 (𝑡) , 𝑡) + 𝑉2 (𝑆 (𝑡) , 𝑡) + 𝑉3 (𝑆 (𝑡) , 𝑡)
+ 𝑉4 (𝑆 (𝑡) , 𝑡) = 𝑆 (𝑡) [𝑁(𝑍1 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)
− 𝑁(𝑍0 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)] − 𝑋𝑒e−𝑟(𝑇−𝑟) (𝑁 (𝑍1)
− 𝑁 (𝑍0)) + 𝑆 (𝑡) (𝑁 (𝑍𝑁 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)
− 𝑁(𝑍1 − 𝜎√𝑇2𝐻 − 𝑡2𝐻)) − e−𝑟(𝑇−𝑡)𝑋𝑒 (𝑁 (𝑍𝑁)
− 𝑁 (𝑍1)) + 𝑆 (𝑡) (1 − 𝑁(𝑍𝑁 − 𝜎√𝑇2𝐻 − 𝑡2𝐻))
− 𝑋𝑒 ∙ e−𝑟(𝑇−𝑡) (𝑁 (−𝑍𝑁)) .

(28)

3.4.3. Pricing of Classical European Option Based on GBM.
The assumption of GBM corresponds to the cases of 𝛽 = 0
and 𝐻 = 1/2 in (26). A model with these assumptions is
equivalent to the classic option pricing B-S model. We now
derive the pricing formula for this special case, and we will
also confirm that the reduced pricing model is the same as
the classic B-S model.

First, by letting 𝐻 = 1/2, we can further simplify some
terms as

𝑍0 = ln (𝑋𝑒/𝑆 (𝑡)) + (𝑇 − 𝑡) (𝜎2/2 − 𝑟)
𝜎√𝑇 − 𝑡 ,

𝑍𝑚 = ln (𝑆𝑚/𝑆 (𝑡)) + (𝑇 − 𝑡) (𝜎2/2 − 𝑟)
𝜎√𝑇 − 𝑡 ,

and 𝑍𝑁 = ln (𝑆𝑁/𝑆 (𝑡)) + (𝑇 − 𝑡) (𝜎2/2 − 𝑟)
𝜎√𝑇 − 𝑡 .

(29)

𝑉1(𝑆(𝑡), 𝑡) = 0, as it was previously.The other parts of (19) can
be simplified as follows:

𝑉2 (𝑆 (𝑡) , 𝑡) = 𝑆 (𝑡) [𝑁 (𝑍1 − 𝜎√𝑇 − 𝑡)
− 𝑁(𝑍0 − 𝜎√𝑇 − 𝑡)] − 𝑋𝑒𝑒−𝑟(𝑇−𝑡) [𝑁 (𝑍1)
− 𝑁 (𝑍0)]

𝑉3 (𝑆 (𝑡) , 𝑡) = 𝑆 (𝑡)𝑁−1∑
𝑚=1

(1 − 𝛽𝑋𝑒𝑁
𝑚∑
𝑛=1

1𝑋𝑒 + 𝑛�)
⋅ (𝑁(𝑍𝑚+1 − 𝜎√𝑇 − 𝑡) − 𝑁 (𝑍𝑚 − 𝜎√𝑇 − 𝑡))
+ 𝑒−𝑟(𝑇−𝑡)𝑋𝑒𝑁−1∑

𝑚=1

(𝛽𝑚𝑁 − 1) (𝑁 (𝑍𝑚+1) − 𝑁 (𝑍𝑚))

𝑉4 (𝑆 (𝑡) , 𝑡) = 𝑆 (𝑡) (1 − 𝛽𝑋𝑒𝑁
𝑁∑
𝑛=1

1𝑋𝑒 + 𝑛�)
⋅ 𝑁 (𝜎√𝑇 − 𝑡 − 𝑍𝑁) + 𝑒−𝑟(𝑇−𝑡) (𝛽 − 1)𝑋𝑒.

(30)
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If we let 𝑑0 = 𝑍0 − 𝜎√𝑇 − 𝑡 = (ln(𝑋𝑒/𝑆(𝑡)) + (𝑇 − 𝑡)(𝜎2/2 −𝑟))/ 𝜎√𝑇 − 𝑡 − 𝜎√𝑇 − 𝑡 = (ln(𝑋𝑒/𝑆(𝑡)) − (𝑇 − 𝑡)(𝜎2/2 +𝑟))/ 𝜎√𝑇 − 𝑡, and 𝑑𝑚 = 𝑍𝑚 − 𝜎√𝑇 − 𝑡 = (ln(𝑆𝑚/𝑆(𝑡)) + (𝑇 −𝑡)(𝜎2/2 − 𝑟))/ 𝜎√𝑇 − 𝑡 − 𝜎√𝑇 − 𝑡 = (ln(𝑆𝑚/𝑆(𝑡)) − (𝑇 −𝑡)(𝜎2/2+ 𝑟))/ 𝜎√𝑇 − 𝑡, then we can rewrite the parts of value
function (28) as

𝑉2 (𝑆 (𝑡) , 𝑡) = 𝑆 (𝑡) [𝑁 (𝑑1) − 𝑁 (𝑑0)]
− 𝑋𝑒𝑒−𝑟(𝑇−𝑡) [𝑁 (𝑍1) − 𝑁 (𝑍0)]

𝑉3 (𝑆 (𝑡) , 𝑡) = 𝑆 (𝑡) [𝑁 (𝑑𝑁) − 𝑁 (𝑑𝑁−1) + 𝑁 (𝑑𝑁−1)
− 𝑁 (𝑑𝑁−2) + ⋅ ⋅ ⋅ + 𝑁 (𝑑2) − 𝑁 (𝑑1)]
− 𝑋𝑒𝑒−𝑟(𝑇−𝑡) [𝑁 (𝑍𝑁) − 𝑁 (𝑍𝑁−1) + 𝑁 (𝑍𝑁−1)
− 𝑁 (𝑍𝑁−2) + ⋅ ⋅ ⋅ + 𝑁 (𝑍2) − 𝑁 (𝑍1)]

𝑉4 (𝑆 (𝑡) , 𝑡) = 𝑆 (𝑡) [1 − 𝑁 (𝑑𝑁)] − 𝑋𝑒𝑒−𝑟(𝑇−𝑡) (1
− 𝑁 (𝑍𝑁)) .

(31)

By substituting the parts in the reduced form in (31) into (28),
we can obtain the pricing formula for this special case as

𝑉 (𝑆 (𝑡) , 𝑡) = 𝑉1 (𝑆 (𝑡) , 𝑡) + 𝑉2 (𝑆 (𝑡) , 𝑡) + 𝑉3 (𝑆 (𝑡) , 𝑡)
+ 𝑉4 (𝑆 (𝑡) , 𝑡)

= 𝑆 (𝑡) [1 − 𝑁 (𝑑0)]
− 𝑋𝑒𝑒−𝑟(𝑇−𝑡) [1 − 𝑁 (𝑍0)]

= 𝑆 (𝑡)𝑁 (−𝑑0) + 𝑋𝑒𝑒−𝑟(𝑇−𝑡)𝑁(−𝑍0)

(32)

which is exactly the same as the above classic pricing formula
for the B-S model.

4. Simulation Studies

4.1. Comparison of theOption Prices between the Exotic Option
with Discrete Position Strategy versus the Classic European
Option. In this section, we compare the pricing of the exotic
option allowing dynamic discrete position strategy and the
classic European option. The option price with dynamic dis-
crete position, 𝑃𝑑𝑖𝑠, is calculated based on (26), and the option
price of the classic European option, 𝑃𝑐𝑙𝑎𝑠𝑠, is calculated based
on the B-S model. We preset some parameters as 𝑡 = 0,𝑇 = 0.5 (half of a year),𝑋𝑒 = 𝑆(0) =$20 per share, 𝛽0 = 0, and𝑟 = 6%. For the dynamic discrete position, we allow the price
step Δ to be $1, $2, $5, and $10, corresponding to numbers of
steps𝑁 of 10, 5, 2, and 1, respectively, for a total price rise of
$10 for all simulations. We report the price ratio of these two
options as

𝑟𝑎𝑡𝑖𝑜𝐴 = 𝑃𝑑𝑖𝑠𝑃𝑐𝑙𝑎𝑠𝑠 (33)

Table 1: Numerical values of the price 𝑟𝑎𝑡𝑖𝑜𝐴 and 𝑟𝑎𝑡𝑖𝑜𝐵 for different
parameter settings.

𝛽 𝐻 Δ 𝜎 𝑟𝑎𝑡𝑖𝑜𝐴 𝑟𝑎𝑡𝑖𝑜𝐵
0.8 0.5 2 0.1 0.9760 0.9386
0.8 0.5 2 0.4 0.7727 0.9119
0.8 0.5 5 0.1 0.9995 0.9166
0.8 0.5 5 0.4 0.8537 0.8253
0.8 0.7 2 0.1 0.9831 0.9414
0.8 0.7 2 0.4 0.8055 0.9138
0.8 0.7 5 0.1 0.9999 0.9256
0.8 0.7 5 0.4 0.8852 0.8315
1 0.5 2 0.1 0.9700 0.9228
1 0.5 2 0.4 0.7158 0.8811
1 0.5 5 0.1 0.9993 0.8957
1 0.5 5 0.4 0.8172 0.7718
1 0.7 2 0.1 0.9789 0.9264
1 0.7 2 0.4 0.7569 0.8853
1 0.7 5 0.1 0.9998 0.9070
1 0.7 5 0.4 0.8566 0.7823

for different values of Δ, 𝜎, 𝛽, and 𝐻. This price ratio
represents the extent to which the proactive hedging option
with dynamic discrete position strategy reduces the option
price relative to the classic European option under the same
parameters. Please note that, in the classic option model,
the parameter 𝛽 is always 0, but the 𝛽 in dynamic discrete
position can be 0.8 or 1. The 𝑟𝑎𝑡𝑖𝑜𝐴 values are presented in a
set of plots in Figure 3.

For example, when 𝐻 = 0.5 and 𝛽 = 0.8, the theoretical
price of the classic European option, 𝑃𝑐𝑙𝑎𝑠𝑠, is 2.5239, and the
price of the exotic option allowing discrete proactive hedging
will change as the value of Δ changes. When Δ = 2, the exotic
option price𝑃𝑑𝑖𝑠 is 1.9502, and the price ratio 𝑟𝑎𝑡𝑖𝑜𝐴 is 77.27%;
that is, the dynamic discrete position strategy enjoys a price
advantage of about 22.73% compared to the classic European
option.WhenΔ = 5, the exotic option price𝑃𝑑𝑖𝑠 is 2.1548, and
the price ratio 𝑟𝑎𝑡𝑖𝑜𝐴 is 85.37%, indicating that the dynamic
discrete position strategy enjoys a price advantage of 14.63%
compared to the classical European option ( these price
ratios can be read in Table 1). As we can see from Figure 3,
in general, if the discrete strategy allows a smaller step in
trading price (a smaller Δ value) and if the market has more
fluctuation (a larger 𝜎 value), then this proactive hedging
option has a stronger price advantage compared to the classic
European option. Additionally, when other parameters are
constant, this new exotic option has the maximum price
advantage when 𝐻 = 0.5 (when the underlying asset prices
follow GBM).More price comparison ratios can be read from
Table 1.

4.2. Comparison of the Option Prices between Exotic Options
with Dynamic Discrete Position Strategy versus Continuous
Linear Position. In this section, we compare the pricing of
two kinds of exotic options with a proactive hedging strategy,
one with a continuous linear position and the other with a
discrete position strategy.
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Figure 3: The price ratios between the proactive hedging European option and the classic European option for different parameter settings
of Δ, 𝜎, 𝛽, and𝐻.

The option price with discrete position strategy, 𝑃𝑑𝑖𝑠,
is calculated based on (25), and the option price with
continuous linear position, 𝑃𝑐𝑜𝑛, is calculated based on (18),
as in Li et al. (2018). We preset some parameters as 𝑡 = 0,𝑇 = 0.5 (half a year), 𝑋𝑒 = 𝑆0 =$20 per share, and 𝛽0 = 0,𝑟 = 6%. Specific parameters were set as Δ = 0 and 𝛼 = 0.5 in𝑃𝑐𝑜𝑛. Since 𝛼 = 0.5 corresponds to a total price change of $10
compared to the exercising price𝑋𝑒 in the continuous linear
position, for the discrete position strategywe set the price stepΔ as $1, $2, $5, and $10, corresponding to the numbers of steps𝑁 of 10, 5, 2, and 1, respectively. We compute the price ratio
as

𝑟𝑎𝑡𝑖𝑜𝐵 = 𝑃𝑐𝑜𝑛𝑃𝑑𝑖𝑠 (34)

for different values of Δ, 𝜎, 𝛽, and 𝐻. This 𝑟𝑎𝑡𝑖𝑜𝐵 represents
the price sacrifice resulting from making the continuous
linear hedging strategy discrete. The ratios are presented as
a panel of plots as in Figure 4.

For example, when 𝐻 = 0.5 and 𝛽 = 0.8, the
theoretical price of the exotic option allowing continuous
proactive hedging, 𝑃𝑐𝑜𝑛, is 1.7783, and the price of the exotic
option allowing discrete proactive hedging will change withΔ value. When Δ = 2, the exotic option price 𝑃𝑑𝑖𝑠 is
1.9502, and the price ratio 𝑟𝑎𝑡𝑖𝑜𝐵 is 91.19%, indicating that
by transforming the continuous linear hedging strategy into
a discrete linear strategy, allowing trade-in for every price
appreciation of 2 dollars, it will decrease the price advantage
by 8.81%. When Δ = 5, the exotic option price 𝑃𝑑𝑖𝑠 is

2.1548, and the price ratio 𝑟𝑎𝑡𝑖𝑜𝐵 is 82.53%, indicating that
the change to a discrete position strategy, allowing trade-in
for every price appreciation of 5 dollars, will decrease the
price advantage by 17.47% (these price ratios can be read from
Table 1). As shown in Figure 4, given the market condition
(by fixing the 𝜎, 𝛽, and 𝐻 values), a smaller-step (a smallerΔ) discrete strategy will better maintain the price advantage
of this proactive hedging option. Given the discrete strategy
step size (by fixing Δ), if the market shows less fluctuation
(smaller 𝜎), the discrete strategy can better maintain the price
advantage of the proactive hedging option, and a smaller
step size can generally help resist the influence of market
uncertainty. Similarly, we find that when the underlying asset
price follows closely to GBM, the exotic option has the
maximum advantage. More price comparison ratios can be
read from Table 1.

5. Conclusion

In this paper, we further extended the proactive hedging
option by making the continuous linear position strategy
discrete, so that it is more feasible for practical trading
purposes. By applying results from extension of Li et al.
(2018) under the risk-neutral evaluation principle, we derived
the analytical form of pricing formula for this exotic option
and compared its pricing advantage to the classic European
option and the proactive hedging option with continuous
linear position strategy.When the option allows a small-step-
position strategy and when there is greater uncertainty in the
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Figure 4: The exotic option price ratios between the proactive hedging European option and the continuous linear hedging strategy under
different parameter settings of Δ, 𝜎, 𝛽, and𝐻 values.

price of the underlying asset, the discrete position strategy
generally enjoys a significant price advantage. Althoughmak-
ing the continuous strategy discrete will somewhat sacrifice
the price advantage, simulation studies show that a small-
step discrete strategy canmostlymaintain the price advantage
through proactive hedging actions under most of the market
conditions considered here. Overall, the discrete strategy
greatly improves the feasibility of this exotic option. However,
future work should examine the effects of relaxation of the
assumptions involved in the derivation and discussion, such
as the no trading cost assumption, on the feasibility of this
option strategy.
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