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This paper is devoted to the research of some Caputo’s fractional derivative boundary value problems with a convection term. By
the use of some fixed-point theorems and the properties of Green function, the existence results of at least one or triple positive
solutions are presented. Finally, two examples are given to illustrate the main results.

1. Introduction

Fractional differential equations (FDEs) present new models
for many applications in physics, biomathematics, environ-
mental issues, control theory, image processing, chemistry,
mechanics, and so on [1–17]. Recently, researchers focus on
studying various aspects of fractional differential equations,
such as stability analysis, existence, multiplicity, and unique-
ness of solutions [1–40]. Among all these topics, the existence
and multiplicity results of positive solutions represent a topic
of high interest in fractional calculus.

Some authors studied the existence and uniqueness of
solutions for fractional differential equations with Caputo
or Riemann-Liouville derivatives based on the Banach con-
traction principle and investigate the stability results for
various fractional problems [4, 5, 16, 17]. Others studied
the existence and multiplicity results of positive solutions
or the iterative scheme. By the use of the Krasnoesel-skii’s
fixed-point theorem, Zhang [34] obtained some existence
results of positive solutions of following problem without the
convection term:

𝐶𝐷𝛼0+𝑦 (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) , 0 < 𝑥 < 1,
𝑦 (0) + 𝑦 (0) = 0,
𝑦 (1) + 𝑦 (1) = 0.

(1)

Wang and Liu [29] deduced the Green function and some
interesting properties for the Dirichlet BVPs

−𝑅𝐿𝐷𝛼0+𝑦 (𝑥) + 𝑏𝑦 (𝑥) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑥 ∈ (0, 1) ,
𝑦 (0) = 𝑦 (1) = 0, (2)

where 𝑅𝐿𝐷𝛼0+ is the Riemann-Liouville (R-L) fractional
derivative, 𝛼 ∈ (1, 2), and 𝑏 > 0. And they established an
iterative scheme to approximate the unique positive solution
under the singular conditions.

Meng and Stynes [23] considered the following linear
two-point fractional differential equation BVPs with general
Robin type boundary condition:

−𝐶𝐷𝛼0+𝑦 (𝑥) + 𝑏𝑦 (𝑥) = 𝑓 (𝑥) , 𝑥 ∈ (0, 1) ,
𝑦 (0) − 𝛽0𝑦 (0) = 𝛾0,
𝑦 (1) + 𝛽1𝑦 (1) = 𝛾1,

(3)

where 𝐶𝐷𝛼0+ denotes the Caputo derivative, 𝛼 ∈ (1, 2],𝑏, 𝛽0, 𝛽1 are constant, and𝑓 ∈ 𝐶[0, 1].Meng used two param-
eter Mittag-Leffler functions to establish explicitly Green’s
function for the problems. They obtained the nonnegativity
of Green’s function.

This paper is devoted to the research of the solvability of
the following nonlinear fractional BVPs:

−𝐶𝐷𝛼0+𝑦 (𝑥) + 𝑏𝑦 (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) , 𝑥 ∈ (0, 1) , (4)
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𝑦 (0) − 𝛽0𝑦 (0) = 0,
𝑦 (1) + 𝛽1𝑦 (1) = 0, (5)

where 1 < 𝛼 ≤ 2 and 𝑏, 𝛽0, 𝛽1 ∈ R are constants. 𝐶𝐷𝛼0+ is
the Caputo’s fractional derivative. Compared to the existing
literature, the interesting point here is that the convection
term is involved in the study of the solvability of fractional
differential boundary value problems. By applying some
fixed-point theorems, some existence and multiplicity results
of positive solutions are given. Some examples are presented
in last section to illustrate the main theorems.

In the sequel, the following conditions will be used:
(H1) 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞));
(H2) the constants 𝛽1 ≥ 0, 𝛽0 ≥ −𝐹2(1) +𝐹1(1)(𝐹𝛼(1)/𝐹𝛼−1(1)). The function 𝐹𝑐(𝑥) is defined in Sec-

tion 2.

2. Background Material and Definitions

In order to solve the BVPs (4), (5), the following definitions
and lemmas are needed.

Definition 1. Define the two-parameter Mittag-Leffler func-
tion by

𝐸𝜏,𝜐 (𝑥) fl ∞∑
𝑘=0

𝑥𝑘Γ (𝜏𝑘 + 𝜐) , for 𝜏 > 0, 𝜐 ≥ 0, 𝑥 ∈ R. (6)

Definition 2. Assume 𝑔 ∈ 𝐶𝑚−1[0, 1] and 𝑔(𝑚−1)(𝑥) ∈ 𝐴𝐶[0,1]. The Caputo fractional derivative of order 𝛼 ∈ (𝑚 − 1,𝑚]
is defined as

𝐶𝐷𝛼0+𝑔 (𝑥) fl 1Γ (𝑚 − 𝛼) ∫𝑥
0
(𝑥 − 𝑡)𝑚−𝛼−1 𝑔(𝑚) (𝑡) 𝑑𝑡,

for 0 < 𝑥 ≤ 1. (7)

In particularly, for 𝑔 ∈ 𝐶2[0, 1]
lim
𝛼→2

𝐶𝐷𝛼0+𝑔 (𝑥) = 𝑔 (𝑥) , for each 𝑥 ∈ (0, 1] . (8)

From the above equation, for 𝑥 ≥ 0 there is 𝐸𝜏,𝜐(𝑥) > 0
and

𝐸𝛼−1,1 (𝑥) fl 𝑥𝐸𝛼−1,𝛼 (𝑥) + 1, for all 𝑥 ∈ R. (9)

Remark 3. For simplicity, let

𝐹𝑐 (𝑥) fl 𝑥𝑐−1𝐸𝛼−1,𝑐 (𝑏𝑥𝛼−1) , for 𝑐 ≥ 0, 𝑥 ≥ 0, (10)

the particular,

𝐹1 (𝑥) = 𝑏𝐹𝛼 (𝑥) + 1. (11)

Lemma 4 (see [23]). Suppose 1 < 𝛼 ≤ 2 and the conditions(𝐻1) and (𝐻2) hold. For ℎ ∈ 𝐶[0, 1], the problem
𝐶𝐷𝛼0+𝑦 (𝑥) + ℎ (𝑥) = 0, 1 < 𝑥 < 1, (12)

𝑦 (0) − 𝛽0𝑦 (0) = 0,
𝑦 (1) + 𝛽1𝑦 (1) = 0, (13)

has a unique solution

𝑦 (𝑥) = ∫1
0
𝐺 (𝑥, 𝑡) ℎ (𝑡) 𝑑𝑡, (14)

where 𝐺(𝑥, 𝑡) is Green’s function

𝐺 (𝑥, 𝑡) = {𝜎 (𝑥) [𝐹𝛼 (1 − 𝑡) + 𝛽1𝐹𝛼−1 (1 − 𝑡)] − 𝐹𝛼 (𝑥 − 𝑡) , for 0 ≤ 𝑡 ≤ 𝑥;
𝜎 (𝑥) [𝐹𝛼 (1 − 𝑡) + 𝛽1𝐹𝛼−1 (1 − 𝑡)] , for 𝑥 < 𝑡 ≤ 1,

𝜎 (𝑥) = 𝛽0 + 𝐹2 (𝑥)𝛽0 + 𝛽1𝐹1 (1) + 𝐹2 (1) ,
(15)

and 𝐹𝑐(𝑥) is defined by Remark 3.

By the use of some interesting properties of the Mittag-
Leffler function,Meng and Stynes proved the following result.

Lemma 5 (see [23]). Suppose 𝛽1 ≥ 0. Then Green’s function𝐺(𝑥, 𝑡) ≥ 0 for 𝑥, 𝑡 ∈ [0, 1] if and only if
𝛽0 ≥ −𝐹2 (1) + 𝐹1 (1) 𝐹𝛼 (1)𝐹𝛼−1 (1) . (16)

We pointed out here that this lemma comes from The-
orem 5.1 and Remark 5.2 of Ref. [23] with some equivalent
changes.

The following theorems are fundamental for proving the
main results.

Lemma 6 (see [41]). Let 𝐸 be a Banach space, 𝐾 ⊆ 𝐸 a cone,
and Ω1, Ω2 two bounded sets of 𝐸 with 0 ∈ Ω1 ⊂ Ω2. Suppose
that𝐴 : 𝐾∩(Ω2\Ω2) → 𝐾 is completely continuous such that
either (𝑅1) ‖𝐴𝑥‖ ≤ ‖𝑥‖, 𝑥 ∈ 𝐾 ∩ 𝜕Ω1 and ‖𝐴𝑥‖ ≥ ‖𝑥‖, 𝑥 ∈𝐾 ∩ 𝜕Ω2, or(𝑅2) ‖𝐴𝑥‖ ≥ ‖𝑥‖, 𝑥 ∈ 𝐾 ∩ 𝜕Ω1 and ‖𝐴𝑥‖ ≤ ‖𝑥‖, 𝑥 ∈𝐾 ∩ 𝜕Ω2 holds.

Then the operator 𝐴 has a fixed point in 𝐾 ∩ (Ω2\Ω1).
Lemma 7 (see [42]). Let 𝑃 be a cone in a real Banach space𝐸, 𝑃𝑐 = {𝑢 ∈ 𝑃 | ‖𝑢‖ ≤ 𝑐}, 𝜃 is a nonnegative continuous
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concave functional on 𝑃 such that 𝜃(𝑢) ≤ ‖𝑢‖, for 𝑢 ∈ 𝑃𝑐, and𝑃(𝜃, 𝑏, 𝑑) = {𝑢 ∈ 𝑃 | 𝑏 ≤ 𝜃(𝑢), ‖𝑢‖ ≤ 𝑑}. Suppose 𝐴 : 𝑃𝑐 →𝑃𝑐 is completely continuous and there exist four constants 0 <𝑎 < 𝑏 < 𝑑 ≤ 𝑐 satisfying(𝐶1) {𝑢 ∈ 𝑃(𝜃, 𝑏, 𝑑) | 𝜃(𝑢) > 𝑏} ̸= 0 and 𝜃(𝐴𝑢) > 𝑏 for𝑢 ∈ 𝑃(𝜃, 𝑏, 𝑑);(𝐶2) ‖𝐴𝑢‖ < 𝑎 for ‖𝑢‖ ≤ 𝑎;(𝐶3) 𝜃(𝐴𝑢) > 𝑏 for 𝑢 ∈ 𝑃(𝜃, 𝑏, 𝑑) with ‖𝐴𝑢‖ > 𝑏.
Then the operator 𝐴 has three fixed-points 𝑢1, 𝑢2, 𝑢3 such

that

𝑢1 < 𝑎, 𝑏 < 𝜃 (𝑢2) , 𝑎 < 𝑢3 with 𝜃 (𝑢3) < 𝑏. (17)

Remark 8. Specially, if𝑑 = 𝑐, then condition (𝐶1) of Lemma7
implies condition (𝐶3).
3. Existence and Multiplicity

In this section, by applying Lemma 6 and Lemma 7, some
solvability results for BVPs (4), (5) will be obtained.

Let 𝐸 = 𝐶[0, 1] be a Banach space; ‖𝑢‖ = max0≤𝑡≤1|𝑢(𝑡)|.
The cone 𝑃 ⊂ 𝐸 is defined as

𝑃 = {𝑢 ∈ 𝐸 | 𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 1]} . (18)

Let the concave functional 𝜃 be defined by

𝜃 (𝑢) = min
1/4≤𝑡≤3/4

|𝑢 (𝑡)| . (19)

Define the operator 𝑇 : 𝑃 → 𝐸 by

(𝑇𝑦) (𝑥) fl ∫1
0
𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡, for 0 ≤ 𝑥 ≤ 1. (20)

It is clear that 𝑦(𝑥) is a positive solution of BVPs (4), (5)
equivalent to that 𝑦 ∈ 𝑃 is a fixed-point of 𝑇.
Lemma 9. The operator 𝑇 : 𝑃 → 𝑃 is completely continuous.

Proof. Taking into account that the functions 𝐺(𝑥, 𝑡) and𝑓(𝑥, 𝑦) are all continuous and nonnegative, the operator𝑇 : 𝑃 → 𝐸 is continuous and nonnegative, i.e., 𝑇 :𝑃 → 𝑃. Suppose Ω ⊂ 𝑃 is a bounded set, and for all𝑦 ∈ Ω there holds ‖𝑦‖ ≤ 𝑀1 for some 𝑀1 > 0. Let 𝑀 =
max0≤𝑥≤1,0≤𝑦≤𝑀1

|𝑓(𝑥, 𝑦)| + 1; then, for 𝑦 ∈ Ω, there is

(𝑇𝑦) (𝑥) ≤
∫
1

0
𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡

≤ 𝑀∫1
0
max
0≤𝑥≤1

𝐺 (𝑥, 𝑡) 𝑑𝑡.
(21)

Thus, the set 𝑇(Ω) is bounded.
By the fact that the Green function 𝐺(𝑥, 𝑡) is continuous

on [0, 1] × [0, 1], one has the fact that it is uniformly
continuous. Therefor, for given 𝜖 > 0, there exists 𝛿 > 0 such

that for each 𝑦 ∈ Ω, 𝑥1, 𝑥2 ∈ [0, 1], 𝑥1 < 𝑥2, and 𝑥2 − 𝑥1 < 𝛿;
there holds |𝐺(𝑥2, 𝑡) − 𝐺(𝑥1, 𝑡)| < 𝜖/𝑀. Thus

(𝑇𝑦) (𝑥2) − (𝑇𝑦) (𝑥1)
≤ ∫
1

0
[𝐺 (𝑥2, 𝑡) − 𝐺 (𝑥1, 𝑡)] 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡

≤ ∫1
0

𝜖
𝑀 ⋅ 𝑀𝑑𝑡 = 𝜖.

(22)

Hence, the set 𝑇(Ω) is equicontinuous. Thus, using the
Arzela-Ascoli theorem, we claim that 𝑇 : 𝑃 → 𝑃 is a
completely continuous operator.

Let

𝑀 = (∫1
0
max
0≤𝑥≤1

𝐺 (𝑥, 𝑡) 𝑑𝑡)−1 ;
𝑁 = (∫3/4

1/4
min
1/4≤𝑥≤3/4

𝐺 (𝑥, 𝑡) 𝑑𝑡)−1 .
(23)

Theorem 10. Assume conditions (𝐻1) and (𝐻2) hold. If there
exist two different positive constants 0 < 𝑟2 < 𝑟1 such that

(A1) 𝑓(𝑥, 𝑦) ≤ 𝑀𝑟1, for (𝑥, 𝑦) ∈ [0, 1] × [0, 𝑟1];
(A2) 𝑓(𝑥, 𝑦) ≥ 𝑁𝑟2, for (𝑥, 𝑦) ∈ [1/4, 3/4] × [0, 𝑟2],
then the BVPs (4), (5) have one positive solution 𝑦 such that𝑟2 ≤ ‖𝑦‖ ≤ 𝑟1.

Proof. Define two open sets

Ω1 fl {𝑦 ∈ 𝑃 | 𝑦 < 𝑟1} ,
Ω2 fl {𝑦 ∈ 𝑃 | 𝑦 < 𝑟2} . (24)

For 𝑦 ∈ 𝜕Ω1, there is 0 ≤ 𝑦(𝑥) ≤ 𝑟1 for 𝑥 ∈ [0, 1]. The
condition (𝐴1) yields that

𝑇𝑦 = max
0≤𝑥≤1

∫
1

0
𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡

≤ 𝑀𝑟1 ∫1
0
max
0≤𝑥≤1

𝐺 (𝑥, 𝑡) 𝑑𝑡 = 𝑟1 = 𝑦 .
(25)

So 𝑇𝑦 ≤ 𝑦 , for 𝑦 ∈ 𝜕Ω1. (26)

For 𝑦 ∈ 𝜕Ω2, there is 0 ≤ 𝑦(𝑥) ≤ 𝑟2 for 𝑥 ∈ [0, 1].
According to (𝐴2), for 𝑥 ∈ [1/4, 3/4],

(𝑇𝑦) (𝑥) = ∫1
0
𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡

≥ ∫1
0

min
1/4≤𝑥≤3/4

𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡
≥ ∫3/4
1/4

min
1/4≤𝑥≤3/4

𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡
≥ 𝑁𝑟2 ∫3/4

1/4
min
1/4≤𝑥≤3/4

𝐺 (𝑥, 𝑡) 𝑑𝑡 = 𝑟2 = 𝑦 .

(27)
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So 𝑇𝑦 ≥ 𝑦 , for 𝑦 ∈ 𝜕Ω2. (28)

And the proof also holds when 0 < 𝑟2 < 𝑟1. Therefore, by
Lemma 6, the proof is complete.

Theorem 11. Assume conditions (𝐻1) and (𝐻2) hold. If there
exist constants 0 < 𝑎 < 𝑏 < 𝑐 such that

(B1) 𝑓(𝑥, 𝑦) < 𝑀𝑎, for (𝑥, 𝑦) ∈ [0, 1] × [0, 𝑎];
(B2) 𝑓(𝑥, 𝑦) ≥ 𝑁𝑏, for (𝑥, 𝑦) ∈ [1/4, 3/4] × [𝑏, 𝑐];
(B3) 𝑓(𝑥, 𝑦) ≤ 𝑀𝑐, for (𝑥, 𝑦) ∈ [0, 1] × [0, 𝑐],
then the BVPs (4), (5) have three positive solutions𝑦1, 𝑦2, 𝑦3 with

max
0≤𝑥≤1

𝑦1 (𝑥) < 𝑎,
𝑏 < min
1/4≤𝑥≤3/4

𝑦2 (𝑥) < max
0≤𝑥≤1

𝑦2 (𝑥)
≤ 𝑐,

𝑎 < max
0≤𝑥≤1

𝑦3 (𝑥) ≤ 𝑐,
min
1/4≤𝑥≤3/4

𝑦3 (𝑥) < 𝑏.

(29)

Proof. We just need to prove that all the conditions of
Lemma 7 hold.

For 𝑦 ∈ 𝑃𝑐 = {𝑦 ∈ 𝑃 | ‖𝑦‖ ≤ 𝑐}, there is ‖𝑦‖ ≤ 𝑐.
Assumption (𝐵3) shows 𝑓(𝑥, 𝑦(𝑥)) ≤ 𝑀𝑐 for 0 ≤ 𝑥 ≤ 1.
Taking into account the definition of 𝑀, there is

𝑇𝑦 = max
0≤𝑥≤1

∫
1

0
𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡

≤ ∫1
0
max
0≤𝑥≤1

𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡
≤ 𝑀𝑐∫1

0
max
0≤𝑥≤1

𝐺 (𝑥, 𝑡) 𝑑𝑡 ≤ 𝑐.
(30)

Hence 𝑇 : 𝑃𝑐 → 𝑃𝑐. Similarly, if 𝑦 ∈ 𝑃𝑎, then assumption(𝐵1) shows that 𝑓(𝑥, 𝑦(𝑥)) < 𝑀𝑎 for 0 ≤ 𝑥 ≤ 1. Therefore,(𝐶2) of Lemma 7 holds.
For 0 ≤ 𝑥 ≤ 1, choose

𝑦 (𝑥) = 𝑐 + 𝑏2 , 0 ≤ 𝑥 ≤ 1. (31)

It is clear that 𝑦(𝑥) ∈ 𝑃(𝜃, 𝑏, 𝑐), 𝜃(𝑦) = 𝜃((𝑏 + 𝑐)/2) > 𝑏.
Thus the set {𝑦 ∈ 𝑃(𝜃, 𝑏, 𝑐) | 𝜃(𝑦) > 𝑏} is nonempty. If𝑦 ∈ 𝑃(𝜃, 𝑏, 𝑐), then 𝑏 ≤ 𝑦(𝑥) ≤ 𝑐 for 1/4 ≤ 𝑥 ≤ 3/4. And
assumption (𝐵2) shows 𝑓(𝑥, 𝑦(𝑥)) ≥ 𝑁𝑏 for 1/4 ≤ 𝑥 ≤ 3/4.
So

𝜃 (𝑇𝑦) = min
1/4≤𝑥≤3/4

(𝑇𝑦) (𝑥)
≥ ∫1
0

min
1/4≤𝑥≤3/4

𝐺 (𝑥, 𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡
> 𝑁𝑏∫3/4

1/4
min
1/4≤𝑥≤3/4

𝐺 (𝑥, 𝑡) 𝑑𝑡 = 𝑏.
(32)

That is to say that 𝜃(𝑇𝑦) > 𝑏 for 𝑦 ∈ 𝑃(𝜃, 𝑏, 𝑐). I.e., the
condition (𝐶1) of Lemma 7 holds. By Remark 8, one has the
fact that the condition (𝐶3) holds, too.

Then by Lemma 7, the BVPs (4), (5) have three positive
solutions 𝑦1, 𝑦2, 𝑦3 such that

max
0≤𝑥≤1

𝑦1 (𝑥) < 𝑎,
𝑏 < min
1/4≤𝑥≤3/4

𝑦2 (𝑥) < max
0≤𝑥≤1

𝑦2 (𝑥)
≤ 𝑐,

𝑎 < max
0≤𝑥≤1

𝑦3 (𝑥) ≤ 𝑐,
min
1/4≤𝑥≤3/4

𝑦3 (𝑥) < 𝑏.

(33)

The theorem is proven.

4. Two Examples

Now, we present two examples to check the main results.
Readers can easily find that the following problem cannot be
solved with existing literature. Choose 𝛼 = 3/2, 𝑏 = 1, 𝛽1 = 1,
and

𝛽0 = 1 ≥ −𝐹2 (1) + 𝐹1 (1) 𝐹𝛼 (1)𝐹𝛼−1 (1) = 0.56. (34)

Example 1. Consider the following problem:

−𝐶𝐷3/20+ 𝑦 (𝑥) + 𝑦 (𝑥) = √𝑦 (𝑥) − 𝑥22 + 1,
𝑥 ∈ (0, 1) ,

(35)

𝑦 (0) − 𝑦 (0) = 0,
𝑦 (1) + 𝑦 (1) = 0. (36)

Clearly, conditions (𝐻1) and (𝐻2) are satisfied. A simple
computation shows 𝑀 ≈ 1.6,𝑁 ≈ 2.8. Let 𝑟1 = 1, 𝑟2 = 1/4,
and there are

𝑓 (𝑥, 𝑦) = √𝑦 − 𝑥22 + 1 ≤ 1.5 < 𝑀𝑟1 = 1.6,
for (𝑥, 𝑦) ∈ [0, 1] × [0, 1] ,

𝑓 (𝑥, 𝑦) = √𝑦 − 𝑥22 + 1 ≥ 1.1 > 𝑁𝑟2 = 0.7,
for (𝑥, 𝑦) ∈ [14 , 34] × [0, 14] .

(37)

ByTheorem 10, the BVPs (35), (36) have one positive solution𝑦 and 1/4 ≤ ‖𝑦‖ ≤ 1.



Discrete Dynamics in Nature and Society 5

Example 2. Consider the following fractional problem with
the convection term:

−𝐶𝐷3/20+ 𝑦 (𝑥) + 𝑦 (𝑥) = 𝑓 (𝑥, 𝑦 (𝑥)) , 𝑥 ∈ (0, 1) , (38)

𝑦 (0) − 𝑦 (0) = 0,
𝑦 (1) + 𝑦 (1) = 0, (39)

where

𝑓 (𝑥, 𝑦) = {{{{{
𝑦2 + 14𝑥2, for 𝑦 ≤ 1;
12𝑦 + 4𝑥2 + 1 , for 𝑦 ≥ 1. (40)

Clearly, conditions (𝐻1) and (𝐻2) hold. A simple computa-
tion shows that 𝑀 ≈ 1.6,𝑁 ≈ 2.8. Choose 𝑎 = 1/2, 𝑏 = 1, 𝑐 =4, and there hold

𝑓 (𝑥, 𝑦) = 𝑦2 + 14𝑥2 ≤ 0.5 < 𝑀𝑎 = 0.8,
for (𝑥, 𝑦) ∈ [0, 1] × [0, 12] ,

𝑓 (𝑥, 𝑦) = 12𝑦 + 4𝑥2 + 1 ≥ 3.06 > 𝑁𝑏 = 2.8,
for (𝑥, 𝑦) ∈ [14 , 34] × [1, 4] ,

𝑓 (𝑥, 𝑦) ≤ 1.25 + 4 = 5.25 < 𝑁𝑐 = 6.4,
for (𝑥, 𝑦) ∈ [0, 1] × [0, 4] .

(41)

By Theorem 11, the BVPs (38), (39) have three positive
solutions 𝑦1, 𝑦2, 𝑦3 such that

max
0≤𝑥≤1

𝑦1 (𝑥) < 12 ,
1 < min
1/4≤𝑥≤3/4

𝑦2 (𝑥) < max
0≤𝑥≤1

𝑦2 (𝑥)
≤ 4,

12 < max
0≤𝑥≤1

𝑦3 (𝑥) ≤ 4,
min
1/4≤𝑥≤3/4

𝑦3 (𝑥) < 1.

(42)

Data Availability

No data were used to support this study.

Additional Points

Results and Discussion. Under the nonlinear term satisfying
some growth condition, we studied some fractional differen-
tial equation boundary value problems in Caputo sense with
the convection term. By applying fixed-point theory, some
solvability criteria of positive solution are obtained. Two
examples are given to illustrate the existence and multiplicity
results.
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