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Special vehicles named flat transporters are used to deliver heavy ship assembly blocks in shipyards. Because each movement of
assembly blocks among workshops needs transporters and the transportations are time-consuming, the scheduling of transporters
is important for maintaining the overall production schedule of assembly blocks. This paper considers an optimization transporter
scheduling problem for assembly blocks. The objective is to minimize logistics time, which includes empty travel time of
transporters and waiting time and delay time of block tasks. Considering time windows of ship blocks, carrying capacity of
transporters, and precedence relationships of tasks, amathematicalmodel is proposed. A hybrid topological graph is used to denote
precedence and cooperating relationships of tasks. A metaheuristic algorithm based on the hybrid topological graph and genetic
algorithm and Tabu search is proposed. The performance of the algorithm was evaluated by comparing the algorithm to optimal
result in small-sized instances and several strategies in large-sized instances. The results showed the efficiency and effectiveness of
the proposed algorithm.

1. Introduction

A ship hull is constructed by hundreds of assembly blocks.
Each block is over 100 tons and 15meters (length) by 15meters
(width) by 5 meters (height) [1, 2]. Some blocks weigh even
more than 500 tons and are much bigger. Normally, before
being assembled into a ship hull, a blockwould bemoved over
ten times among different workshops like assembly work-
shop, painting workshop, outfitting workshop, and stock-
yards for temporary storage. Because of considerable size and
weight of blocks, a specially manufactured flat transporter
(hereinafter, “transporter”) is used as the transportation
vehicle, which is a multiple-axle vehicle with hydraulic jack
lifts so it can jack up a big and heavy block.

In the transporter scheduling problem for assembly
blocks, a transportation operation includes picking up a

block, moving it from one workshop/place to another
through an accessible path, and unloading it at a proper posi-
tion. Each transportation operation is quite time-consuming
and costly. And since a few huge blocks may extend the load
capacity of any available transporter in a shipyard, several
transporters should work simultaneously for transporting
it, which is called cooperating transportation. But lack of
well scheduling of transporters causes delay on executing
transporting tasks and waste on waiting for preassigned
cooperating transporters. It would result in traffic jam and
productiondelay in a shipyard. Actually, inmost shipbuilding
companies, one of the major management issues is how
to efficiently manage assembly blocks in a shipyard, which
contains utilizing efficiently the scarce resources such as
the block stockyards and transportation vehicles. Ship block
transportation problems are crucial issues to address in
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reducing the construction cost and improving the productiv-
ity of shipyards [3].

Only a few recent studies have addressed the problem
of assembly block transportation scheduling. Lee et al. [4]
first studied the scheduling of single-type transporters for
block transportation. Actually, there are various transporters
according to the deadweight. Thus, Roh and Cha [5] studied
the block transportation scheduling problem with multitype
transporters. Their objective was to minimize the travel dis-
tance without loading and interference between transporters
while satisfying the constraints on allowable transportation
weights of the transporters. Kim and Joo [6] considered a
similar block transportation scheduling problem for hetero-
geneous transporters with different weight capacities. Their
objective was to minimize logistics times, including delay
time, tardy time, and empty transporter travel time. Joo and
Kim [7] expanded the research of reference paper [4] by
considering the scheduling problem of block transportation
under a delivery restriction to determine when and by which
transporter each block is delivered from its source plant
to its destination plant. Wang et al. [3] proposed a greedy
algorithm with the same objective as Kim and Joo’s research-
es.

Actually, in realistic shipbuilding environments, most
workshops in shipbuilding have a schedule of blocks and the
door is not big enough to afford several blocks come in/out
at the same time. For example, the painting workshop has
several sand washing rooms in which at most two blocks
can be washed together. Usually they would move out in
one day, and the back one must wait for the front one has
been loaded by a transporter and leaves. And when there
are two blocks in a workshop or in a temporary storage
yard ready for transporting, one of them may be on the
way of the other because of their big sizes. This is quite
often in shipbuilding. In the above studies, the release/due
time and the precedence relationship between the assembly
blocks was not considered. Hu et al. [8] took account of the
resource available time for use and tardiness minimization
in a task assignment problem. Park and Seo [9] mentioned
the precedence constraints between assembly blocks in their
study. Zhang el al. [10] built a model of the assignment and
paths of the inbound and outbound objects to shipyards
considering the order of blocks. However, the research was
just about single-type transporters. It may be not conformed
to most shipbuilding companies, which needs to be studied
on multitype transporters [7].

The block transportation scheduling is similar to a
multiple travelling salesman problem with time windows
(m-TSPTW) by regarding each block as a location and
transporters as travelling salesmen [6, 11], when the type of
transporters is the same and all blocks are predetermined
to be delivered by a specific transporter. The m-TSPTW
is known as a NP-hard problem. Laporte and Osman [12],
Crainic and Laporte [13], and Chao [14] surveyed well known
TSP,m-TSP, and general vehicle routing problems. Zhang and
Moon [15] proposed anm-TSPTWtomodel a container truck
transportation problem and developed a cluster method
and a reactive Tabu search algorithm to solve the problem.
Sterzik and Kopfer [16] proposed a Tabu search algorithm for

the inland container transportation problem to control the
movement of full and empty containers.

The block transportation scheduling problem can also be
transferred to a scheduling problem for parallel machines
with sequence-dependent setup times and precedence con-
straints [17]. The parallel machine scheduling problem is one
of the classical problems in production systems [18]. In our
problems, the machines correspond to the transporter, and
the job is the transport of an assembly block. This type of
scheduling also belongs to the class of NP-hard problems [9].

However, there is a major difference between the above
studies and our study, which is the situation of several trans-
porters working simultaneously for transporting one block.
The problem is kind of multivehicle and one-cargo trans-
portation problem where a cargo is simultaneously loaded
by several vehicles [19]. Dohn, Rasmussen, and Larsen [20]
and Drexl [21] pointed out that synchronization problems are
highly relevant in routing practice. Salazar-Aguilar, Langevin,
and Laporte [22] introduced a synchronized arc routing
problem for snow plowing operations. The street segments
with two or more lanes in the same direction are plowed
simultaneously by synchronized vehicles. Salazar-Aguilar,
Langevin, and Laporte [23] introduced the paint vehicle
synchronization problem that several capacitated vehicles
painted lines on the roads with a tank vehicle replenishing the
painting vehicles. The routes and schedules for the painting
and tank vehicles were optimized by synchronizing the paint-
ing and replenishment operations. Rousseau, Gendreau, and
Pesant [24] solved a real-time vehicle dispatching problem
where some customers were serviced with multiple resources
synchronously. Derigs and Pullmann [25] introduced the
multidepot multitrip VRP with order incompatibilities sub-
jected to interroute synchronization constraints. Hu and Wei
[19] studied the multivehicle and one-cargo transportation
problem; however, they did not put the problem into a realis-
tic situation; for example, they did not mention priorities of
tasks, release time, and due time of tasks or weight capacity
of transporters.

On the basis of the above analysis, this paper deals with
a transporter scheduling problem for assembly blocks. In
the problem, we consider “multivehicle and one-cargo trans-
portation” as well as the constraints of precedence relation-
ship and the release/due time of tasks. The objective is to
minimize total logistics time including empty travel time of
transporters, delay time, and waiting time of block tasks.

2. Mathematical Model

2.1. Problem Description. The transporter scheduling prob-
lem for assembly blocks in a shipyard includes assigning
all of block transportation tasks to multiple transporters,
sequencing the tasks for each transporter, and determining
the start time to fulfill each task.

The problem is studied based on the following conditions.
(1) Since each taskwould be released by oneworkshop at a

certain time and needed by another workshop at some time,
which means the task cannot be operated before its release
time, and it is better to be finished before the due time, each
task is given a time window [release time, due time].
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Table 1: Block transportation tasks.

Task ID Block ID Weight (t) Retrieve
Place

Destination
Place

Release Time
(min)

Due Time
(min) Priority Task

1 B1 250 P1 P3 0 120 -
2 B2 450 P2 P3 30 150 -
3 B3 300 P3 P4 100 250 -
4 B4 200 P1 P2 0 120 1
5 B5 200 P3 P2 100 250 3
6 B6 350 P2 P3 0 180 -

Table 2: Preprocessed block transportation tasks.

Task ID Block ID Weight (t) Retrieve
Place

Destination
Place

Release Time
(min)

Due Time
(min) Priority Task Synchronous

Task
1 B1 250 P1 P3 0 120 - -
2 B2’ 225 P2 P3 30 150 - 7
3 B3 300 P3 P4 100 250 - -
4 B4 200 P1 P2 0 120 1 -
5 B5 200 P3 P2 100 250 3 -
6 B6 350 P2 P3 0 180 - -
7 B2’ 225 P2 P3 30 150 - 2

(2) The precedence relationships between blocks are
considered. The precedence constraint forced the one after
started until the one before is loaded by the assigned trans-
porter.

(3) Each transporter can take no more than one block at
a time and must not exceed its deadweight.

(4) Each transportation operation must not be inter-
rupted until it is finished.

(5) For the overweight block, it needs two transporters to
work synchronously. The cooperating transporters must be
the same type.

Here is an example with six transportation tasks in
Table 1. Considering the precedence constrains, Task 4 can-
not be started until Task 1 is loaded by a transporter, and Task
5 cannot be operated until Task 3 is loaded.

The weight capacities of three transporters are 250t,
250t, and 380t, respectively. It can be found from Table 1
that B2 weights 450t, exceeding the biggest weight capacity
of transporters. Thus a feasible solution should assign two
transporters to deliver B2 synchronously.

In this case, we create a virtual task. As in Table 2, the
original Task 2 is divided into two synchronous tasks: Task
2 and Task 7.

Figure 1 gives an assignment and sequencing plan as
an example, where Task 2 needs Transporters #01 and #02
cooperating to transport B2. Based on this sequencing and
assignment plan together with the data in Table 2, the start
time of each task can be determined.

2.2. Model Formulation. A mathematical programming
model can be formulated to the problem. The following
notations are used:

𝑛: total number of block transportation tasks

1 2 3 4 5 6

1 2 3 4 5 6

0201 03

Retrieving

Placing

Figure 1: A sequencing and assignment plan for block transporta-
tion.

𝑚: total number of transporters𝑤𝑖: block weight of block transportation task 𝑖𝑟𝑡𝑖: release time of block transportation task 𝑖𝑑𝑡𝑖: due time of block transportation task 𝑖
𝑟𝑝𝑖: retrieve place of block transportation task 𝑖𝑑𝑝𝑖: destination place of block transportation task 𝑖𝑤𝑐𝑘: weight capacity of transporter 𝑘𝑝𝑘: initial position of transporter 𝑘
V𝑙𝑘: average speed of transporter 𝑘 while transporting
a block
V𝑒𝑘: average speed of transporter 𝑘 while it is empty

𝐷 = [ 𝑑(1,1) ⋅⋅⋅ 𝑑(1,𝑝)... d
...

𝑑(𝑝,1) ⋅⋅⋅ 𝑑(𝑝,𝑝)

]: distance matrix of each pair of

work places𝑙𝑡𝑖: prepare time needed for loading block in block
transportation task 𝑖
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𝑢𝑡𝑖: prepare time needed for unloading block in block
transportation task 𝑖
𝑝𝑟𝑖𝑗: precedence relationship of tasks 𝑖 and 𝑗; if 𝑝𝑟𝑖𝑗 =1, task 𝑗must wait at least until task 𝑖 is loaded by the
assigned transporter; if 𝑝𝑟𝑖𝑗 = −1, task 𝑖 must wait at
least until task 𝑗 is loaded by the assigned transporter;
otherwise 𝑝𝑟𝑖𝑗 = 0𝑠𝑟𝑖𝑗: cooperating relationship of tasks 𝑖 and 𝑗; if 𝑠𝑟𝑖𝑗 =1, task 𝑖must be operated with task 𝑗 synchronously;
otherwise 𝑠𝑟𝑖𝑗 = 0𝑀: a big positive number

Variables

𝑥𝑖: start time of picking up task 𝑖𝑒𝑚𝑖: empty travel time to pick up task 𝑖𝑑𝑙𝑖: delay time of task 𝑖
𝑦𝑘𝑖 : if 𝑦𝑘𝑖 = 1, task 𝑖 is operated by transporter 𝑘;
otherwise 𝑦𝑘𝑖 = 0𝑧𝑘𝑖𝑗: if 𝑧𝑘𝑖𝑗 = 1, task 𝑗 is operated by transporter 𝑘 right
before task 𝑖; otherwise 𝑧𝑘𝑖𝑗 = 0.
𝑧𝑘0𝑖: if 𝑧𝑘0𝑖 = 1, task 𝑖 is the first task of transporter 𝑘;
otherwise, 𝑧𝑘0𝑖 = 0

Objective Function. The objective is to minimize total logis-
tics time cost, defined as the weighted sum of empty travel
time of transporters, delay time, and waiting time of block
tasks.

min𝑓 = 𝑤1 ⋅ ∑
𝑖∈𝑛

𝑒𝑚𝑖 + 𝑤2 ⋅ ∑
𝑖∈𝑛

𝑑𝑙𝑖 + 𝑤3 ⋅ ∑
𝑖∈𝑛

(𝑥𝑖 − 𝑟𝑡𝑖) (1)

Constraints. Each task must not be started after its release
time 𝑟𝑡𝑖. If the task is released, then the waiting time for being
picked up is 𝑤𝑎𝑖.

𝑥𝑖 ≥ 𝑟𝑡𝑖, 𝑓𝑜𝑟 ∀𝑖 (2)

Constraints (3) give the empty travel time of each task.
For task 𝑖, the empty travel time is the transporter assigned
to task 𝑖moving from its last determined place to the retrieve
place of task 𝑖. The last determined place of the transporter
assigned to task 𝑖 is ∑𝑗∈𝑛,𝑗 ̸=𝑖 𝑧𝑘𝑗𝑖 ⋅ 𝑑𝑝𝑗, but if task 𝑖 is the first
task of transporter 𝑘, the last determine place is its initial place𝑧𝑘0𝑖 ⋅ 𝑝𝑘.

𝑒𝑚𝑖 = 𝑑(∑
𝑘∈𝑚

𝑧𝑘0𝑖 ⋅ 𝑝𝑘 + ∑
𝑘∈𝑚

∑
𝑗∈𝑛,𝑗 ̸=𝑖

𝑧𝑘𝑖𝑗 ⋅ 𝑑𝑝𝑗, 𝑟𝑝𝑖)

× ∑
𝑘∈𝑚

𝑦𝑘𝑖
V𝑒𝑘 , 𝑓𝑜𝑟 ∀𝑖

(3)

Constraints (4) give the delay time, i.e., the
time exceeding the due time of tasks. Wherein

𝑑(𝑟𝑝𝑖, 𝑑𝑝𝑖) × ∑𝑘∈𝑚(𝑦𝑘𝑖 /V𝑙𝑘) is with load travel time of task𝑖,
𝑑𝑙𝑖 ≥ 𝑥𝑖 + 𝑙𝑡𝑖 + 𝑑 (𝑟𝑝𝑖, 𝑑𝑝𝑖) × ∑

𝑘∈𝑚

𝑦𝑘𝑖
V𝑙𝑘 + 𝑢𝑡𝑖 − 𝑑𝑡𝑖,

𝑓𝑜𝑟 ∀𝑖
(4)

𝑑𝑙𝑖 ≥ 0, 𝑓𝑜𝑟 ∀𝑖 (5)

For each pair of tasks, if one has a priority to the other,
the latter one must be operated after the prior one is loaded
by its transporter.

𝑥𝑖 − 𝑥𝑗 + 𝑙𝑡𝑖 ≥ 𝑀 ⋅ (1 − 𝑝𝑟𝑖𝑗) , 𝑓𝑜𝑟 ∀𝑖, 𝑗 𝑖 ̸= 𝑗 (6)

If any two tasks are operated by the same transporter, their
start time must follow Constraints (7), wherein 𝑑(𝑑𝑝𝑖, 𝑟𝑝𝑗) ×∑𝑘∈𝑚(𝑦𝑘𝑗 /V𝑒𝑘) is empty travel time from the last task 𝑖 to task𝑗.

𝑥𝑖 + 𝑙𝑡𝑖 + 𝑑 (𝑟𝑝𝑖, 𝑑𝑝𝑖) × ∑
𝑘∈𝑚

𝑦𝑘𝑖
V𝑙𝑘 + 𝑢𝑡𝑖 + 𝑑 (𝑑𝑝𝑖, 𝑟𝑝𝑗)

× ∑
𝑘∈𝑚

𝑦𝑘𝑗
V𝑒𝑘 − 𝑥𝑗 ≤ 𝑀 ⋅ (1 − 𝑧𝑘𝑗𝑖) , 𝑓𝑜𝑟 ∀𝑖, 𝑗, 𝑘

(7)

Constraints (8) ensure that each task can be executed only
once.

∑
𝑘∈𝑚

𝑦𝑘𝑖 = 1, 𝑓𝑜𝑟 ∀𝑖 (8)

Constraints (9) ensure that each transporter has at most
only one first task.

∑
𝑖∈𝑛

𝑧𝑘0𝑖 ≤ 1, 𝑓𝑜𝑟 ∀𝑘 (9)

Constraints (10) ensure that each transporter can take
only one task at a time.

∑
𝑗∈𝑛,𝑗≠𝑖

𝑧𝑘𝑖𝑗 + 𝑧𝑘0𝑖 = 𝑦𝑘𝑖 , 𝑓𝑜𝑟 ∀𝑖, 𝑘 (10)

Constraints (11) ensure that each task must satisfy the
assigned transporter’s weight capacity.

∑
𝑘∈𝑚

𝑦𝑘𝑖 ⋅ 𝑤𝑐𝑘 ≥ 𝑤𝑖, 𝑓𝑜𝑟 ∀𝑖 (11)

Constraints (12) ensure that tasks with cooperating con-
straint must be operated synchronously. AndConstraints (13)
ensure that the cooperating tasks must be operated by the
same type of transporters.

𝑠𝑟𝑖𝑗 ⋅ (𝑥𝑖 − 𝑥𝑗) = 0, 𝑓𝑜𝑟 ∀𝑖, 𝑗 (12)

𝑠𝑟𝑖𝑗 ⋅ (∑
𝑘∈𝑚

𝑦𝑘𝑖 ⋅ 𝑤𝑐𝑘 − ∑
𝑙∈𝑚

𝑦𝑙𝑗 ⋅ 𝑤𝑐𝑙) = 0, 𝑓𝑜𝑟 ∀𝑖, 𝑗 (13)

Themathematical model is amixed integer programming
model. It can be solved by an optimization tool like CPLEX.
But in realistic situations, the problem size makes it hard to
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Generate initial population

Start

Initialize data

For each individual within the population

Is it feasible?

Calculate fitness value of individual

Repair

Get the best individual of the population

Search neighborhood

Initialize Taboo parameters

Meet stopping 
criterions of TS?

Update Tabu table

Is it feasible? Repair

Update the individual data

N

N

Y

Y

Calculate fitness value of individual

Generate new population

Mutation

Crossover

Selection

Meet stopping 
criterion of GA?

Obtain the best solution

End

N

Y

N
Y

Figure 2: Flow chart of the proposed algorithm of block transportation scheduling.

get a good solution in reasonable computing time of CPLEX.
Thus, we propose a metaheuristic algorithm to solve the
transporter scheduling problem for assembly blocks.

3. Metaheuristic Algorithm

In this section, a basic flow of the proposed algorithm is
first given. The proposed algorithm frame is based on genetic
algorithm (GA), and the local search process uses Tabu
search (TS). Several scheduling strategies are introduced and
involved in the heuristic algorithm. Since the relationships
among tasks become more complex as the problem size is
growing, the algorithm cannot ensure the feasibility of solu-
tion of each chromosome. We propose a chromosome repair
method through a topologic structure of task relationships.

3.1. General Framework. The main concept of the proposed
metaheuristic algorithm is given in Figure 2.

The following are the main context of the proposed algo-
rithm.

1Task ID Sequence

Transporter Assignment

6 2 7 5

1 3 1 2 1

4

2

3

3

Figure 3: Chromosome representation in block transportation
scheduling.

3.1.1. Initial Population. Usually, initial population can be
randomly generated. The quality of initial population has
some influence on the quality of algorithm. Thus, this paper
takes half random generated individuals and the other half
are obtained by several strategies which are described in
Section 3.2.2.

3.1.2. Encoding Scheme. The genes of the chromosomes are
designed as two arrays based on tasks assignment and
sequencing information. The length of each chromosome
is the number of tasks. Figure 3 is one chromosome of
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1 2 3 4 5 6 2 4 1 3 6 5

1 2 1 2 1 2 2 2 1 1 2 1

Parent 1 Parent 2

7

2

7

2

Figure 4: Two parents as an example.

the example shown in Table 2. It has two parts: one is
the sequence of task ID, and the other one is transporter
assignment information of each task. This sequence is not
the order in which the tasks are executed by each transporter.
For example, the first column (1,1) means task 1 is assigned to
transporter 1 and it is scheduled first. The final order of tasks
is obtained after decoding.

3.1.3.Decoding Scheme. Theaimof decoding is to translate an
individual to a full solution which can be evaluated by fitness
function. The full solution is a worksheet telling the workers
when and where each task is executed by which one or two
transporters.

Based on the assignment and sequencing information
in a chromosome together with precedence constraints,
cooperating constraints, timewindow constraints etc., we can
decode a chromosome by applying time scheduling strategy
to the corresponding solution as follows.

Step 1. Obtain the data of sequencing and assignment list
of tasks, and transporters’ initial position and available time
span, etc. Set counter ℎ = 1; then task 𝑖 =sequencing(ℎ), and
transporter 𝑘 =assignment(ℎ)
Step 2. Decide the start time of task 𝑖.
Step 2.1. Check Matrix PR; obtain its priority-task set where𝑝𝑠𝑖𝑗 = −1, 𝑗 ∈ 𝑛.
Step 2.2. Obtain position 𝑝𝑘 and release time 𝑒𝑡𝑘 of trans-
porter 𝑘.
Step 2.3. Calculate the start time 𝑠𝑡𝑖 for task 𝑖:
𝑠𝑡𝑖 = max{𝑟𝑡𝑖, 𝑒𝑡𝑘 + 𝑑 (𝑝𝑘, 𝑟𝑝𝑖)

V𝑒𝑘 , 𝑠𝑡𝑗 + 𝑙𝑡𝑗} , 𝑗 ∈ 𝑡𝑏𝑖 (14)

Step 3. Update new position 𝑝𝑘 = 𝑑𝑝𝑖; the transporter’s idle
time 𝑒𝑡𝑘 = 𝑠𝑡𝑖 + 𝑙𝑡𝑖 + 𝑑(𝑟𝑝𝑖, 𝑑𝑝𝑖)/V𝑙𝑘 + 𝑢𝑙𝑡𝑖.
Step 4. Check Matrix SR; if 𝑠𝑟𝑖𝑗 = 1, 𝑗 ∈ 𝑛, obtain task 𝑖’s
cooperating task 𝑗. If Row 𝑖 does not have any cooperating
task, go to Step 5.

Step 4.1. If task 𝑗 is executed before task 𝑖, then redefine the
start time of these two tasks. Let 𝑠𝑡𝑖 = 𝑠𝑡𝑗 = max(𝑠𝑡𝑖, 𝑠𝑡𝑗),
with Δ𝑡 = |𝑠𝑡𝑖 − 𝑠𝑡𝑗|; redefine the related time, including 𝑒𝑡𝑘.
Step 4.2. If task 𝑗 is executed after task 𝑖, go to Step 5.

Step 5. If ℎ = 𝑛, the end, let ℎ = ℎ + 1 and back to Step 2.

3.1.4. Fitness Evaluation. The objective function described in
Section 2.1 is used to evaluate an individual's performance.
The lower the value of the objective function, the higher the
fitness of the individual.

3.1.5. Selection. Based on roulette selection strategy, two ran-
domly individuals are selected from the population and the
one with higher fitness value is retained. Repeat this process
until obtaining required number of individuals. Suppose
Figure 4 is two selected parents. Then the offspring are
generated from them.

3.1.6. Offspring Generation. We divide the operators into two
categories. Each of them contains crossover and mutation
processes.

(i) Assignment operators.
(ii) Sequencing operators.

Assignment operators only change the assignment prop-
erty of chromosomes; i.e., the sequencing of tasks is pre-
served in the offspring. Assignment crossover generates the
offspring by exchanging the transporter assignment informa-
tion of subchromosomes between two parents, as shown in
Figure 5(a). The position of the subchromosome is randomly
selected. And assignment mutation randomly swaps the
transporter assignment information of two genes within a
single parent, as shown in Figure 5(b).

Sequencing operators only change the sequence of the
tasks in the parent chromosomes. The partially matched
crossover (PMX), which is the best performing crossover
operator for the scheduling problems [26, 27], is used. The
procedures of PMX are listed as follows.

Step 1. Randomly select two positions on the parents.

Step 2. Exchange two subchromosomes between twoparents.

Step 3. Determine the mapping relationship between two
mapping sections; namely, map each gene in one mapping
section with the corresponding gene in another mapping
section on the same position.

Step 4. Repair the offspring by replacing the reduplicate
genes beyond the mapping section according to the mapping
relationship.

An example of PMX procedure is shown in Figure 6(a).
After Step 2, some task ID may appear multiple times. So in
Step 3, amapping relationship is constructed and the repaired
offspring are obtained finally.
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Figure 5: Example of assignment operators.
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(a) Sequencing crossover
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Insert
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(b) Sequencing mutation

Figure 6: Example of sequencing operators.

And here an insertion operator acts as a mutation. As
shown in Figure 6(b), it randomly selects a gene from the
individual and inserts it back to a random position.

3.1.7. Tabu Search Subalgorithm. For the best individual in
each population, use Tabu search subalgorithm to optimize
it. It starts with an empty Tabu table. Two counters 𝑖𝑡𝑟1 and𝑖𝑡𝑟2 are used to trace the number of total iterations and
the number of iteration performed without improvement,
respectively. The subalgorithm terminates when there is
no improvement over the best solution obtained after a
certain number of iterations (𝑁𝑜𝑛𝑖𝑚𝑝𝐼𝑡𝑒𝑟), or when the
total number of iterations reaches a predetermined value
(𝑀𝑎𝑥𝐼𝑡𝑒𝑟).

Neighbourhood of an individual is searched by perform-
ing the following steps: (1) choose a gene at position; (2)
transfer the transporter randomly to another one; (3) check
the new individual’s feasibility.

A Tabu table is a short time memory of the last several
movements. It is applied to have a trace of the evolution of
the search to prevent cycling. It is denoted by a 𝑛 × 𝑛matrix.

Record every transformation on the respective element in the
matrix. The Tabu table is updated by keeping only the latest
certain number of elements.

Suppose 𝑓𝑏𝑒𝑠𝑡 is the best individual so far; set an empty
Tabu table and two counters equal to 0. Repeat the following
steps until one of the two counters reaches the present value.

Step 1. Set 𝑖𝑡𝑟1 fl 𝑖𝑡𝑟1 + 1, 𝑖𝑡𝑟2 fl 𝑖𝑡𝑟2 + 1.
Step 2. Generate the neighbourhood of 𝑓𝑏𝑒𝑠𝑡.
Step 3. For each one of the neighbourhood 𝑓𝑛𝑜𝑤, calculate
the fitness value. If the fitness value 𝐸(𝑓𝑛𝑜𝑤) < 𝐸(𝑓𝑏𝑒𝑠𝑡), then
replace the individual 𝑓𝑏𝑒𝑠𝑡 by 𝑓𝑛𝑜𝑤 and set 𝑖𝑡𝑟2 = 0.
Step 4. Update the Tabu table by recording the neighbour-
hood search. Go to Step 1 until 𝑖𝑡𝑟1 = 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 or 𝑖𝑡𝑟2 =𝑁𝑜𝑛𝑖𝑚𝑝𝐼𝑡𝑒𝑟.
3.1.8. Stopping Criterion. Thealgorithm ends when themaxi-
mal number of generations (𝐺𝐴𝑀𝑎𝑥𝐼𝑡𝑒𝑟) is reached, and the
best individual, together with the corresponding scheduling
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and assignment solutions, is given as output. The solution
after decoding the individual chromosome is the optimal
solution.

3.2. Strategies Based on Topological Relationships. The prob-
lem actually includes three parts, which are assigning the
tasks to a special transporter, sequencing the tasks for each
transporter, and determining the start time of each task.
The relationship constraints among tasks are presented by a
topological structure.The topological map would be changed
along with solving process. Then several strategies gained
from experience are presented for initial solutions.

3.2.1. Topological Description for Tasks. Topological structure
is one of the basic methods for scheduling problem. Like
most scheduling problems, the precedence constraint is
represented by one-way arc. Besides precedence constraints,
cooperating constraints are considered in the problem. Here,
we use undirected arcs to represent cooperating constraints
between tasks. Thus, the relationships among tasks in Table 2
can be represented in Figure 7. For any pair of two taskswhich
is linked by a one-way arc, the before task should be loaded
before the after one. While for any pair of two tasks which
is linked by undirected arc, the two tasks must be operated
synchronously.These relationships must be fully met in order
to guarantee a solution is feasible.

Matrixes 𝑃𝑅 and 𝑆𝑅 are used to express the topological
relationships of tasks. For the example in Table 2, 𝑝𝑟14 = 1
means Task 1 is prior to Task 4; oppositely, 𝑝𝑟41 = −1 and, for
the same reason, 𝑝𝑟35 = 1, 𝑝𝑟53 = −1; 𝑠𝑟27 = 1 means Task 2
must be operated synchronously with Task 7, and 𝑠𝑟72 = 1.

𝑃𝑅 =

[[[[[[[[[[[[[[
[

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
−1 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

]]]]]]]]]]]]]]
]

𝑆𝑅 =

[[[[[[[[[[[[[[
[

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0

]]]]]]]]]]]]]]
]

(15)

3.2.2. Strategies for Initial Solution. The problem actually
includes three parts, which are assigning the tasks to a special
transporter, sequencing the tasks for each transporter, and
determining the start time of each task. The topological map
would be changed along with solving process. The above
two matrixes present the initial relationships of the problem.

1 4

3 5

2 7

6

Figure 7: Topological map of block transportation tasks.

Referring to the matrixes, a negative element in a row of
matrix 𝑃𝑅means the cooperating task has a prior task which
is not assigned yet. When Task 1 has started, delete Row 1 and
make the negative elements in Column 1 to 0. Then, in the
newmatrix, Row 4 has no negative element. That means Task
4 is executable.

When assigning transporters, there are several rules con-
sidered here.

Rule 1. Select the transporter which reaches the retrieving
place as early as possible.

Rule 2. Select the transporter which is idle firstly.

The strategies of initial solution are as follows.

Step 1. Choose a row without zero from 𝑃𝑅, and add the
cooperating task to executable task set.

Step 2. Select a task 𝑖 from executable task set which has the
earliest release time.

Step 2.1. Select a transporter which meets the task’s weight
constraint. If there is more than one selections, use Rule 1 or
Rule 2 to choose one from them.

Step 2.2. Calculate the start time of task 𝑖, 𝑥𝑖 = max(𝑡𝑘 +𝑑(𝑝𝑘, 𝑟𝑝𝑖)/V𝑒𝑘, 𝑟𝑡𝑖).
Step 3. Check Matrix 𝑆𝑅. If task 𝑖 does not have any coop-
erating task, go to Step 4; otherwise repeat Step 2.1 and Step
2.2 for the cooperating task 𝑗, calculate the start time 𝑥𝑗 =
max(𝑡𝑘󸀠 + 𝑑(𝑝𝑘󸀠 , 𝑟𝑝𝑗)/V𝑒𝑘󸀠 , 𝑟𝑡𝑗), and let 𝑥𝑖 = 𝑥𝑗 = max(𝑥𝑖, 𝑥𝑗).
Step 4. Update the transporter’s idle time 𝑒𝑡𝑘 = 𝑥𝑖 + 𝑙𝑡𝑖 +𝑑(𝑟𝑝𝑖, 𝑑𝑝𝑖)/V𝑙𝑘 + 𝑢𝑡𝑖 and new position 𝑝𝑘 = 𝑑𝑝𝑖.
Step 5. Delete task 𝑖 from executable task set and change all
the negative value in column 𝑖 be zero in Matrix PR; go back
to Step 1.

We take the example in Section 2.1; suppose the distance
matrix 𝐷 is given as follows.

𝐷 = [[[[[
[

0 400 500 700
400 0 800 600
500 800 0 300
700 600 300 0

]]]]]
]

(16)

In Step 1, executable task set ={1, 2, 3, 6, 7}. We first select
Task 1 and FT-1, calculate the start time of operating Task 1,
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Figure 8: Gantt chart of a solution of block transportation scheduling.

i.e., 𝑥1, and get the idle time of FT-1, i.e., 𝑒𝑡1.Then, delete Task
1 from the set. Since 𝑝𝑟14 = 1, release Task 4 and update the
set={2, 3, 6, 7, 4}. Go to Step 2 and execute Task 6 and Task 4.
Select Task-2. Since 𝑠𝑟27 = 1, select Task-7 too. Assign FT-1
and FT-2 to Task-2 and Task-7. Calculate the respective start
times 𝑥2 and 𝑥7 and choose max(𝑥2, 𝑥7) as the start time.
Then, execute Task 3 and Task 5. Finally, a feasible solution
is obtained. Figure 8 gives the Gantt chart of the solution.

3.3. Feasibility Analysis and Gene Repair. As we know, GA
needs appropriate constraint handling method to get feasibil-
ity and applicability result. The most common methods are
penalty function method and chromosome repair method.
The penalty function method is hard to get feasible solution
for complex constraints problem, while chromosome repair
method is more appropriate by repair infeasible solutions.
Thus, we use a chromosome repair method to repair the
unfeasible offspring.

3.3.1. Feasibility Analysis. When dealing with complex con-
strained optimization problems, GA needs to take action to
maintain the applicability and feasibility. Feasibility analysis
is based on the constraints described in the mathematical
model, which contains two main parts:

(i) whether satisfying the load transporters’ capacity

It is checked through Constraints (11): ∑𝑘 𝑦𝑘𝑖 ⋅ 𝑤𝑐𝑘 ≥𝑤𝑖, 𝑓𝑜𝑟 ∀𝑖:
(ii) whether satisfying the task relationships

An individual chromosome can be transferred into a
topological diagram.The diagram is structured by nodes and
directed and undirected lines.The following are the structure
process:

(i) Nodes represent tasks. In Figure 9, A-G are seven
tasks.

(ii) For two tasks with precedence relationship, use solid
directed line.

(iii) For two tasks with cooperating relationship, use solid
undirected line.

1

4

3

52

7

6

Figure 9: Topological diagram for the scheduling of block trans-
portation tasks (𝑛=7).

a b a b

a b a b

c c

a b

c

a b

c

acyclic acyclic

acyclic

acyclic

cycling

cycling

Figure 10: Rules to judge the feasibility of hybrid graphs.

(iv) For transporting list of transporters, use dashed
directed line.

Usually, a directed acyclic graph means the plan is
feasible. Since this problem has cooperating tasks, a solution
can be expressed as a hybrid graph. So to determine the
feasibility of a solution, new judgment rules are presented in
Figure 10. The acyclic graph means the solution is feasible,
while the cycling graph means it is unfeasible.

Based on the rules, we can find that the solution in
Figure 9 is feasible. To explain the rules, an example with 10
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1 2

3 4

5 8

2 3

6 7

9 10

Figure 11: Topological diagram for the precedence and cooperating
tasks (𝑛=10).

Task sequence

Transporter Assignment

1 6 4 9 2 5 3 10 7 8

1 2 4 3 2 1 3 2 4 1

Figure 12: A chromosome of block transportation scheduling
(𝑛=10).

tasks and 4 transporters is given. The relationships among
tasks are 1 󳨀→ 2, 3 󳨀→ 4, 5 󳨀→ 8, and 2 = 3, 6 = 7, which
can be described in Figure 11.

Suppose one chromosome is given in Figure 12.
Based on this chromosome, the solution can be converted

into a topological diagram (see Figure 13).
We can find that there is a cycle in Figure 13. The cycle is

shown in Figure 14. So it can be judged that the chromosome
is unfeasible.

3.3.2. Chromosome Repair. If unfeasibility is caused by trans-
porter overweight, reassign the task to a capable transporter.
The process is relatively simple, so we do not detail it
anymore.

If unfeasibility is caused by the conflict to topological
relationships that means there is a topological cycle, we
should change the transporting list to repair it.

Take Figure 13 as an example to detail the repair steps.
As shown in Figure 15, within the topological cycle, there
are two the dashed arcs 6 󳨀→ 2 and 4 󳨀→ 7. Choose one
of them to break. In Figure 15(a), arc 4 󳨀→ 7 is broken.
Then, Task 7 is temporarily unscheduled. So, assign Task 7
to another position and a new dashed arc is build, as shown
in Figure 15(b). Then check the feasibility of new topological
relationships again until there is no cycle, and that means the
chromosome is feasible.

4. Computational Results

To verify the practicability and efficiency of the proposed
algorithm for transporter scheduling problem considering
precedence and cooperating constraints, different numerical
simulations are tested and evaluated according to realistic
situations.

The generating conditions are as follows.

(i) Planning horizon T is 480 minutes

(ii) Distances between two workshops/stock yards 𝑑 =𝑈𝑛𝑖𝑓𝑜𝑟𝑚(200,2000) in meters

1 5 8

6 2 10

9 3

4 7

Figure 13: Topological diagram for the scheduling of block trans-
portation tasks (𝑛=10).

2 3 4

76

Figure 14: Topological cycle in the chromosome.

(iii) Release time of tasks 𝑟𝑡𝑖 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1, 360) in
minutes

(iv) Due time of tasks 𝑑𝑡𝑖 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑟𝑡𝑖 + 60, 480) in
minutes

(v) Weight of blocks are randomly generated from𝑈𝑛𝑖𝑓𝑜𝑟𝑚(100, 250) in tons
(vi) 20% pair of tasks have precedence or cooperating

relationships
(vii) Loading and unloading time of blocks are randomly

generated from𝑈𝑛𝑖𝑓𝑜𝑟𝑚(10, 20) in minutes
(viii) Two flat transporters types are considered: 1# trans-

porter: weight capacity is 150 tons; speed with load
is 60m/min; speed without load is 100 m/min. 2#
transporter: weight capacity is 200 tons; speed with
load is 50m/min; speed without load is 80m/min.The
number of each type is𝑚1, 𝑚2

This is amultiobjective optimization problem. In Formula
(1), weights 𝑤1, 𝑤2 and 𝑤3. are set depending on actual
demand. Representative results are summarized under 𝜔1 =0.7 𝜔2 = 0.2 𝜔3 = 0.1.

In Figure 16, the test is made with 𝑛 = 30 and 𝑚 =10. The dotted line denotes general genetic algorithm (GA),
and the solid line denotes the proposed algorithm (GA-
TS). After 500 iterations, the general GA did not converge,
but GA-TS converged before 50 iterations. It is obvious that
GA-TS converges much more speedily. Compared with the
general genetic algorithm, the results show that the proposed
algorithm has faster convergence speed.

In Figure 17, Tabu iterations are 0, 10, 20, 30, 40, and 50.
After Tabu search, solution quality improves significantly. But
when iterations exceed 10, the curve becomes stable.Thus, we
select 10 iterations in the following tests.
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Figure 15: Chromosome repair.
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Figure 16: Algorithm convergence charts of GA and GA-TS.
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Figure 17: The objective values under different Tabu search itera-
tions.

And with other pertaining to numerical tests, the algo-
rithm parameters in this paper are determined as follows:

(i) Population size: 20
(ii) Number of generations: 100
(iii) Assignment crossover probability: 0.8
(iv) Assignment mutation probability: 0.1

(v) Sequencing crossover probability: 0.6
(vi) Sequencing mutation probability: 0.1
(vii) number of iterations: 20
(viii) number of iteration performed without improve-

ment: 10
(ix) length of Tabu table: (m1+m2)/2

To evaluate the heuristic strategies of initial solutions, the
problems are tested with three sets of block transportation
tasks n as 20, 30, and 40, respectively, and the number of
transporters is 4+4. Each test runs ten times to get an average
result. “H1” is the heuristic strategy following the steps in
Section 3.2.2 with Rule 1, while “H2” is the heuristic strategy
following the steps in Section 3.2.2 with Rule 2. The result is
presented in Table 3. We can find that H1 with Rule 1 gets
less idle time of transporters, but H2 with Rule 2 gets better
performance on time that related to production. Overall, we
can choose a rule based on actual optimization requirements.
In this paper, the scheduling scheme from these two heuristic
rules is used as 60% of the initial population of the genetic
algorithm to improve the efficiency of genetic algorithm.

For small-sized problems, we generate 5 instances shown
in Table 4. The data of assembly blocks are randomly gen-
erated. The experiments are performed on a PC with Inter
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Table 3: Comparison result of strategy rules (unit: min).

𝑛 H1 H2
idle delay wait f idle delay wait f

20 65.7 647.3 1054.8 511.2 222.9 209.5 417.3 405.9
30 99.9 1500.7 2089.7 591.4 313.1 324.9 569.3 426.6
40 168.1 3225.1 4262.8 741.4 466.3 801.1 1384.8 470.5

Table 4: Test results in small-sized instances.

𝑛 𝑚 CPLEX GA-TS GAP
Opt (min) Time (s) 𝑓 (min) Time (s)

6(1,1) 2 22.5 9.83 22.5 12.78 0
8(1,1) 2 34.4 944.26 34.4 28.43 0
8(1,1) 3 20.7 970.76 21.7 31.27 5%
8(2,1) 3 20.7 1350.81 21.4 50.13 3%
10(1,1) 2 56.3 3600 60.2 45.75 6%
10(2,2) 3 32.6 3600 33.5 62.21 3%

Table 5: Test results in large-sized instances.

𝑛 𝑚 Objective value (min)
H1 H2 GA GA-TS

20 8 338.1 262.9 337.8 161.2
30 8 398.8 290.2 513.3 195.7
40 8 549.9 566.7 620.3 288.6
50 8 2005.2 1266.8 2052.5 866.2
20 10 118.8 206.1 232.2 94.9
30 10 231.7 368.8 459.8 170.1
40 10 633.2 345.7 430.1 226.6
50 10 805 494.4 1143.8 322.6
30 12 362 480 433.9 211.6
40 12 583.5 476.2 538.6 301.8
50 12 1104.4 460.8 834 180

Pentium 4, 3.01GHz, and 2GB RAM. We use ILOG CPLEX
for finding the optimal solutions with the mathematical pro-
gramming presented in Section 2.2. The maximum calculate
time of CPLEX is set to 3600s. The codes of proposed
algorithm are written in Matlab.

For large-sized problems, we generate 11 instances shown
in Table 5. We compare the proposed solution (GA-TS) with
the two heuristics strategies (H1 and H2) and a GA algorithm
for each test problem.

Table 4 gives the test results of small-sized instances. It
shows the optimal solution and computation time of CPLEX
and the relative performance of the proposed algorithm for
each test instance. In the table, n=6(1,1) means the problem
has six tasks. When the transporters are more than two, two
types are involved. The first “1” within the parentheses means
there is one pair of tasks that has precedence constraint, and
the other “1” means one of the six tasks is overweight. GAP is
used to evaluate the performance of the proposed algorithm,
where 𝐺𝐴𝑃 = ((𝑓 − 𝑜𝑝𝑡)/𝑓) × 100%. As the problem size is
increasing, the computing time of CPLEX increases dramati-
cally. For some instances with larger problem size, the CPLEX

cannot get the optimal solution within 3600s. Comparing
the proposed algorithm with CPLEX, the proposed algorithm
obtained optimal solutions in several problems, and when its
solution is not optimal, the results are closer to the optimum
one. Besides, the computing timedid not increase rapidly.The
number of precedence and cooperating constraints increases
the difficulty; however, the proposed algorithm can get a
satisfying solution while the computing time of the proposed
algorithm does not increase a lot. The experimental results
illustrate the efficiency of the proposed algorithm.

Table 5 gives the test results of large-sized instances. In
these instances, the precedence and cooperating relationships
are generated randomly. Within Table 5, H1 and H2 are
two heuristic solutions gained by the experimental strategies
which are obtained from experience. GA is designed as a
general genetic algorithm flow. The results of GA are gained
after 500 times iterations. We can see that results of GA
are not stable even after 500 iterations; some result is worse
than the solution gained by the experience strategies. While
comparing the proposed algorithm (GA-TS) with the three
algorithms, GA-TS obtained much better results. It is due to
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using the strategies in initial solution and letting Tabu search
process during each generation of GA. As the size of problem
increases, the advantage of GA-TS becomes more and more
obvious.

5. Conclusion

This paper researched a scheduling problem for block trans-
portation withmultitype transporters under precedence rela-
tionships and cooperating constraints. The problem includes
three parts: assigning all of block transportation tasks to
multiple transporters, sequencing the tasks for each trans-
porter, and determining the start time to fulfill each task.The
objective is to minimize logistics time, which includes empty
travel time of transporters, waiting time, and delay time of
block tasks. A MIP model was proposed for the problem.
A hybrid topological graph was used to denote precedence
and cooperating relationships of tasks, and a metaheuristic
algorithm based on genetic algorithm (GA) and Tabu search
(TS) was proposed. The performance of the algorithm was
evaluated by comparing the algorithm to CPLEX in small-
sized instances and two experience strategies and ordinary
GA in large-sized instances. The results showed the efficiency
and effectiveness of the proposed algorithm.

In this paper, it is assumed that the transportation tasks
are executed smoothly on the road in shipyards. In reality,
there must be other tasks executed on the same time which
may cause the task to not be executed as plan and road traffic
jar may happen. Therefore, it would be interesting to study
the dynamic demands in the problem further.
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