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An indicator of a passive biped walker’s global stability is its domain of attraction, which is usually estimated by the simple cell
mapping method. It needs to calculate a large number of cells’ Poincare mapping result in the estimating process. However, the
Poincare mapping is usually computationally expensive and time-consuming due to the complex dynamical equation of the passive
biped walker. How to estimate the domain of attraction efficiently and reliably is a problem to be solved. Based on the simple
cell mapping method, an improved method is proposed to solve it. The proposed method uses the multiple iteration algorithm to
calculate a stable domain of attraction and effectively decreases the total number of Poincare mappings. Through the simulation of
the simplest passive bipedwalker, the improvedmethod can obtain the same domain of attraction as that calculatedusing the simple
cell mapping method and reduce calculation time significantly. Furthermore, this improved method not only proposes a way of
rapid estimating the domain of attraction, but also provides a feasible tool for selecting the domain of interest and its discretization
level.

1. Introduction

Due to the energy-efficient of passive dynamic walking, the
study of the passive biped walker is a popular area of scientific
research [1, 2].These passive biped walkers can walk stably on
a downhill slope only in the interaction between the leg and
environment. The stable gait is usually a periodic or cyclic
gait, which is shown as a manifold in the state space or a
limit cycle in the two-dimension phase diagram [3].However,
these passive biped walkers will lose their stability when they
are moving from a wrong initial state or encountering a
very small disturbance [4]. An indicator of a passive biped
walker’s global stability is its Domain Of Attraction (DOA),
which is a set of all appropriate initial states that lead the
walker to the perpetual walking. The walker with a larger
DOA can walk stably in more complex walking conditions
and increase tolerance to more disturbances in the uncertain
environments. The DOA of the passive biped walker can be
enlarged by actuating some joints with a control algorithm
[5]. It is an important way to evaluate the performance of
different control algorithms by comparing the sizes of their
DOAs. Besides, the DOA can effectively guide to build some

robust prototypes [6, 7]. The detailed structure of DOA is an
important aspect of studying the nonlinear properties of the
passive biped walker [8, 9].

The Simple Cell Mapping (SCM) method is usually used
to estimate the DOAs of different passive biped walkers
[6, 7, 10]. The SCM method is an effective way to study
the global stability of nonlinear dynamical systems, and its
basic idea is to obtain the global properties of system by
using the ordered information of local finite cells rather than
investigating the properties of all states in the infinite state
space [11–13]. However, there are still some issues to be solved
when estimating the DOA of passive biped walker by the
SCMmethod.

For making some concepts clearly, the basic procedures
of the SCM method are introduced as follows [11, 13]. Firstly,
a feasible continuous domain with boundary is chosen from
the infinite state space as the Domain Of Interest (DOI). The
state space outside of the DOI is sink zone. Secondly, the
DOI is discretized into a large number of (𝑃) small uniform
cells which are called regular cells. These regular cells are
sequentially numbered with positive integers 1 to 𝑃. The sink
zone is regarded as the sink cell and numbered as 0. Thirdly,
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these numbered regular cells are classified to different groups
by the classification algorithm. The cells in the same group
have similar global properties. Suppose that the dynamics of
an entire regular cell are represented by the dynamics of its
central point. By taking the central point of a regular cell
numbered 𝑘 as the initial condition of the Poincare mapping
𝑅, the cell that contains its image point is called the image cell
of regular cell 𝑘. The mapping procedure 𝑘 󳨀→ 𝑅(𝑘) is called
cell-to-cell mapping or cell mapping procedure. Specially, the
image cell of the sink cell is itself since the system’s evolution
outside the DOI is out of our interest. At the same time, if
the evolution of a cell cannot reach the Poincare section in a
limited time, the image cell of this cell is appointed to the sink
cell. The classification algorithm of these regular cells is to
generate many mapping sequences based on the relationship
of the regular cells and their image cells. A typical mapping
sequence starts with an unclassified cell and continuously
increases by adding the image cell of the sequence’s last cell
to the sequence, like 𝑘 󳨀→ 𝑅(𝑘) 󳨀→ 𝑅(𝑅(𝑘)) 󳨀→ 𝑅3(𝑘) 󳨀→
⋅ ⋅ ⋅ . The mapping sequence will stop when the image cell
is a sink cell or a repetitive cell in the mapping sequence.
According to the classified state of the end cell, the cells in
the mapping sequence are classified to different groups. If
the mapping sequence ends in the sink cell, all cells in the
mapping sequence are classified to the sink group. If the
end cell is unclassified, all cells in the mapping sequence
are classified to a new group. If the mapping sequence is
encountered with an already classified cell, all cells in the
mapping sequence are classified to the exist group which
contains the already classified cell.Themapping sequencewill
be generated repeatedly until all regular cells are classified.
Each group contains some attractor cells and their basins of
attraction. The DOA consists of all groups except the sink
group.

There are three problems to be solved when using the
SCMmethod to estimate the DOA of a passive biped walker.
Firstly, there are no clear criteria to select a feasible DOI espe-
cially for the system without any prior knowledge. Because
the DOI limits the scope of the feasible states and determines
the evaluation result of a regular cell, it is important to select
a proper DOI. Secondly, it is also uncertain to determine
the discretization level of DOI. On the one hand, the DOI
should be discretized at a high discretization level to satisfy
the accuracy requirement. On the other hand, the Poincare
mapping is usually computationally expensive and time-
consuming due to the complex dynamical equation of a
passive biped walker. The discretization level cannot be too
high for avoiding the memory space and computation time
out of tolerance. So, the discretization level of DOI is a key
factor that affects the accuracy of results and the efficiency
of estimating method. Thirdly, the memory space is limited
in the cell classification procedure. It needs a lot of memory
space to store the classified state of each regular cell based on
the cell classification algorithm. This will make the memory
space is insufficient when the number of regular cells is large.

Some researchers have tried different ways to solve these
problems. Jeon et al. selected the DOI of the simplest biped
walker by calculating its theoretical falling boundary [14],
but this method was difficult to apply for those complicated

biped walkers which had complex falling boundaries. Zhang
et al. proposed a bisection method to quickly determine the
approximate edge of the simplest passive bipedwalker’s DOA,
but this method must know the fixed point at the beginning
and the obtained edge was too rough [15]. For avoiding
the problem caused by a large amount of computation, the
direct way is to increase the speed of calculating a single
cell’s Poincare mapping. Li et al. proposed an algorithm to
accelerate the speed of Poincare mapping in the heteroge-
neous platforms with CPU and GPU, but it is only used in
some simpler walkers due to the programming method [9].
Another feasible way is to minimize the number of Poincare
mappings while meeting the same accurate requirement. Liu
et al. presented the Poincare-like-alter-cell-to-cell mapping
method to decrease the total number of Poincare mappings
[16].

This paper proposes a method to improve the SCM
method for dealing with the aforementioned problems. The
proposed method uses the multiple iteration algorithm to
gradually increase the discretization level of DOI for decreas-
ing the total number of Poincare mappings and uses the
domain stability as the stopping criterion of iterations for
ensuring the result is accuracy.The improved method mainly
contains two stages, i.e., the cell deletion procedure and the
cell refinement procedure. The cell deletion procedure finds
and removes a stable failure domain from DOI, and the cell
refinement procedure finds a stable DOA from the remaining
domains of DOI. For finding a stable domain, the change
rate of domain’s volume at different discretization levels,
which are generated by decreasing the size of cell in each
iteration, is taken as the indicator of domain stability. The
DOI can be selected by repeatedly removing a stable failure
domain from an uncertain wide state space until the scope
of valid domain is stable. The discretization level of DOI can
be determinated when the stable DOA is found. Since the
cells in the failure domain have been removed before cell
classification, the shortage problem of memory space is also
solved. At last, the proposed method improves the overall
efficiency of estimating process by reducing the total number
of cell mappings without losing the accuracy of results.

In the cell mapping method, a common and popular
tool named the subdivision algorithm also uses the iterative
method to improve the accuracy of solutions. Dellnitz et
al. introduced the subdivision algorithm for obtaining the
invariant sets of nonlinear dynamical systems [17].This algo-
rithm can be integrated with most cell mapping methods to
solve different problems, such as themultiobjective optimiza-
tion problems [18] and the high-dimensional problems [13].
Although both the subdivision algorithm and the proposed
method in this paper use the iterative method to decrease
the number of cell mappings, they have different goals. The
subdivision algorithm focuses on finding the invariant sets
and the attractor cells with high accuracy and efficiency.
However, the proposedmethod in this paper uses the iterative
method to generate the domains at different discretization
levels for verifying the stability of domain.

The rest of the paper is organized as follows. The basic
ideas and detailed procedures of the proposed method are
introduced in Section 2. In Section 3, the proposed method is
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Figure 1: The domains in a two-dimensional system.

applied on estimating the DOA of the simplest passive biped
walker. To further improve the performance of the proposed
method, some key issues are discussed in Section 4. Section 5
provides some conclusions about this paper.

2. Method

2.1. Introduction of Method. In the SCM method, the whole
state space is divided into the DOI and the sink zone by the
boundary of DOI. By discretizing the DOI, many regular
cells are generated and taken as the initial conditions of
Poincare mappings. According to the location of respective
image cell, the regular cells can be classified into two classes.
If the image cell of a regular cell is outside the DOI, the
regular cell will lose opportunity to become the member cell
of DOA.This regular cell is defined as failure cell. If the image
cell of a regular cell is inside the DOI, the regular cell still
has opportunity to become the member cell of DOA. This
regular cell is defined as candidate cell. The domain covered
by all failure cells is called Domain Of Failure (DOF) and the
domain covered by all candidate cells is called Domain Of
Candidate (DOC). Obviously, the DOI consists of the DOF
and the DOC. Under different discretization levels, the DOI
has its corresponding DOF and DOC.

Figure 1 illustrates the domains of state space in a two-
dimensional system. The state space consists of the DOI and
sink zone. The DOI contains a group of cells numbered from
1 to 30. The Poincare mapping is denoted as the arrow line,
which points to the image point from the central point of a
regular cell. The white cells are mapped into the sink zone, so
they are the member cells of the DOF.The blue and grey cells
are themember cells of theDOC, because their image cells are
still inside the DOI. Especially, the grey cells are the member
cells of the DOA since they have periodic relationship with
each other.

The DOA of the passive biped walker is usually small,
which means a lot of regular cells are finally mapped into
the sink zone. Since it only takes one step for the failure cell
to map into the sink zone, we can find and delete the DOF
which contains all failure cells from the whole DOI before
cell classification. This will reduce the number of cells whose
classified states need to be stored in cell classification. In
order to find these failure cells, the image cell of each regular
cell should be firstly obtained. Considering that the Poincare
mapping result of a cell is totally independent of other cells,
the image cells of all regular cells can be obtained together by
any practicable parallel algorithm to improve the computing
efficiency. Because these failure cells are no longer involved in
cell classification, they have no effect on estimating the DOA.
Therefore, the DOF can be found and deleted from the DOI
at a lower discretization level for decreasing the total number
of Poincare mappings. To compensate for the accuracy loss
caused by a low discretization level, the DOAwill be obtained
from the remaining domains at a higher discretization level.
From a low discretization level to a high discretization level,
the wholemethod is divided into two procedures.The former
is called cell deletion procedure, and the latter is called
cell refinement procedure. How to determine two different
discretization levels is a main challenge. The stability of
domain is introduced to solve it. If the volume of a domain
changes very little with discretization level increasing, the
domain can be considered stable. The volume of a domain
is equal to the number of contained cells multiplied by the
volume of one cell. When a domain just enters the stable
state, the discretization level is the optimal value. To verify
the stability of a domain, the DOI should be discretized
twice at two different discretization levels and the image
cells of all regular cells also should be obtained twice. If this
approach is applied, the total number of Poincare mappings
will increase rather than decrease. We noted that the regular
cell has a boundary like the DOI, so the cell also can be
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discretized into many smaller cells as the discretization of
DOI. If these discrete smaller cells exactly have the same
central points as the regular cells which are generated by
discretizing the DOI at a higher discretization level, the effect
of cell discretization is equal to discretizing wholeDOI from a
low discretization level to higher.Then, the cell discretization
technique can be used to verify the stability of domain.
Throughdiscretizing all cells in a domain, the discrete smaller
cells will form a new domain after deleting the cells that no
longer belong to the domain. By comparing two volumes of
the domain before and after cell discretization, a change rate
of domain’s volume is obtained. The iteration algorithm is
used to judge the criterion of domain stability for avoiding
repeated calculation. In our improved method, it needs to
verify the stability of DOF in cell deletion procedure and the
stability of DOA in cell refinement procedure respectively.
Through all iterations in two procedures, the discretization
level of DOI will gradually increase with the number of
iterations. When the iteration stops, the obtained DOA is
stable and the discretization level of DOI is confirmed.

Based on above ideas, the implementation steps of
improved method are presented in the following.

Step 1 (set some simulation parameters). The scope of the
DOI Ω and the initial discretization level 𝑃0 are the basic
parameters in the initial discretization of DOI. The deletion
accuracy 𝜉 and the maximum deletion iteration number 𝑁𝑘
are the termination parameters of the cell deletion procedure.
The refinement accuracy 𝜀 and maximum refinement itera-
tion number 𝑁𝑟 are the termination parameters of the cell
refinement procedure. The cell discretization level 𝐿 is the
required parameter for cell discretization.

Step 2 (get a stable DOF by cell deletion procedure). The
DOI is discretized with the initial discretization level 𝑃0.
After getting the image cells of all regular cells by Poincare
mapping, the initial DOF 𝐹0 consists of all failure cells and
its volume is 𝑈0. For ensuring the DOF is stable, the change
rate of the DOF’s volume should satisfy the deletion accuracy
𝜉. In the 𝑘-th iteration, all cells of DOF 𝐹𝑘−1 are discretized
into smaller cells with cell discretization level 𝐿 and a new
DOF 𝐹𝑘 consists of these failure cells in discrete cells. At this
time, the corresponding discretization level of DOI is 𝑃𝑘. The
iteration will stop until |𝑈𝑘/𝑈𝑘−1 − 1| ≤ 𝜉, where 𝑈𝑘−1 and𝑈𝑘 are the volume of DOF 𝐹𝑘−1 and DOF 𝐹𝑘 respectively. The
iteration also stops when the number of iterations exceeds the
maximum deletion iteration number𝑁𝑘. When the iteration
stops, a stable DOF is obtained. After deleting all cells in the
stable DOF from all cells in the DOI, the remaining cells form
the approximate DOC.

Step 3 (get a stable DOA by cell refinement procedure).
After a cell classification procedure, all failure cells in the
approximate DOC are further deleted and the initial DOC
𝐶0 consists of the remaining cells. The initial DOA 𝐴0 is
also obtained and its volume is 𝑉0. For ensuring the DOA is
stable, the change rate of the DOA’s volume should satisfy the
refinement accuracy 𝜀. In the 𝑟-th iteration, all cells of DOC
𝐶𝑟−1 are discretized into smaller cells with cell discretization

level 𝐿 and a new DOC 𝐶𝑟 consists of these candidate cells in
discrete cells. At this time, the corresponding discretization
level of DOI is 𝑃𝑟. A new DOA 𝐴𝑟 is obtained from the cells
in new DOC 𝐶𝑟 by the cell classification. Suppose that 𝑉𝑟−1
and𝑉𝑟 are the volumeofDOA𝐴𝑟−1 andDOA𝐴𝑟 respectively,
the iteration stops when |𝑉𝑟/𝑉𝑟−1 − 1| ≤ 𝜀. The iteration also
stops when the number of iterations exceeds the maximum
refinement iteration number 𝑁𝑟. When the iteration stops,
the stable DOA is obtained and the final discretization level
of DOI is confirmed.

Because there are many iterations to verify the stability
of domain in two procedures, this improved method could
be called Multiple Iterations Cell Mapping (MICM) method.
Figure 2 illustrates the flow chat of the MICM method.

2.2. Cell Discretization. The cell discretization is the key
technique of the MICM method, so its detailed algorithm
is introduced in this section. For avoiding confusion, the
cells at different discretization levels must have a unified
representation method before and after cell discretization, so
the cell index and cell vector are introduced firstly.

For a 𝑁-dimensional system, if the coordinate axis of a
state variable 𝑥𝑖 is divided into a large number (𝑃𝑖) of intervals
with an interval size ℎ𝑖, the interval 𝑧𝑖 along the 𝑥𝑖-axis is
defined as the one which contains all 𝑥𝑖 satisfying

(𝑧𝑖 − 0.5) ℎ𝑖 ≤ 𝑥𝑖 ≤ (𝑧𝑖 + 0.5) ℎ𝑖 𝑖 = 1, 2, . . . , 𝑁 (1)

where 𝑧𝑖 is an integer.
Obviously, the central point of the interval is 𝑥𝑑𝑖 = 𝑧𝑖ℎ𝑖.

At this time, the DOI is discretized into 𝑃 = 𝑃1 ×𝑃2 × ⋅ ⋅ ⋅ ×𝑃𝑁
rectangular cells with the cell size 𝐻 = [ℎ1, ℎ2, . . . , ℎ𝑁], and
the volume of one cell is 𝑉 = ℎ1 × ℎ2 × ⋅ ⋅ ⋅ × ℎ𝑁.

From (1), an arbitrary state variable 𝑥𝑖 will stay in the 𝑧𝑖
interval, where

𝑧𝑖 = 𝐼𝑛𝑡(𝑥𝑖ℎ𝑖 + 0.5) 𝑖 = 1, 2, . . . ,𝑁 (2)

and 𝐼𝑛𝑡(𝑦) denotes the largest integer which is less than or
equal to 𝑦.

Then, an arbitrary point 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑁] is located
in the cell 𝑍 = [𝑧1, 𝑧2, . . . , 𝑧𝑁], and 𝑍 is the cell vector of this
cell. The central point of cell 𝑍 is 𝑋𝑑 = [𝑥𝑑1 , 𝑥𝑑2 , . . . , 𝑥𝑑𝑁] =[𝑧1ℎ1, 𝑧2ℎ2, . . . , 𝑧𝑁ℎ𝑁].

Before cell classification, all regular cells should be num-
bered sequentially to a positive integer sequence.The number
of a cell is called cell index. There is a one-to-one consistent
match between each cell index and each cell vector. Specially,
if anyone component of a cell vector is out of the boundary of
DOI, this cell is the sink cell and its cell index is appointed to
0.

Suppose that the first cell vector in DOI is 𝑍1 =
[𝑧11, 𝑧12 , . . . , 𝑧1𝑁], which can be obtained by the low boundary
of DOI with (2). Then, the cell index of 𝑍 = [𝑧1, 𝑧2, . . . , 𝑧𝑁]
can be generated by

𝑛 = 𝑢 (𝑧1 − 𝑧11, 𝑧2 − 𝑧12, . . . , 𝑧𝑁 − 𝑧1𝑁) 𝑛 = 1, 2, . . . , 𝑃 (3)
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Figure 2: Flowchart of the MICMmethod.

where 𝑢 is an invertible function. The cell vector of the cell
index 𝑛 can be obtained by

𝑧𝑖 = 𝑢−1𝑖 (𝑛) + 𝑧1𝑖 𝑛 = 1, 2, . . . , 𝑃 𝑖 = 1, 2, . . . ,𝑁 (4)

In Matlab, the corresponding cell index of a cell vector can
be generated by sub2ind function, and the corresponding cell
vector of a cell index can be calculated by ind2sub function.

Now, there are three attributes to describe a regular cell,
e.g., the cell index 𝑛, the cell vector 𝑍, and the central point
vector 𝑋𝑑. If one of them is given, the another two are easily
obtained.

Because the regular cell can be represented by the cell
vector, the cell discretization is simplified to a process of
obtaining cell vectors of all discrete cells at a high discretiza-
tion level from the cell vector of a cell at a low discretization
level.

Suppose that the edge 𝑧𝑖 of the regular cell 𝑍 =
[𝑧1, 𝑧2, . . . , 𝑧𝑁] along the 𝑥𝑖-axis is divided into 𝑝𝑖 segments
again, then the new interval size changes to ℎ󸀠𝑖 = ℎ𝑖/𝑝𝑖, and
the central point 𝑥𝑑𝑖𝑗 of the 𝑗-th segment in the edge 𝑧𝑖 is
described as

𝑥𝑑𝑖𝑗 = 𝑥𝑑𝑖 + (𝑗 − 𝑝𝑖 + 1
2 ) ℎ󸀠𝑖 = 𝑧𝑖𝑝𝑖ℎ󸀠𝑖 + (𝑗 − 𝑝𝑖 + 1

2 ) ℎ󸀠𝑖
𝑗 = 1, 2, . . . , 𝑝𝑖 𝑖 = 1, 2, . . . , 𝑁

(5)

Considering 𝑥𝑑𝑖𝑗 = 𝑧𝑖𝑗ℎ󸀠𝑖 , the new interval 𝑧𝑖𝑗 of the corre-
sponding 𝑗-th segment in the edge 𝑧𝑖 can be obtained by

𝑧𝑖𝑗 = 𝑧𝑖𝑝𝑖 + 𝑗 − 𝑝𝑖 + 1
2 𝑗 = 1, 2, . . . , 𝑝𝑖 𝑖 = 1, 2, . . . , 𝑁 (6)

If a regular cell 𝑍 is discretized into 𝑝 = 𝑝1 × 𝑝2 × ⋅ ⋅ ⋅ × 𝑝𝑁
rectangular cells, the cell vectors of these new cells can be
obtained by (6). It is noted that 𝑝𝑖 must be an odd number,
since 𝑧𝑖, 𝑧𝑖𝑗 and 𝑗 are all integers.

3. Case Study

3.1. Model. In following sections, the Simplest Passive Biped
Walker (SPBW) is taken as an example to demonstrate the
MICMmethod.The structure and basic motion of SPBW are
shown in Figure 3.Thewalker has two rigid legs connected by
a frictionless hinge at the hip.The hip mass𝑀 is much larger
than the leg mass𝑚. The walking cycle consists of the swing
phase shown in Figure 3(a) and the collision event shown in
Figure 3(b). When the walker is walking on a rigid slope, its
motion is the same as a simple double pendulum. When the
swing leg is moving downward to strike the ground, the role
of two legs switches.That is, the swing leg becomes the stance
one and vice versa. The collision takes place instantaneously
and inelastic without sliding between the swing leg and the
ground. In order to avoid the scuffing problem, the swing
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Figure 3: The simplest passive biped walker is walking on a slope. (a) The swing phase; (b) the collision event.

Table 1: Simulation parameters of the MICMmethod.

Parameter Symbol Value
Slope angle 𝛾 0.004

Scope of the DOI Ω 𝜃 ∈ [0.027, 0.876]
𝜃+ ̇𝜃 ∈ [−0.037, 0.029]

Initial discretization level of the DOI 𝑃0 6×6
Deletion accuracy 𝜉 0.2
Maximum deletion iteration number 𝑁𝑘 5
Refinement accuracy 𝜀 0.02
Maximum refinement iteration number 𝑁𝑟 5
Discretization level of each cell discretization 𝐿 3×3

leg should be in front of the stance leg when it touches the
ground. The detailed analyses of the SPBW are shown in [4].

The slope angle 𝛾 is the only variable physical parameter
of SPBW. 𝜃, ̇𝜃 are the angle and angle velocity between the
stance leg and the perpendicular line of slope, respectively.
𝜙, ̇𝜙 are the relative angle and angle velocity between the
swing leg and the stance leg, respectively. The instance just
after collision is set to be the Poincare section. Suppose
that 𝑞 = [𝜃, 𝜙, ̇𝜃, ̇𝜙]𝑇 is the global state variable, then the
dynamical equation of SPBW is described by

̇𝑞 = [ ̇𝜃, ̇𝜙, sin (𝜃 − 𝛾) , sin (𝜙) [ ̇𝜃2 − cos (𝜃 − 𝛾)]
+ sin (𝜃 − 𝛾)]𝑇 𝑞 ∉ 𝑆

𝑞+ = [−𝜃, − 2𝜃, cos (2𝜃) ̇𝜃, (1 − cos (2𝜃)) cos (2𝜃) ̇𝜃]𝑇

𝑞 ∈ 𝑆

(7)

where 𝑆 is the condition of collision and 𝑆 = {𝑞 | 𝜙 − 2𝜃 =
0, ̇𝜙 − 2 ̇𝜃 = 0, 𝜃 < 0}. If a walker can reach 𝑆 in limited
time from a start state, the initial state of next step 𝑞+ is the
result of Poincare mapping. Otherwise, the walker cannot
walk a whole step and the result of Poincare mapping could
be appointed to a state in the sink zone.

Obviously, the initial state of next step 𝑞+ is only related
to 𝜃 and ̇𝜃, so [𝜃, ̇𝜃]𝑇 is fit for the independent global state
variables. If so, the DOA is too tiny to distinguish its structure
in the phase diagram. In order to make the DOA larger and
clearer, we replace ̇𝜃 with 𝜃 + ̇𝜃, which is called the pseudo
angle velocity of the stance leg. Therefore, [𝜃, 𝜃 + ̇𝜃]𝑇 is taken
as the independent global state variables.

3.2. Results. Thesimulation parameters of theMICMmethod
are listed in Table 1. The selection of DOI will be introduced
in Section 4.1. The discretization level of cell discretization 𝐿
could be any combination of odd integers, but it is uniformly
set to 3×3 for simplicity in this simulation.

Figure 4 shows the processes of estimating the DOA of
SPBWby theMICMmethod. Each regular cell is denoted as a
rectangle with its central point in all figures of this paper.The
failure cell, candidate cell, attraction cell have blue, green and
red central point respectively. For showing the boundaries of
DOF and DOC clearly, the candidate cells are not shown in
cell deletion procedure and the failure cells are not shown in
cell refinement procedure.

As shown in Figure 4(a), the DOI is discretized into
regular cells with the initial discretization level 𝑃0 firstly.
In Figure 4(b), the initial DOF consists of the failure cells
after calculating the image cells of all regular cells. Next, the
cells in the initial DOF are discretized into smaller cells with
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Figure 4: The processes of estimating the DOA of SPBW by the MICM method. (a) Initial discretization of DOI; (b) initial DOF; (c) DOF
after the first iteration of the cell delete procedure; (d) stable DOF; (e) approximate DOC and stable DOF; (f) initial DOA and initial DOC;
(g) DOA and DOC after the first iteration of the cell refinement procedure; (h) stable DOA and its corresponding DOC.

discretization level 𝐿, and a new DOF shown in Figure 4(c)
consists of the failure cells in these smaller cells. Comparing
between the initial DOF and new DOF, the change rate of
DOF’s volume does not satisfy the requirement of deletion
accuracy 𝜉, so the cells in new DOF need to be discretized.
After discretizing the cells in new DOF again, a newer DOF
shown in Figure 4(d) is obtained. Now, the change rate of
DOF’s volume is lower than the deletion accuracy 𝜉, so the
iteration stops and the stable DOF is confirmed. As shown
in Figure 4(e), the approximate DOC naturally consists of
these regular cells which are not in the stable DOF. Then,
the cell refinement procedure starts. After a cell classification
procedure, all failure cells in the approximate DOC are
further deleted and the initial DOC shown in Figure 4(f)
consists of the remaining cells, which the initial DOA is
obtained from. As shown in Figure 4(g), the cells in the initial
DOC are discretized into smaller cells with discretization
level 𝐿, and a new DOC consists of the candidate cells in
these smaller cells. After that, the newDOA is obtained by cell
classification. Since the change rate of DOA’s volume does not

satisfy the refinement accuracy 𝜀, the cells in the new DOC
have to be discretized again. A newer DOC and DOA shown
in Figure 4(h) is obtained after a cell classification procedure.
At this time, the change rate of DOA’s volume is lower than
the refinement accuracy 𝜀, so the iteration stops and the stable
DOA is obtained.

Figure 5 shows the growing trend of the number of
mappings and the volume of domain with the iteration. In
both procedures, the number of mappings increases from
a low number with the iteration increasing. Especially in
the cell refinement procedure, the number of mappings,
which is the maximum number of cells to be stored in cell
classification, is far less than the number of mappings in
SCMmethod. Itmeans that theMICMmethod can effectively
reduce the requirement of memory space in cell classification
procedure.

After above processes, the DOI is finally discretized into
406×406 cells. Through 26267 Poincare mappings and 2 cell
classification procedures, the DOA of SPBW contains 5127
cells. Using the same parameters and discretization level in
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Figure 5: The number of mappings and the volume of domain at each iteration. (a)The curves of the cell deletion procedure; (b) the curves
of the cell refinement procedure.

the SCM method, the DOA consists of 5162 cells through
164836 Poincare mappings and 1 cell classification procedure.
Although 35 cells missed in the DOA obtained by the MICM
method, the total number of Poincare mappings sharply
decreases. Because the Poincare mapping is a consuming-
time process, the MICM method saves much time. For an
estimation process, it is worthy to accelerate the computation
with a little accuracy loss.

4. Discussions

4.1. Selection of the Domain of Interest. If there is no prior
knowledge about a system, a proper DOI should be selected
before formal simulation. The selection of DOI is a procedure
of removing the infeasible domains fromwhole state space, so
the cell deletion procedure, which can efficiently remove the
failure domains from a given domain, will be useful to select
the DOI.

The details of selecting the DOI with the cell deletion
procedure are presented as follows. Firstly, a wider initialDOI
is chosen to be the basic research scope. Next, a DOC can
be obtained from the DOI by using a cell deletion procedure
with a lower deletion accuracy. If the scope of DOC is not
closed to the scope of the DOI, the scope of DOC is used to
be a newDOI for next iteration. Otherwise, the scope of DOC
is taken as the formal DOI.

The selection of SPBW’s DOI is taken as an example. The
scope of initial angle and angular velocity of stance leg should
be estimated firstly. The scope of initial angle of stance leg
is easy to determine since it is only limited by the physical
conditions. So the initial angle of stance leg certainly belongs
to [0, 𝜋/2]. However, the scope of initial angular velocity
of stance leg is hard to be estimated, because it is limited
not only by the physical conditions but also by the complex
dynamical equations. The initial angular velocity of stance leg
is obviously negative since the stance leg must move forward,

so the scope of pseudo angle velocity can be set to [−10, 𝜋/2].
Figure 6 illustrates the processes of selecting the DOI of
SPBW.The boundary of the DOI at each iteration is denoted
by the blue rectangular. After five iterations, the formal DOI
is obtained. As shown in Figure 6(g), the formal DOI is 𝜃 ∈
[0.027, 0.876] and 𝜃 + ̇𝜃 ∈ [−0.037, 0.029], which is used in
the former simulation.

4.2. Boundary Refinement. Comparing with the DOA
obtained by the SCM method, there are a few cells missed
in the DOA obtained by the MICM method. The reason is
that some domains are wrongly covered by the DOF when
the discretization level is low. After many iterations in the
cell deletion procedure, these domains cannot be covered
by the approximate DOC at the discretization level of stable
DOF. For decreasing the lost cells, it needs to find these
wrong domains and add them into the approximate DOC at
a higher discretization level. Since most lost cells are located
near the boundaries of DOF and DOC, the domains that
contain the cells on the stable DOF’s boundary should be
considered firstly. These boundary cells will be discretized
into smaller cells, and the discrete cells need to be verified for
finding the domains where they really belong to by Poincare
mapping. Because these boundary cells are discretized
again for further verification, the total number of Poincare
mappings will increase. This procedure mainly focuses on
the boundary cells, so it can be called boundary refinement.

Figure 7 shows the processes of estimating the DOA of
SPBW by the MICM method with the boundary refinement.
Because the processes of cell deletion procedure are the
same as Figures 4(a)–4(d), Figure 7 only shows the processes
after finding the stable DOF. As shown in Figure 7(a), the
boundary cell is donated by a rectangular with yellow central
point. The cell discretization level in boundary refinement is
also set to 𝐿 = 3 × 3. In Figure 7(b), the approximate DOC
at a higher discretization level is obtained after the boundary
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Figure 6:The processes of selecting the DOI of SPBW. (a) Initial DOI and DOC (b) DOI and DOC after the first iteration; (c) DOI andDOC
after the second iteration; (d) DOI and DOC after the third iteration; (e) DOI and DOC after the fourth iteration; (f) DOI and DOC after the
fifth iteration; (g) the formal DOI.

refinement procedure. The initial DOA and initial DOC are
shown in Figure 7(c). After only one iteration, a stable DOA
is obtained as shown in Figure 7(d). Comparing with the
DOA obtained by the MICM method without the boundary
refinement, the missing cells decreases to 6 from 35, but the
total number of Poincare mappings increases to 30471 from
26267.

Table 2 shows the comparison between SCM method
and MICM method for estimating the DOA of SPBW when
the slope angle is 0.004 rad and the DOI is discretized
into 406×406 cells. All simulations are implemented by
Matlab2014b on the computer with 8G RAM and Intel�
Core� i7-6820HQ CPU. From the results, it can be seen that
the accuracy of results is at the cost of time and computation.
We can choose whether to add the boundary refinement
procedure to the MICM method for satisfying different
requirements. If the accuracy of results needs to be very high,
it is better to estimate the DOA by the MICM method with
boundary refinement. If it just needs to find the approximate

DOA quickly, the best way is to use the MICM method
without boundary refinement.

5. Conclusions

This paper presents a new multiple iterations cell mapping
method for estimating the DOA of the passive biped walker.
The MICM method consists of two procedures, i.e., the
cell deletion procedure and the cell refinement procedure.
The cell deletion procedure not only can delete DOF from
the DOI at a low discretization level, but also can select
a proper DOI from an uncertain wide state space. The
cell refinement procedure can quickly find a stable DOA
at a high discretization level. The major improvement of
the MICM method is that the DOI is selected by the cell
deletion procedure instead of many trails and the discretiza-
tion level of DOI is determined by the cell refinement
procedure instead of prespecified artificially. Comparing
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Figure 7: The processes of estimating the DOA of SPBW by the MICM method with boundary refinement. (a) The boundary cells in the
stable DOF; (b) approximate DOC and stable DOF; (c) initial DOA and initial DOC; (d) the stable DOA and its corresponding DOC.

Table 2: Comparison between SCM method and MICMmethod for estimating the DOA of SPBW.

Method Number of
Poincare mappings

Number of cells in
DOA

Percent of
decreasing Poincare

mappings

Percent of missing
cells Time[s] Speed up

SCM method 164836 5162 - - 530.72 -
MICMmethod without
boundary refinement 26267 5127 84.06% 0.68% 89.03 5.96×
MICMmethod with
boundary refinement 30471 5156 81.51% 0.15% 103.25 5.14×

with the results of the SCM method, the new method
can obtain the same DOA with much less calculation and
time.

The MICM method can ensure the DOA reliable and
yet avoid excessive calculation, so it is a valuable analysis
tool for the passive biped walker. Although this paper only
takes the simplest passive biped walker as an example to
describe the usage of theMICMmethod, it also can be used to
estimate theDOAofmore complex passive bipedwalkers that
have more global states variables. Since the MICMmethod is

based on the SCM method, it can be used not only for the
complex dynamical systems like the passive biped walker, but
also for other nonlinear dynamical systems which have small
DOAs.
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