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In this paper, we firstly discuss the existence of the least energy sign-changing solutions for a class of p-Kirchhoff-type problems
with a (2𝑝 − 1)-linear growth nonlinearity. The quantitative deformation lemma and Non-Nehari manifold method are used in the
paper to prove the main results. Remarkably, we use a new method to verify that M𝑏 ̸= 0. The main results of our paper are the
existence of the least energy sign-changing solution and its corresponding energy doubling property. Moreover, we also give the
convergence property of the least energy sign-changing solution as the parameter 𝑏 ↘ 0.

1. Introduction and the Main Results

In this paper, we are devoted to investigating the existence
of the least energy sign-changing solutions for the following
p-Kirchhoff-type problem with a (2p-1)-linear growth non-
linearity:

−(𝑎 + 𝑏∫
Ω
|∇𝑢|𝑝 𝑑𝑥)Δ𝑝𝑢 = 𝜆 |𝑢|𝑝−2 𝑢 + |𝑢|2𝑝−2 𝑢,

𝑥 ∈ Ω,
𝑢 = 0, 𝑥 ∈ 𝜕Ω,

(1)

where Ω is a bounded domain in 𝑅𝑁(𝑁 = 1, 2, 3), 𝑎, 𝑏 > 0,
𝜆 < 𝑎𝜆1, 𝜆1 is the first eigenvalue of the following problem:

−Δ𝑝𝜙 = 𝜆 𝜙𝑝−2 𝜙, 𝑥 ∈ Ω,
𝜙 = 0, 𝑥 ∈ 𝜕Ω.

(2)

In fact, the related problems have been studied exten-
sively, especially on the existence of the positive solutions,
multiple solutions, ground state solutions, and least energy
sign-changing solutions. In [1], Li and Sun studied the exis-
tence andmultiplicity of solutions for theKirchhoff equations
with asymptotically linear nonlinearities; the mountain pass

theorem was used in the paper. Guo, Ma, and Zhang [2]
studied a class of autonomous Kirchhoff-type equation. By
a simple transformation, they found that the solutions of
autonomous Kirchhoff-type equation or system could be
obtained by using the known solutions of the corresponding
local equation or system, which is very interesting. In [3],
Ying Li and Lin Li considered the existence and multiplicity
of solutions to a class of p(x)-Laplacian-like equations. They
introduced a revised Ambrosetti-Rabinowitz condition and
obtained that the problem had a nontrivial solution and
infinitely many solutions, respectively. Meanwhile, in [4],
Luca Vilasi proved an eigenvalue theorem for a stationary
p(x)-Kirchhoff problem by using variational techniques, and
the author also provided an estimate for the range of such
eigenvalues. For more details, we refer the reader to [5–30].

In [31, 32], the authors studied the following Kirchhoff-
type problems in bounded domains:

−(𝑎 + 𝑏∫
Ω
|∇𝑢|2)Δ𝑢 = 𝑓 (𝑢) , 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω,
(3)

under different assumptions on 𝑓(𝑢), the authors mainly use
the quantitative deformation lemma and the degree theory
to get the existence of the least energy sign-changing solution
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and its corresponding convergence property as the parameter
𝑏 ↘ 0. From the assumptions on 𝑓(𝑢), we can easily find that
both in [31, 32] 𝑓(𝑢) satisfies 3-superlinear growth at infinity
and superlinear growth at zero.

Later, some scholars made some expanding work; we
can find some details in [33]. In [33], we know that the
nonlinearity𝑓 satisfies (2𝑝−1)-superlinear growth condition
at infinity.

Motivated by the above works, a natural question is
that if there exists a ground state sign-changing solution for
problem (1). However, up to now, no paper has appeared in
the literature which discusses the existence and convergence
property of the solution for the p-Kirchhoff-type problem
with a (2𝑝 − 1)-linear growth nonlinearity. This paper
attempts to fill this gap in the literature.

Throughout this paper, we will make full use of the
following notations. Let𝑊 = 𝑊1,𝑝0 (Ω) be the usual Sobolev
space equipped with the following norm:

‖𝑢‖ = (∫
Ω
|∇𝑢|𝑝 𝑑𝑥)1/𝑝 . (4)

‖ ⋅ ‖𝑠 denotes the usual Lebesgue space 𝐿𝑠(Ω) norm. 𝑆 is
the best Sobolev constant for the embedding of 𝑊1,𝑝0 (Ω) in
𝐿2𝑝(Ω); that is,

‖𝑢‖2𝑝 ≤ 𝑆−1/𝑝 ‖𝑢‖ . (5)

From the above definition, we give the energy functional
corresponding to problem (1) by

𝐼𝑏 (𝑢) = 𝑎
𝑝 ∫Ω |∇𝑢|

𝑝 𝑑𝑥 + 𝑏
2𝑝 (∫Ω |∇𝑢|

𝑝 𝑑𝑥)2

− 𝜆𝑝 ∫Ω |𝑢|
𝑝 𝑑𝑥 − 1

2𝑝 ∫Ω |𝑢|
2𝑝 𝑑𝑥.

(6)

Clearly, 𝐼𝑏 is well defined on 𝑊 and is of 𝐶1 class. For each
𝑢, 𝜐 ∈ 𝑊, by a simple calculation, we have

⟨𝐼𝑏 (𝑢) , 𝜐⟩
= (𝑎 + 𝑏∫

Ω
|∇𝑢|𝑝 𝑑𝑥)∫

Ω
|∇𝑢|𝑝−2 ∇𝑢 ⋅ ∇𝜐𝑑𝑥

− ∫
Ω
𝜆 |𝑢|𝑝−2 𝑢𝜐𝑑𝑥 − ∫

Ω
|𝑢|2𝑝−2 𝑢𝜐𝑑𝑥.

(7)

Obviously, the critical points of 𝐼𝑏 are corresponding to the
weak solutions of problem (1). If 𝑢 ∈ 𝑊 is a sign-changing
solution of problem (1), then

(i) 𝑢 is a solution of problem (1), that is, 𝑢 is a critical point
of 𝐼𝑏;

(ii) 𝑢± ̸= 0, where 𝑢+ = max{𝑢(𝑥), 0}, 𝑢− = min{𝑢(𝑥), 0}.
For 𝑢 = 𝑢+ + 𝑢−, from (6) and (7), we have

𝐼𝑏 (𝑢) = 𝐼𝑏 (𝑢+) + 𝐼𝑏 (𝑢−) + 𝑏𝑝
∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 ; (8)

⟨𝐼𝑏 (𝑢) , 𝑢+⟩ = ⟨𝐼𝑏 (𝑢+) , 𝑢+⟩ + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 ; (9)

⟨𝐼𝑏 (𝑢) , 𝑢−⟩ = ⟨𝐼𝑏 (𝑢−) , 𝑢−⟩ + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 . (10)

When 𝑏 = 0, problem (1) reduces to the following
problem:

−𝑎Δ𝑝𝑢 = 𝜆 |𝑢|𝑝−2 𝑢 + |𝑢|2𝑝−2 𝑢, 𝑥 ∈ Ω,
𝑢 = 0, 𝑥 ∈ 𝜕Ω. (11)

The corresponding energy functional 𝐼0 : 𝑊 → 𝑅 is
defined by

𝐼0 (𝑢) = 𝑎
𝑝 ∫Ω |∇𝑢|

𝑝 𝑑𝑥 − 𝜆𝑝 ∫Ω |𝑢|
𝑝 𝑑𝑥

− 1
2𝑝 ∫Ω |𝑢|

2𝑝 𝑑𝑥.
(12)

Also, we can compute that

⟨𝐼0 (𝑢) , 𝜐⟩ = ∫
Ω
𝑎 |∇𝑢|𝑝−2 ∇𝑢 ⋅ ∇𝜐𝑑𝑥

− ∫
Ω
𝜆 |𝑢|𝑝−2 𝑢𝜐𝑑𝑥 − ∫

Ω
|𝑢|2𝑝−2 𝑢𝜐𝑑𝑥.

(13)

For 𝑏 > 0, problem (1) is called a nonlocal problem since
the appearance of the nonlocal term (∫

Ω
|∇𝑢|𝑝𝑑𝑥)Δ𝑝𝑢. The

differences posed by the nonlocal term make the method
in solving problem (11) cannot be applied to solve problem
(1), which makes the study of our paper very interesting and
meaningful.

In our paper, we restrict 𝑢 in the following sets to find the
ground state sign-changing solutions of (1) and (11),

M𝑏 = {𝑢 ∈ 𝑊 : 𝑢± ̸= 0, ⟨𝐼𝑏 (𝑢) , 𝑢+⟩ = ⟨𝐼𝑏 (𝑢) , 𝑢−⟩
= 0} ,

M0 = {𝑢 ∈ 𝑊 : 𝑢± ̸= 0, ⟨𝐼0 (𝑢) , 𝑢+⟩ = ⟨𝐼0 (𝑢) , 𝑢−⟩
= 0} ,

(14)

and we define𝑚𝑏 = inf𝑢∈M𝑏𝐼𝑏(𝑢) and𝑚0 = inf𝑢∈M0𝐼0(𝑢).
To get the ground state solutions, we define the following

sets:

N𝑏 = {𝑢 ∈ 𝑊 : 𝑢 ̸= 0, ⟨𝐼𝑏 (𝑢) , 𝑢⟩ = 0} ,
N0 = {𝑢 ∈ 𝑊 : 𝑢 ̸= 0, ⟨𝐼0 (𝑢) , 𝑢⟩ = 0}

(15)

and consider the following minimization problem:

𝑐𝑏 = inf
𝑢∈N𝑏

𝐼𝑏 (𝑢) ,
𝑐0 = inf
𝑢∈N0

𝐼0 (𝑢) .
(16)

Since M𝑏 ⊂ N𝑏, we can immediately get 𝑚𝑏 ≥ 𝑐𝑏. The
main results of the paper are described as follows.

Theorem 1. For 𝑏 ∈ (0, 1/2𝑆2) and 𝜆 < 𝑎𝜆1, problem (1) has
at least one ground state sign-changing solution, which precisely
has two nodal domains. Moreover,𝑚𝑏 > 2𝑐𝑏.
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Theorem 2. For each 𝜆 < 𝑎𝜆1, for any sequence {𝑏𝑛} small
enough with 𝑏𝑛 ↘ 0 as 𝑛 → ∞, there exists a subsequence
still denoted by {𝑏𝑛}, such that 𝑢𝑏𝑛 convergent to 𝑢0 strongly in𝑊1,𝑝0 (Ω), where 𝑢0 is a ground state sign-changing solution of
problem (11), which changes sign only once.

Our paper is organized as follows. In Section 2, some
preliminary lemmas are given to prove the main results. In
Sections 3 and 4, we are devoted to proving the main results
of the paper.

2. Some Critical Preliminaries

The following several lemmas are crucial to prove our main
results.

Lemma 3. If 𝑏 > 0, 𝜆 < 𝑎𝜆1, 𝑢 ∈ 𝑊 satisfies 𝑢± ̸= 0 and
𝑏 ∇𝑢+2𝑝𝑝 + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 < ∫

Ω

𝑢+2𝑝 𝑑𝑥,

𝑏 ∇𝑢−2𝑝𝑝 + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 < ∫
Ω

𝑢−2𝑝 𝑑𝑥,
(17)

then there exists a unique pair (𝑠𝑢, 𝑡𝑢) of positive numbers such
that

(i) 𝑠𝑢𝑢+ + 𝑡𝑢𝑢− ∈M𝑏;
(ii) 𝐼𝑏(𝑠𝑢𝑢+ + 𝑡𝑢𝑢−) = max𝑠,𝑡≥0𝐼𝑏(𝑠𝑢+ + 𝑡𝑢−).

Proof. (i) If 𝑠𝑢+ + 𝑡𝑢− ∈ M𝑏, then from (7), (9), and (10), we
have

⟨𝐼𝑏 (𝑠𝑢+ + 𝑡𝑢−) , 𝑠𝑢+⟩
= 𝑎𝑠𝑝 ∇𝑢+𝑝𝑝 + 𝑏𝑠2𝑝 ∇𝑢+2𝑝𝑝
+ 𝑏𝑠𝑝𝑡𝑝 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 − 𝑠𝑝 ∫

Ω
𝜆 𝑢+𝑝 𝑑𝑥

− 𝑠2𝑝 ∫
Ω

𝑢+2𝑝 𝑑𝑥 = 0

(18)

and

⟨𝐼𝑏 (𝑠𝑢+ + 𝑡𝑢−) , 𝑡𝑢−⟩
= 𝑎𝑡𝑝 ∇𝑢−𝑝𝑝 + 𝑏𝑡2𝑝 ∇𝑢−2𝑝𝑝
+ 𝑏𝑠𝑝𝑡𝑝 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 − 𝑡𝑝 ∫

Ω
𝜆 𝑢−𝑝 𝑑𝑥

− 𝑡2𝑝 ∫
Ω

𝑢−2𝑝 𝑑𝑥 = 0.

(19)

Let 𝑆 = 𝑠𝑝 and 𝑇 = 𝑡𝑝, the above equations correspond to the
following system:

𝑆∫
Ω

𝑢+2𝑝 𝑑𝑥 − 𝑏𝑆 ∇𝑢+2𝑝𝑝 − 𝑏𝑇 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝
= 𝑎 ∇𝑢+𝑝𝑝 − ∫

Ω
𝜆 𝑢+𝑝 𝑑𝑥,

𝑇∫
Ω

𝑢−2𝑝 𝑑𝑥 − 𝑏𝑇 ∇𝑢−2𝑝𝑝 − 𝑏𝑆 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝
= 𝑎 ∇𝑢−𝑝𝑝 − ∫

Ω
𝜆 𝑢−𝑝 𝑑𝑥.

(20)

Obviously, if we can prove that system (20) has the unique
solution (𝑆, 𝑇), then (𝑠 = 𝑆1/𝑝, 𝑡 = 𝑇1/𝑝) is the unique solution
for (18) and (19).

Let

𝐷

=

∫
Ω

𝑢+2𝑝 𝑑𝑥 − 𝑏 ∇𝑢+2𝑝𝑝 −𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝
−𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 ∫

Ω

𝑢−2𝑝 𝑑𝑥 − 𝑏 ∇𝑢−2𝑝𝑝


> 0.

(21)

For 𝜆 < 𝑎𝜆1, we have 𝑎‖∇𝑢±‖𝑝𝑝 > 𝜆∫Ω |𝑢±|𝑝. Since ∫Ω |𝑢−|2𝑝 −𝑏‖∇𝑢−‖2𝑝𝑝 > 0, then
𝐷𝑆

=

𝑎 ∇𝑢+𝑝𝑝 − ∫

Ω
𝜆 𝑢+𝑝 𝑑𝑥 −𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝

𝑎 ∇𝑢−𝑝𝑝 − ∫
Ω
𝜆 𝑢−𝑝 𝑑𝑥 ∫

Ω

𝑢−2𝑝 𝑑𝑥 − 𝑏 ∇𝑢−2𝑝𝑝


> 0.

(22)

Similarly, we have

𝐷𝑇

=

∫
Ω

𝑢+2𝑝 𝑑𝑥 − 𝑏 ∇𝑢+2𝑝𝑝 𝑎 ∇𝑢+𝑝𝑝 − ∫
Ω
𝜆 𝑢+𝑝 𝑑𝑥

−𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 𝑎 ∇𝑢−𝑝𝑝 − ∫
Ω
𝜆 𝑢−𝑝 𝑑𝑥


> 0.

(23)

From (21)-(23), we have 𝑆 = 𝐷𝑆/𝐷 > 0, 𝑇 = 𝐷𝑇/𝐷 > 0,
and (𝑆, 𝑇) is the unique solution for system (20). Accordingly,
(𝑠 = 𝑆1/𝑝, 𝑡 = 𝑇1/𝑝) is the unique positive solution for (18) and
(19). Thus, (i) is proved.

(ii) Next, we give the proof of (ii).
From (6), we have

𝐼𝑏 (𝑠𝑢+ + 𝑡𝑢−) = 𝑎𝑠
𝑝

𝑝
∇𝑢+𝑝𝑝 + 𝑏𝑠

2𝑝

2𝑝
∇𝑢+2𝑝𝑝

− 𝑠𝑝𝑝 ∫
Ω
𝜆 𝑢+𝑝 𝑑𝑥

− 𝑠2𝑝2𝑝 ∫Ω
𝑢+2𝑝 𝑑𝑥 + 𝑎𝑡

𝑝

𝑝
∇𝑢−𝑝𝑝
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+ 𝑏𝑡2𝑝2𝑝
∇𝑢−2𝑝𝑝 − 𝑡

𝑝

𝑝 ∫Ω 𝜆
𝑢−𝑝 𝑑𝑥

− 𝑡2𝑝2𝑝 ∫Ω
𝑢−2𝑝 𝑑𝑥

+ 𝑏𝑠𝑝𝑡𝑝𝑝
∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 .

(24)

By a simple computation, we have

𝜕2𝐼𝑏
𝜕𝑠2 = (𝑝 − 1) 𝑠

𝑝−2 {𝑎 ∇𝑢+𝑝𝑝 − 𝜆∫
Ω

𝑢+𝑝 𝑑𝑥

+ 𝑏𝑡𝑝 ∇𝑢+𝑝p ∇𝑢−𝑝𝑝} + (2𝑝 − 1)

⋅ 𝑠2𝑝−2 (𝑏 ∇𝑢+2𝑝𝑝 − ∫
Ω

𝑢+2𝑝 𝑑𝑥) ,

(25)

and

𝜕2𝐼𝑏
𝜕𝑡2 = (𝑝 − 1) 𝑡

𝑝−2 {𝑎 ∇𝑢−𝑝𝑝 − 𝜆∫
Ω

𝑢−𝑝 𝑑𝑥

+ 𝑏𝑠𝑝 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝} + (2𝑝 − 1)

⋅ 𝑡2𝑝−2 (𝑏 ∇𝑢−2𝑝𝑝 − ∫
Ω

𝑢−2𝑝 𝑑𝑥) .

(26)

From 𝑠𝑢𝑢+ + 𝑡𝑢𝑢− ∈M𝑏, we have

𝜕2𝐼𝑏
𝜕𝑠2

(𝑠𝑢 ,𝑡𝑢)
= 𝑝𝑠2𝑝−2𝑢 (𝑏 ∇𝑢+2𝑝𝑝 − ∫

Ω

𝑢+2𝑝 𝑑𝑥) < 0,

𝜕2𝐼𝑏
𝜕𝑡2

(𝑠𝑢 ,𝑡𝑢)
= 𝑝𝑡2𝑝−2𝑢 (𝑏 ∇𝑢−2𝑝𝑝 − ∫

Ω

𝑢−2𝑝 𝑑𝑥) < 0,
(27)

and

𝜕2𝐼𝑏
𝜕𝑡𝜕𝑠

(𝑠𝑢 ,𝑡𝑢)
= 𝑝𝑏𝑠𝑝−1𝑢 𝑡𝑝−1𝑢 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 . (28)

We consider the Hessian matrix of 𝐼𝑏(𝑠𝑢+ + 𝑡𝑢−); then from
(17), we have

𝐻 (𝑠𝑢, 𝑡𝑢) =


𝜕2𝐼𝑏
𝜕𝑠2

𝜕2𝐼𝑏
𝜕𝑠𝜕𝑡𝜕2𝐼𝑏

𝜕𝑠𝜕𝑡
𝜕2𝐼𝑏
𝜕𝑡2


= 𝑝2𝑠2𝑝−2𝑢 𝑡2𝑝−2𝑢 (∫

Ω

𝑢+2𝑝 𝑑𝑥 − 𝑏 ∇𝑢+2𝑝𝑝 )

⋅ (∫
Ω

𝑢−2𝑝 𝑑𝑥 − 𝑏 ∇𝑢−2𝑝𝑝 )
− 𝑝2𝑏2𝑠2𝑝−2𝑢 𝑡2𝑝−2𝑢 ∇𝑢+2𝑝𝑝 ∇𝑢−2𝑝𝑝 > 0.

(29)

The above deduction implies that (𝑠𝑢, 𝑡𝑢) is a maximal point
of 𝐼𝑏(𝑠𝑢+ + 𝑡𝑢−) for 𝑠, 𝑡 ≥ 0. Since we cannot get the maximal

point of 𝐼𝑏 on the boundary of 𝑅+, (𝑠𝑢, 𝑡𝑢) is the unique
maximal point; that is, 𝐼𝑏(𝑠𝑢𝑢+ + 𝑡𝑢𝑢−) = max𝑠,𝑡≥0𝐼𝑏(𝑠𝑢+ +𝑡𝑢−).
Lemma 4. Assume that 𝜆 < 𝑎𝜆1 and 𝑢 ∈M𝑏, then (17) holds.

Proof. For 𝑢 = 𝑢+ + 𝑢− ∈M𝑏, we have

⟨𝐼𝑏 (𝑢) , 𝑢+⟩ = 𝑎 ∇𝑢+𝑝𝑝 + 𝑏 ‖∇𝑢‖𝑝𝑝 ∇𝑢+𝑝𝑝
− ∫
Ω
𝜆 𝑢+𝑝 𝑑𝑥 − ∫

Ω

𝑢+2𝑝 𝑑𝑥 = 0,
⟨𝐼𝑏 (𝑢) , 𝑢−⟩ = 𝑎 ∇𝑢−𝑝𝑝 + 𝑏 ‖∇𝑢‖𝑝𝑝 ∇𝑢−𝑝𝑝

− ∫
Ω
𝜆 𝑢−𝑝 𝑑𝑥 − ∫

Ω

𝑢−2𝑝 𝑑𝑥 = 0.

(30)

Since 𝜆 < 𝑎𝜆1, we have 𝑎‖∇𝑢±‖𝑝𝑝 > ∫
Ω
𝜆|𝑢±|𝑝𝑑𝑥. Thus, we

have

𝑏 ∇𝑢+2𝑝𝑝 + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 < ∫
Ω

𝑢+2𝑝 𝑑𝑥

𝑏 ∇𝑢−2𝑝𝑝 + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 < ∫
Ω

𝑢−2𝑝 𝑑𝑥.
(31)

Lemma 5. Assume that 𝑏 > 0, 𝜆 < 𝑎𝜆1, 𝑢 ∈ 𝑊 with 𝑢± ̸= 0
and ⟨𝐼𝑏(𝑢), 𝑢±⟩ ≤ 0, there exists a unique pair (𝑠𝑢, 𝑡𝑢) ∈ (0, 1]×(0, 1] such that 𝑠𝑢𝑢+ + 𝑡𝑢𝑢− ∈M𝑏.

Proof. If 𝑢 ∈ 𝑊 with 𝑢± ̸= 0 and ⟨𝐼𝑏(𝑢), 𝑢±⟩ ≤ 0, we have
𝑎 ∇𝑢+𝑝𝑝 + 𝑏 ‖∇𝑢‖𝑝𝑝 ∇𝑢+𝑝𝑝
≤ ∫
Ω
𝜆 𝑢+𝑝 𝑑𝑥 + ∫

Ω

𝑢+2𝑝 𝑑𝑥
𝑎 ∇𝑢−𝑝𝑝 + 𝑏 ‖∇𝑢‖𝑝𝑝 ∇𝑢−𝑝𝑝
≤ ∫
Ω
𝜆 𝑢−𝑝 𝑑𝑥 + ∫

Ω

𝑢−2𝑝 𝑑𝑥.

(32)

Since 𝑎‖∇𝑢±‖𝑝𝑝 > 𝜆∫Ω |𝑢±|𝑝𝑑𝑥, then

𝑏 ‖∇𝑢‖𝑝𝑝 ∇𝑢+𝑝𝑝 < ∫
Ω

𝑢+2𝑝 𝑑𝑥

𝑏 ‖∇𝑢‖𝑝𝑝 ∇𝑢−𝑝𝑝 < ∫
Ω

𝑢−2𝑝 𝑑𝑥.
(33)

From Lemma 3, there is a unique pair (𝑠𝑢, 𝑡𝑢) of positive
numbers such that 𝑠𝑢𝑢+ + 𝑡𝑢𝑢− ∈ M𝑏, which implies that
(𝑠𝑝𝑢 , 𝑡𝑝𝑢) is the solution of system (20). Then, we have

𝐷𝑠𝑝𝑢 = (𝑎 ∇𝑢+𝑝𝑝 − ∫
Ω
𝜆 𝑢+𝑝 𝑑𝑥)

⋅ (∫
Ω

𝑢−2𝑝 𝑑𝑥 − 𝑏 ∇𝑢−2𝑝𝑝 ) + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝
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⋅ (𝑎 ∇𝑢−𝑝𝑝 − ∫
Ω
𝜆 𝑢−𝑝 𝑑𝑥)

≤ (∫
Ω

𝑢+2𝑝 𝑑𝑥 − 𝑏 ‖∇𝑢‖𝑝𝑝 ∇𝑢+𝑝𝑝)

⋅ (∫
Ω

𝑢−2𝑝 𝑑𝑥 − 𝑏 ∇𝑢−2𝑝𝑝 ) + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝
⋅ (∫
Ω

𝑢−2𝑝 𝑑𝑥 − 𝑏 ‖∇𝑢‖𝑝𝑝 ∇𝑢−𝑝𝑝)

= (∫
Ω

𝑢+2𝑝 𝑑𝑥 − 𝑏 ∇𝑢+2𝑝𝑝 )

⋅ (∫
Ω

𝑢−2𝑝 𝑑𝑥 − 𝑏 ∇𝑢−2𝑝𝑝 ) − 𝑏2 ∇𝑢+2𝑝𝑝
⋅ ∇𝑢−2𝑝𝑝 = 𝐷.

(34)

Therefore, we have 𝑠𝑝𝑢 = 𝐷𝑠𝑝𝑢/𝐷 ≤ 1. Similarly, we have 𝑡𝑝𝑢 =𝐷𝑡𝑝𝑢/𝐷 ≤ 1. Thus, there exists a unique pair (𝑠𝑢, 𝑡𝑢) ∈ (0, 1] ×(0, 1] such that 𝑠𝑢𝑢+ + 𝑡𝑢𝑢− ∈M𝑏.

Lemma 6. If 𝜆 < 𝑎𝜆1 for any 𝑢 ∈ 𝑊 with 𝑏‖∇𝑢‖2𝑝𝑝 <
∫
Ω
|𝑢|2𝑝𝑑𝑥, there exists a unique 𝑠𝑢 > 0 such that 𝑠𝑢𝑢 ∈ N𝑏.

Moreover, 𝐼𝑏(𝑠𝑢𝑢) > 𝐼𝑏(𝑠𝑢) for all 𝑠 ≥ 0 and 𝑠 ̸= 𝑠𝑢.
Proof. If 𝜆 < 𝑎𝜆1 and 𝑢 ∈ 𝑊 satisfies 𝑏‖∇𝑢‖2𝑝𝑝 < ∫

Ω
|𝑢|2𝑝𝑑𝑥,

𝑠𝑢 ∈N𝑏 implies that

⟨𝐼𝑏 (𝑠𝑢) , 𝑠𝑢⟩ = 𝑎𝑠𝑝 ‖∇𝑢‖𝑝𝑝 + 𝑏𝑠2𝑝 ‖∇𝑢‖2𝑝𝑝
− 𝑠𝑝 ∫

Ω
𝜆 |𝑢|𝑝 𝑑𝑥 − 𝑠2𝑝 ∫

Ω
|𝑢|2𝑝 𝑑𝑥

= 0.
(35)

Thus, there exists a unique 𝑠𝑢 = ((𝑎‖∇𝑢‖𝑝𝑝 − ∫Ω 𝜆|𝑢|𝑝𝑑𝑥)/(∫
Ω
|𝑢|2𝑝𝑑𝑥 − 𝑏‖∇𝑢‖2𝑝𝑝 ))1/𝑝 > 0 satisfying (35). From (6), we

have

𝐼𝑏 (𝑠𝑢) = 𝑎s
𝑝

𝑝 ‖∇𝑢‖𝑝𝑝 + 𝑏𝑠
2𝑝

2𝑝 ‖∇𝑢‖2𝑝𝑝 − 𝑠
𝑝

𝑝 ∫
Ω
𝜆 |𝑢|𝑝 𝑑𝑥

− 𝑠2𝑝2𝑝 ∫Ω |𝑢|
2𝑝 𝑑𝑥.

(36)

By a simple deduction, we have

𝜕2𝐼𝑏
𝜕𝑠2

𝑠𝑢
= ((𝑝 − 1) 𝑠𝑝−2 {𝑎 ‖∇𝑢‖𝑝𝑝 − ∫

Ω
𝜆 |𝑢|𝑝 𝑑𝑥}

+ (2𝑝 − 1) 𝑠2𝑝−2 (𝑏 ‖∇𝑢‖2𝑝𝑝 − ∫
Ω
|𝑢|2𝑝 𝑑x))𝑠𝑢

= −𝑝𝑠𝑢𝑝−2 (𝑎 ‖∇𝑢‖𝑝𝑝 − ∫
Ω
𝜆 |𝑢|𝑝 𝑑𝑥) < 0.

(37)

Thus, 𝐼𝑏(𝑠𝑢) attains its maximal point at 𝑠 = 𝑠𝑢. In other
words, we have 𝐼𝑏(𝑠𝑢𝑢) > 𝐼𝑏(𝑠𝑢) for all 𝑠 ≥ 0 and 𝑠 ̸= 𝑠𝑢.

Lemma 7. Assume 𝜆 < 𝑎𝜆1; we have that
(i) if 0 < 𝑏 < 1/𝑆2, 𝑐𝑏 > 0 is attained by some V𝑏 ∈N𝑏 and

V𝑏 is a constant sign critical point of 𝐼𝑏, where 𝑆 is given by (5);
(ii) if 0 < 𝑏 < 1/2𝑆2, 𝑚𝑏 > 0 is attained by some 𝑢𝑏 ∈ M𝑏

and 𝑢𝑏 is a sign-changing critical point of 𝐼𝑏.
Proof. (i) Firstly, we will show that for all 0 < 𝑏 < 1/𝑆2, there
exists 𝑢 ∈ 𝑊 such that 𝑏‖∇𝑢‖2𝑝𝑝 < ∫

Ω
|𝑢|2𝑝𝑑𝑥, which implies

N𝑏 ̸= 0. From (5), we know that there exists 𝑒1 ∈ 𝑊 such that
‖𝑒1‖2𝑝 = 𝑆−1/𝑝‖𝑒1‖. For 0 < 𝑏 < 1/𝑆2, we have

𝑏 ∇𝑒12𝑝𝑝 < 1
𝑆2
∇𝑒12𝑝𝑝 = ∫

Ω

𝑒12𝑝 𝑑𝑥. (38)

Thus, we haveN𝑏 ̸= 0.
For each 𝑢 ∈N𝑏, it follows from 𝜆 < 𝑎𝜆1 and (5) that

𝑎 ‖∇𝑢‖𝑝𝑝 + 𝑏 ‖∇𝑢‖2𝑝𝑝 = 𝜆∫
Ω
|𝑢|𝑝 𝑑𝑥 + ∫

Ω
|𝑢|2𝑝 𝑑𝑥

≤ 𝜆
𝜆1 ‖∇𝑢‖

𝑝
𝑝 + 1

𝑆2 ‖∇𝑢‖
2𝑝
𝑝 .

(39)

Then, ‖∇𝑢‖𝑝𝑝 ≥ (𝑎 − 𝜆/𝜆1)/(1/𝑆2 − 𝑏). Thus, we have

𝐼𝑏 (𝑢) = 𝐼𝑏 (𝑢) − 1
2𝑝 ⟨𝐼


𝑏 (𝑢) , 𝑢⟩

= 1
2𝑝 (𝑎 ‖∇𝑢‖

𝑝
𝑝 − ∫
Ω
𝜆 |𝑢|𝑝 𝑑𝑥)

≥ 1
2𝑝 (𝑎 −

𝜆
𝜆1) ‖∇𝑢‖

𝑝
𝑝 ≥ (𝑎 − 𝜆/𝜆1)

2 𝑆2
2𝑝 (1 − 𝑏𝑆2) ,

(40)

that is, 𝑐𝑏 = inf𝑢∈N𝑏𝐼𝑏(𝑢) ≥ (𝑎 − 𝜆/𝜆1)2𝑆2/2𝑝(1 − 𝑏𝑆2) > 0
and 𝐼𝑏 is coercive and bounded below onN𝑏 for 0 < 𝑏 < 1/𝑆2
and 𝜆 < 𝑎𝜆1.

Let {V𝑛} ⊂ N𝑏 be a minimizing sequence for 𝐼𝑏. From𝐼𝑏(V𝑛) = 𝐼𝑏(|V𝑛|) and |V𝑛| ∈ N𝑏, we assume that V𝑛(𝑥) ≥ 0
in Ω for all 𝑛 ∈ N. Since 𝐼𝑏 is coercive and bounded below
on N𝑏, the sequence {V𝑛} is bounded in 𝑊, so that, up to
subsequences, V𝑛 ⇀ V𝑏 in𝑊 and V𝑏 ≥ 0. Next, we will prove
that V𝑛 → V𝑏 strongly in 𝑊. We suppose by contradiction
that ‖V𝑏‖ < lim inf𝑛→∞‖V𝑛‖. Therefore, we have

𝑎 ∇V𝑏𝑝𝑝 + 𝑏 ∇V𝑏2𝑝𝑝 < 𝜆∫
Ω

V𝑏𝑝 𝑑𝑥 + ∫
Ω

V𝑏2𝑝 𝑑𝑥. (41)

If V𝑏 = 0, the above inequality makes a contradiction.
Thus, we have V𝑏 ̸= 0 in Ω. From the fact that 𝑎‖∇V𝑏‖𝑝𝑝 >
𝜆∫
Ω
|V𝑏|𝑝𝑑𝑥, we have 𝑏‖∇V𝑏‖2𝑝𝑝 < ∫

Ω
|V𝑏|2𝑝𝑑𝑥. By Lemma 6,
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there exists a unique 𝑠V > 0 such that 𝑠VV𝑏 ∈N𝑏 and 𝐼𝑏(𝑠VV𝑛) ≤𝐼𝑏(V𝑛) for all V𝑛 ∈N𝑏.Thus, we have

𝑐𝑏 ≤ 𝐼𝑏 (𝑠VV𝑏) = 𝑎
𝑝
∇ (𝑠VV𝑏)𝑝𝑝 + 𝑏

2𝑝
∇ (𝑠VV𝑏)2𝑝𝑝 − 𝜆𝑝

⋅ ∫
Ω

𝑠VV𝑏𝑝 𝑑𝑥 − 1
2𝑝 ∫Ω

𝑠VV𝑏2𝑝 𝑑𝑥

< liminf
𝑛→∞

(𝑎𝑝
∇ (𝑠VV𝑛)𝑝𝑝 + 𝑏

2𝑝
∇ (𝑠VV𝑛)2𝑝𝑝

− 𝜆𝑝 ∫Ω
𝑠VV𝑛𝑝 𝑑𝑥 − 1

2𝑝 ∫Ω
𝑠VV𝑛2𝑝 𝑑𝑥)

= lim inf
𝑛→∞

𝐼𝑏 (𝑠VV𝑛) ≤ lim inf
𝑛→∞

𝐼𝑏 (V𝑛) = 𝑐𝑏,

(42)

which leads to a contradiction. Therefore, we have ‖V𝑏‖ =
liminf𝑛→∞‖V𝑛‖, V𝑛 → V𝑏 strongly in 𝑊 and 𝐼𝑏(V𝑏) =
𝑐𝑏. Then, by a standard argument, which is similar to the
discussion in [34], we can deduce that V𝑏 is a constant sign
critical point of 𝐼𝑏.

(ii) From a similar deduction as (i), we know that for 0 <
𝑏 < 1/2𝑆2, there exists 𝑢1 ∈ 𝑊 such that

𝑏 ∇𝑢12𝑝𝑝 < 1
2𝑆2

∇𝑢12𝑝𝑝 = 12 ∫Ω
𝑢12𝑝 𝑑𝑥. (43)

Obviously, if 𝑢 ∈ 𝑊 such that 𝑢1 satisfies (43), then |𝑢1| ∈ 𝑊
also satisfies (43). Therefore, we assume that 𝑢1(𝑥) ≥ 0 a.e. in𝑊. We let supp𝑢1 ⊂ 𝐵𝜌(𝑥0) and define 𝑢2(𝑥) = −𝑢1(−𝑥) for
all 𝑥 ∈ 𝐵𝜌(−𝑥0), where 𝐵𝜌(𝑥0) = {𝑥 ∈ Ω : |𝑥 − 𝑥0| < 𝜌} and𝜌 > 0. Then, from (43), we have

∫
Ω

𝑢12𝑝 𝑑𝑥∇𝑢12𝑝𝑝
= ∫Ω

𝑢22𝑝 𝑑𝑥∇𝑢22𝑝𝑝
> 2𝑏. (44)

Let 𝑢 = 𝑢1 + 𝑢2; we can obtain that 𝑢 ∈ 𝑊 and 𝑢+ = 𝑢1, 𝑢− =𝑢2 and
𝑏 ∇𝑢+2𝑝𝑝 + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝
< 12 ∫Ω

𝑢12𝑝 𝑑𝑥 + 12
𝑢1𝑝2𝑝 𝑢2𝑝2𝑝

= ∫
Ω

𝑢12𝑝 𝑑𝑥,
(45)

that is,

𝑏 ∇𝑢+2𝑝𝑝 + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 < ∫
Ω

𝑢+2𝑝 𝑑𝑥. (46)

Similarly, we also have

𝑏 ∇𝑢−2𝑝𝑝 + 𝑏 ∇𝑢+𝑝𝑝 ∇𝑢−𝑝𝑝 < ∫
Ω

𝑢−2𝑝 𝑑𝑥. (47)

By Lemma 3, we know thatM𝑏 ̸= 0 for 0 < 𝑏 < 1/2𝑆2.
Assume that {𝑢𝑛} ⊂ M𝑏 is a minimizing sequence for

𝐼𝑏, such that 𝐼𝑏(𝑢𝑛) → 𝑚𝑏. Since 𝐼𝑏 is coercive on N𝑏,

the sequence {𝑢𝑛} is bounded in 𝑊; going if necessary to a
subsequence, still denoted by {𝑢𝑛}, we can assume that there
exists a 𝑢𝑏 ∈ 𝑊 such that for 𝑛 sufficiently large,

𝑢±𝑛 ⇀ 𝑢±𝑏 weakly in 𝑊,
𝑢𝑛 (𝑥) → 𝑢𝑏 (𝑥) almost everywhere on Ω,

𝑢±𝑛 → 𝑢±b strongly in 𝐿𝑠 (Ω) for 𝑝 ≤ 𝑠 < 𝑝∗.
(48)

From {𝑢𝑛} ⊂M𝑏, we have ⟨𝐼𝑏(𝑢𝑛), 𝑢±𝑛 ⟩ = 0; that is,
𝑎 ∇𝑢±𝑛 𝑝𝑝 + 𝑏 ∇𝑢𝑛𝑝𝑝 ∇𝑢±𝑛𝑝𝑝
= 𝜆∫
Ω

𝑢±𝑛 𝑝 𝑑𝑥 + ∫
Ω

𝑢±𝑛 2𝑝 𝑑𝑥.
(49)

Therefore,

𝑎 ∇𝑢±𝑛 𝑝𝑝 ≤ 𝜆∫
Ω

𝑢±𝑛 𝑝 𝑑𝑥 + ∫
Ω

𝑢±𝑛 2𝑝 𝑑𝑥. (50)

In the same way, we have (𝑎 − 𝜆/𝜆1)‖∇𝑢±𝑛‖𝑝𝑝 ≤ (1/𝑆2)‖∇𝑢±𝑛 ‖2𝑝𝑝
and ‖∇𝑢±𝑛 ‖𝑝𝑝 ≥ 𝑆2(𝑎 − 𝜆/𝜆1) > 0. Passing to the limit, we have

0 < 𝑆2 (𝑎 − 𝜆
𝜆1)
2

≤ lim inf
𝑛→∞

(𝑎 − 𝜆
𝜆1)

∇𝑢±𝑛 𝑝𝑝

≤ ∫
Ω

𝑢±𝑏 2𝑝 𝑑𝑥,
(51)

which implies that 𝑢±𝑏 ̸= 0 and
𝑎 ∇𝑢+𝑏 𝑝𝑝 + 𝑏 ∇𝑢𝑏𝑝𝑝 ∇𝑢+𝑏 𝑝𝑝
≤ 𝜆∫
Ω

𝑢+𝑏 𝑝 𝑑𝑥 + ∫
Ω

𝑢+𝑏 2𝑝 𝑑𝑥,
𝑎 ∇𝑢−𝑏 𝑝𝑝 + 𝑏 ∇𝑢𝑏𝑝𝑝 ∇𝑢−𝑏 𝑝𝑝
≤ 𝜆∫
Ω

𝑢−𝑏 𝑝 𝑑𝑥 + ∫
Ω

𝑢−𝑏 2𝑝 𝑑𝑥.

(52)

From 𝑎‖∇𝑢±𝑏 ‖𝑝𝑝 > 𝜆∫Ω |𝑢±𝑏 |𝑝𝑑𝑥, Lemmas 3 and 5, there exists
a unique pair (𝑠𝑢, 𝑡𝑢) ∈ (0, 1] × (0, 1] such that

𝑠𝑢𝑢+𝑏 + 𝑡𝑢𝑢−𝑏 ∈M𝑏. (53)

From the definition of𝑚𝑏, we have
𝑚𝑏 ≤ 𝐼𝑏 (𝑠𝑢𝑢+𝑏 + 𝑡𝑢𝑢−𝑏 ) = 𝐼𝑏 (𝑠𝑢𝑢+𝑏 + 𝑡𝑢𝑢−𝑏 )
− 1
2𝑝 ⟨𝐼


𝑏 (𝑠𝑢𝑢+𝑏 + 𝑡𝑢𝑢−𝑏 ) , 𝑠𝑢𝑢+𝑏 + 𝑡𝑢𝑢−𝑏⟩

= 1
2𝑝 (𝑎

∇ (𝑠𝑢𝑢+𝑏 + 𝑡𝑢𝑢−𝑏 )𝑝𝑝

− 𝜆∫
Ω

𝑠𝑢𝑢+𝑏 + 𝑡𝑢𝑢−𝑏 𝑝 𝑑𝑥)
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= 1
2𝑝 {𝑠

𝑝
𝑢 (𝑎 ∇𝑢+𝑏 𝑝𝑝 − 𝜆∫

Ω

𝑢+𝑏 𝑝 𝑑𝑥)

+ 𝑡𝑝𝑢 (𝑎 ∇𝑢−𝑏 𝑝𝑝 − 𝜆∫
Ω

𝑢−𝑏 𝑝 𝑑𝑥)}

≤ 1
2𝑝 {(𝑎

∇𝑢+𝑏 𝑝𝑝 − 𝜆∫
Ω

𝑢+𝑏 𝑝 𝑑𝑥)

+ (𝑎 ∇𝑢−𝑏 𝑝𝑝 − 𝜆∫
Ω

𝑢−𝑏 𝑝 𝑑𝑥)} = 1
2𝑝 (𝑎

∇𝑢𝑏𝑝𝑝

− 𝜆∫
Ω

𝑢𝑏𝑝 𝑑𝑥)

≤ lim inf
𝑛→∞

{𝐼𝑏 (𝑢𝑛) − 1
2𝑝 ⟨𝐼


𝑏 (𝑢𝑛) , 𝑢𝑛⟩} = 𝑚𝑏.

(54)

Thus, 𝑠𝑢 = 𝑡𝑢 = 1, 𝑢𝑏 ∈ M𝑏, and 𝐼𝑏(𝑢𝑏) = 𝑚𝑏, 𝑢𝑏 is the
required minimizer.

Next, we will prove that 𝑢𝑏 is indeed a sign-changing
solution; that is, 𝐼𝑏(𝑢𝑏) = 0. We mainly use the quantitative
deformation lemma [35] to prove the results.

If 𝐼𝑏(𝑢𝑏) ̸= 0, there exists 𝛿 > 0 and 𝛼 > 0, such that

𝑢 ∈ 𝑊,
𝐼𝑏 (𝑢) ≥ 𝛼,

∀ 𝑢 − 𝑢𝑏 ≤ 3𝛿.
(55)

Let𝐷 = (1/2, 3/2)×(1/2, 3/2),𝜓(𝑠, 𝑡) = 𝑠𝑢+𝑏 +𝑡𝑢−𝑏 , and (𝑠, 𝑡) ∈𝐷. It follows from Lemma 3 that
𝑚𝑏 = max

𝜕𝐷
𝐼𝑏 ∘ 𝜓 < 𝑚𝑏. (56)

Let 𝜀 = min{(𝑚𝑏 −𝑚𝑏)/3, 𝛼𝛿/8} and 𝑆𝛿 = {𝑢 ∈ 𝑊 : ‖𝑢−𝑢𝑏‖ ≤𝛿}; there exists a deformation 𝜂 ∈ 𝐶([0, 1] × 𝑊,𝑊) such that
(i) 𝜂(1, 𝑢) = 𝑢 if 𝑢 ∉ 𝐼−1𝑏 ([𝑚𝑏 − 2𝜀,𝑚𝑏 + 2𝜀]) ∩ 𝑆2𝛿;
(ii) 𝜂(1, 𝐼𝑚𝑏+𝜀

𝑏
∩ 𝑆𝛿) ⊂ 𝐼𝑚𝑏−𝜀𝑏 ;

(iii) 𝐼𝑏(𝜂(1, 𝑢)) ≤ 𝐼𝑏(𝑢), ∀𝑢 ∈ 𝑊.
From (56), Lemma 3 and (ii), we can easily get

max
(𝑠,𝑡)∈𝐷

𝐼𝑏 (𝜂 (1, 𝜓 (𝑠, 𝑡))) < 𝑚𝑏. (57)

We prove that 𝜂(1, 𝜓(𝐷)) ∩ M𝑏 ̸= 0, which contradicts the
definition of𝑚𝑏. We define 𝑔(𝑠, 𝑡) = 𝜂(1, 𝜓(𝑠, 𝑡)) and
Φ0 (𝑠, 𝑡) = (𝐼𝑏 (𝜓 (𝑠, 𝑡)) 𝑢+𝑏 , 𝐼𝑏 (𝜓 (𝑠, 𝑡)) 𝑢−𝑏 )
= (𝐼𝑏 (𝑠𝑢+𝑏 + 𝑡𝑢−𝑏 ) 𝑢+𝑏 , 𝐼𝑏 (𝑠𝑢+𝑏 + 𝑡𝑢−𝑏 ) 𝑢−𝑏 ) ,

Φ1 (𝑠, 𝑡)
= (1𝑠 𝐼


𝑏 (𝑔 (𝑠, 𝑡)) 𝑔+ (𝑠, 𝑡) , 1𝑡 𝐼


𝑏 (𝑔 (𝑠, t)) 𝑔− (𝑠, 𝑡)) .

(58)

Lemma 3 and the degree theory yield deg(Φ0, 𝐷, 0) = 1. From
(56), we know that 𝑔 = 𝜓 on 𝜕𝐷. Consequently, we have
deg(Φ0, 𝐷, 0) = deg(Φ1, 𝐷, 0) = 1. Therefore, Φ1(𝑠0, 𝑡0) = 0
for some (𝑠0, 𝑡0) ∈ 𝐷; that is, 𝜂(1, 𝜓(𝑠0, 𝑡0)) = 𝑔(𝑠0, 𝑡0) ∈
M𝑏, which is a contradiction. From this point, 𝑢𝑏 is a sign-
changing critical point of 𝐼𝑏 and 𝐼𝑏(𝑢𝑏) = 0.

3. The Existence of the
Sign-Changing Solutions

In this part, we are devoted to provingTheorem 1.

Proof of �eorem 1. In view of Lemma 7, we know that for
0 < 𝑏 < 1/2𝑆2 and 𝜆 < 𝑎𝜆1, there exists a 𝑢𝑏 ∈ M𝑏 such
that 𝑚𝑏 = 𝐼𝑏(𝑢𝑏) and 𝐼𝑏(𝑢𝑏) = 0; that is, 𝑢𝑏 is a ground state
sign-changing solution for problem (1).Then by Lemma 4, we
have that

𝑏 ∇𝑢+𝑏 2𝑝𝑝 + 𝑏 ∇𝑢+𝑏 𝑝𝑝 ∇𝑢−𝑏 𝑝𝑝 < ∫
Ω

𝑢+𝑏 2𝑝 𝑑𝑥

𝑏 ∇𝑢−𝑏 2𝑝𝑝 + 𝑏 ∇𝑢+𝑏 𝑝𝑝 ∇𝑢−𝑏 𝑝𝑝 < ∫
Ω

𝑢−𝑏 2𝑝 𝑑𝑥,
(59)

which implies

𝑏 ∇𝑢+𝑏 2𝑝𝑝 < ∫
Ω

𝑢+𝑏 2𝑝 𝑑𝑥

𝑏 ∇𝑢−𝑏 2𝑝𝑝 < ∫
Ω

𝑢−𝑏 2𝑝 𝑑𝑥.
(60)

Then from Lemma 6, there exist 𝑠1, 𝑡1 > 0 such that
𝑠1𝑢+𝑏 , 𝑡1𝑢−𝑏 ∈N𝑏. Therefore, we have

𝑚𝑏 = 𝐼𝑏 (𝑢𝑏) ≥ 𝐼𝑏 (𝑠1𝑢+𝑏 + 𝑡1𝑢−𝑏 )

= 𝐼𝑏 (𝑠1𝑢+𝑏 ) + 𝐼𝑏 (𝑡1𝑢−𝑏 ) + 𝑏𝑠
𝑝
1 𝑡𝑝1
𝑝

∇𝑢+𝑏 𝑝𝑝 ∇𝑢−𝑏 𝑝𝑝
> 𝐼𝑏 (𝑠1𝑢+𝑏 ) + 𝐼𝑏 (𝑡1𝑢−𝑏 ) ≥ 2𝑐𝑏.

(61)

Therefore, the energy doubling property is proved.
Next, we prove that 𝑢𝑏 changes sign only once; that is, 𝑢𝑏

has exactly two nodal domains. We assume by contradiction
that 𝑢𝑏 = 𝑢1 + 𝑢2 + 𝑢3 with 𝑢𝑖 ̸= 0, 𝑢1 ≥ 0, 𝑢2 ≤ 0, 𝑢3 ≥ 0 and
supp(𝑢𝑖) ∩ supp(𝑢𝑗) = 0 for 𝑖 ̸= 𝑗, (𝑖, 𝑗 = 1, 2, 3).

Since 𝐼𝑏(𝑢𝑏) = 0, we can get

⟨𝐼𝑏 (𝑢1 + 𝑢2) , 𝑢1⟩ = ⟨𝐼𝑏 (𝑢𝑏) , 𝑢1⟩
− 𝑏 ∇𝑢1𝑝𝑝 ∇𝑢3𝑝𝑝 < 0,

⟨𝐼𝑏 (𝑢1 + 𝑢2) , 𝑢2⟩ = ⟨𝐼𝑏 (𝑢𝑏) , 𝑢2⟩
− 𝑏 ∇𝑢2𝑝𝑝 ∇𝑢3𝑝𝑝 < 0.

(62)

Then, by Lemma 5, there exists a pair (𝑠, 𝑡) ∈ (0, 1] × (0, 1]
such that 𝑠𝑢1 + 𝑡𝑢2 ∈M𝑏 and 𝐼𝑏(𝑠𝑢1 + 𝑡𝑢2) ≥ 𝑚𝑏.

From 𝜆 < 𝑎𝜆1, ⟨𝐼𝑏(𝑢𝑏), 𝑢𝑏⟩ = 0, and ⟨𝐼𝑏(𝑠𝑢1+𝑡𝑢2), 𝑠𝑢1+𝑡𝑢2⟩ = 0, we have
𝑚𝑏 = 𝐼𝑏 (𝑢𝑏) − 1

2𝑝 ⟨𝐼

𝑏 (𝑢𝑏) , 𝑢𝑏⟩ = 1

2𝑝 (𝑎
∇𝑢𝑏𝑝𝑝

− 𝜆∫
Ω

𝑢𝑏𝑝 𝑑𝑥)

= 1
2𝑝 {(𝑎

∇𝑢1𝑝𝑝 − 𝜆∫
Ω

𝑢1𝑝 𝑑𝑥)
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+ (𝑎 ∇𝑢2𝑝𝑝 − 𝜆∫
Ω

𝑢2𝑝 𝑑𝑥)

+ (𝑎 ∇𝑢3𝑝𝑝 − 𝜆∫
Ω

𝑢3𝑝 𝑑𝑥)}

> 1
2𝑝 {(𝑎

∇𝑢1𝑝𝑝 − 𝜆∫
Ω

𝑢1𝑝 𝑑𝑥)

+ (𝑎 ∇𝑢2𝑝𝑝 − 𝜆∫
Ω

𝑢2𝑝 𝑑𝑥)}

≥ 1
2𝑝 {(𝑠

)𝑝 (𝑎 ∇𝑢1𝑝𝑝 − 𝜆∫
Ω

𝑢1𝑝 𝑑𝑥)

+ (𝑡)𝑝 (𝑎 ∇𝑢2𝑝𝑝 − 𝜆∫
Ω

𝑢2𝑝 𝑑𝑥)} = 𝐼𝑏 (𝑠𝑢1
+ 𝑡𝑢2) − 1

2𝑝 ⟨𝐼

𝑏 (𝑠𝑢1 + 𝑡𝑢2) , 𝑠𝑢1 + 𝑡𝑢2⟩

= 𝐼𝑏 (𝑠𝑢1 + 𝑡𝑢2) ≥ 𝑚𝑏,
(63)

which leads to a contradiction; thus, 𝑢𝑏 has exactly two nodal
domains.

4. The Convergence Property of 𝑢𝑏 as 𝑏 ↘ 0
In this part, we regard 𝑏 > 0(𝑏 ∈ (0, 1/2𝑆2)) as a small
parameter in (1) and discuss the convergence property of the
least energy sign-changing solution 𝑢𝑏, where 𝑢𝑏 ∈ M𝑏 and𝑢𝑏 changes sign only once.

Proof of �eorem 2. We choose a nonzero function 𝑤0 ∈𝐶∞0 (Ω) and 𝛾 > 0 such that 𝑤±0 ̸= 0 and
𝑎 ∇𝑤+0 𝑝𝑝 + 𝛾 ∇𝑤0𝑝𝑝 ∇𝑤+0 𝑝𝑝
≤ 𝜆∫
Ω

𝑤+0 𝑝 𝑑𝑥 + ∫
Ω

𝑤+0 2𝑝 𝑑𝑥
𝑎 ∇𝑤−0 𝑝𝑝 + 𝛾 ∇𝑤0𝑝𝑝 ∇𝑤−0 𝑝𝑝
≤ 𝜆∫
Ω

𝑤−0 𝑝 𝑑𝑥 + ∫
Ω

𝑤−0 2𝑝 𝑑𝑥.

(64)

Thus, for any 𝑏 ∈ [0, 𝛾], we have ⟨𝐼𝑏(𝑤0), 𝑤±0 ⟩ ≤ 0. It follows
from Lemma 5 that there is a unique pair (𝑠𝑏, 𝑡𝑏) ∈ (0, 1] ×(0, 1] such that 𝑠𝑏𝑤+0 + 𝑡𝑏𝑤−0 ∈M𝑏. Thus, we have

𝐼𝑏 (𝑠𝑏𝑤+0 + 𝑡𝑏𝑤−0 ) = 𝐼𝑏 (𝑠𝑏𝑤+0 + 𝑡𝑏𝑤−0 )
− 1
2𝑝 ⟨𝐼


𝑏 (𝑠𝑏𝑤+0 + 𝑡𝑏𝑤−0 ) , 𝑠𝑏𝑤+0 + 𝑡𝑏𝑤−0⟩

= 1
2𝑝 (𝑎

∇ (𝑠𝑏𝑤+0 + 𝑡𝑏𝑤−0 )𝑝𝑝

− 𝜆∫
Ω

𝑠𝑏𝑤+0 + 𝑡𝑏𝑤−0 𝑝 𝑑𝑥)

< 𝑎
2𝑝

∇ (𝑠𝑏𝑤+0 + 𝑡𝑏𝑤−0 )𝑝𝑝 ≤ 𝑎
2𝑝

𝑤0𝑝 = Θ.

(65)

For any sequence {𝑏𝑛} with 𝑏𝑛 ↘ 0 as 𝑛 → ∞, there exists
𝑢𝑏𝑛 ∈M𝑏 such that 𝑢𝑏𝑛 is a ground state sign-changing critical
point of 𝐼𝑏𝑛(𝑢) and

Θ + 1 ≥ 𝐼𝑏𝑛 (𝑢𝑏𝑛) − 1
2𝑝 ⟨𝐼


𝑏𝑛
(𝑢𝑏𝑛) , 𝑢𝑏𝑛⟩

= 1
2𝑝 (𝑎

∇𝑢𝑏𝑛
𝑝

𝑝
− 𝜆∫
Ω

𝑢𝑏𝑛 
𝑝 𝑑𝑥)

≥ 1
2𝑝 (𝑎 −

𝜆
𝜆1)

∇𝑢𝑏𝑛
𝑝

𝑝
.

(66)

The above inequality shows that 𝑢𝑏𝑛 is bounded in 𝑊; then
there exists a subsequence of {𝑏𝑛}, still denoted by {𝑏𝑛}, such
that 𝑢𝑏𝑛 ⇀ 𝑢0 weakly in 𝑊. By the compactness of the
embedding 𝑊 → 𝐿𝑠(Ω) for 𝑝 ≤ 𝑠 < 𝑝∗, using a standard
argument, we have that 𝑢±𝑏𝑛 → 𝑢±0 in 𝑊 and 𝑢±0 ̸= 0.
Moreover, we have that for all 𝑢 ∈ 𝑊,

0 = lim
𝑛→∞

⟨𝐼𝑏𝑛 (𝑢𝑏𝑛) , 𝑢⟩

= lim
𝑛→∞

{∫
Ω
𝑎 ∇𝑢𝑏𝑛 

𝑝−2 ∇𝑢𝑏𝑛∇𝑢𝑑𝑥

+ 𝑏𝑛 ∫
Ω

∇𝑢𝑏𝑛 
𝑝 𝑑𝑥∫

Ω

∇𝑢𝑏𝑛 
𝑝−2 ∇𝑢𝑏𝑛∇𝑢𝑑𝑥

− 𝜆∫
Ω

𝑢𝑏𝑛 
𝑝−2 𝑢𝑏𝑛𝑢𝑑𝑥 − ∫

Ω

𝑢𝑏𝑛 
2𝑝−2 𝑢𝑏𝑛𝑢𝑑𝑥}

= ∫
Ω
𝑎 ∇𝑢0𝑝−2 ∇𝑢0∇𝑢𝑑𝑥 − 𝜆∫

Ω

𝑢0𝑝−2 𝑢0𝑢𝑑𝑥

− ∫
Ω

𝑢02𝑝−2 𝑢0𝑢𝑑𝑥 = ⟨𝐼0 (𝑢0) , 𝑢⟩ ,

(67)

which implies that

𝐼0 (𝑢0) = 0, 𝑢0 ∈M0, 𝐼0 (𝑢0) ≥ 𝑚0. (68)

Secondly, in the Proof of Theorem 1, 𝑏 = 0 is allowed;
then, there exists a ]0 ∈M0 such that

𝐼0 (]0) = 𝑚0 = inf
𝑢∈M0

𝐼0 (𝑢) , (69)

and ]0 is a sign-changing solution for (11) which changes
sign only once. Similarly, we can pick up 𝜀 > 0 which is
independent of 𝑏𝑛 such that

𝜀 ∇]+0 2𝑝𝑝 + 𝜀 ∇]+0 𝑝𝑝 ∇]−0 𝑝𝑝 < ∫
Ω

]+0 2𝑝 𝑑𝑥

𝜀 ∇]−0 2𝑝𝑝 + 𝜀 ∇]+0 𝑝𝑝 ∇]−0 𝑝𝑝 < ∫
Ω

]−0 2𝑝 𝑑𝑥.
(70)

According to Lemma 3, there exists a unique pair (𝑠0, 𝑡0) of
positive numbers such that 𝑠0]+0 + 𝑡0]−0 ∈M𝜀.
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Let 𝑏𝑛 ∈ [0, 𝜀]; we know that

⟨𝐼𝑏𝑛 (𝑠0]+0 + 𝑡0]−0 ) , 𝑠0]+0⟩
= 𝑎 ∇ (𝑠0]+0 )𝑝𝑝 + 𝑏𝑛 ∇ (𝑠0]+0 )2𝑝𝑝
+ 𝑏𝑛 ∇ (𝑠0]+0 )𝑝𝑝 ∇ (𝑡0]−0 )𝑝𝑝 − 𝜆∫

Ω

𝑠0]+0 𝑝 𝑑𝑥

− ∫
Ω

𝑠0]+0 2𝑝 𝑑𝑥
≤ 𝑎 ∇ (𝑠0]+0 )𝑝𝑝 + 𝜀 ∇ (𝑠0]+0 )2𝑝𝑝
+ 𝜀 ∇ (𝑠0]+0 )𝑝𝑝 ∇ (𝑡0]−0 )𝑝𝑝 − 𝜆∫

Ω

𝑠0]+0 𝑝 𝑑𝑥

− ∫
Ω

𝑠0]+0 2𝑝 𝑑𝑥 = ⟨𝐼𝜀 (𝑠0]+0 + 𝑡0]−0 ) , 𝑠0]+0⟩
= 0.

(71)

In the same way, we can obtain that

⟨𝐼𝑏𝑛 (𝑠0]+0 + 𝑡0]−0 ) , 𝑡0]−0⟩ ≤ ⟨𝐼𝜀 (𝑠0]+0 + 𝑡0]−0 ) , 𝑡0]−0⟩
= 0.

(72)

It follows from Lemma 5 that for all 𝑏𝑛 ∈ [0, 𝜀], there exists a
unique pair (𝑠𝑛, 𝑡𝑛) ∈ (0, 𝑠0] × (0, 𝑡0] such that 𝑠𝑛]+0 + 𝑡𝑛]−0 ∈
M𝑏𝑛 . Then, for any sequence {𝑏𝑛} with 𝑏𝑛 ↘ 0 as 𝑛 → ∞, we
have as 𝑛 → ∞,

𝑏𝑛𝑠2𝑝𝑛 ∇]+0 2𝑝𝑝 → 0,
𝑏𝑛𝑠𝑝𝑛 𝑡𝑝𝑛 ∇]+0 𝑝𝑝 ∇]−0 𝑝𝑝 → 0,

𝑏𝑛𝑡2𝑝𝑛 ∇]−0 2𝑝𝑝 → 0.
(73)

According to ⟨𝐼𝑏𝑛(𝑠𝑛]+0 + 𝑡𝑛]−0 ), 𝑠𝑛]+0 ⟩ = ⟨𝐼𝑏𝑛(𝑠𝑛]+0 + 𝑡𝑛]−0 ),𝑡𝑛]−0 ⟩ = 0, we have

𝑎 ∇]+0 𝑝𝑝 + ∘ (1) = 𝜆∫
Ω

]+0 𝑝 𝑑𝑥 + 𝑠𝑝𝑛 ∫
Ω

]+0 2𝑝 𝑑𝑥

𝑎 ∇]−0 𝑝𝑝 + ∘ (1) = 𝜆∫
Ω

]−0 𝑝 𝑑𝑥 + 𝑡𝑝𝑛 ∫
Ω

]−0 2𝑝 𝑑𝑥.
(74)

From ⟨𝐼0(]0), ]±0 ⟩ = 0, we have

𝑎 ∇]+0 𝑝𝑝 = 𝜆∫
Ω

]+0 𝑝 𝑑𝑥 + ∫
Ω

]+0 2𝑝 𝑑𝑥

𝑎 ∇]−0 𝑝𝑝 = 𝜆∫
Ω

]−0 𝑝 𝑑𝑥 + ∫
Ω

]−0 2𝑝 𝑑𝑥.
(75)

Combining (74) with (75), we have that as 𝑛 → ∞, 𝑠𝑛 → 1,
𝑡𝑛 → 1. Lastly, we only need to show 𝐼0(𝑢0) = 𝐼0(]0); then

by (68), 𝑢0 is a ground state sign-changing solution for (11),
which changes sign only once. In fact,

𝐼0 (]0) ≤ 𝐼0 (𝑢0) = lim
𝑛→∞

𝐼𝑏𝑛 (𝑢𝑏𝑛)
≤ lim
𝑛→∞

𝐼𝑏𝑛 (𝑠𝑛]+0 + 𝑡𝑛]−0 ) = 𝐼0 (]+0 + ]−0 )
= 𝐼0 (]0) .

(76)

Then, the proof of Theorem 2 is complete.
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