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Thiswork is concernedwith the qualitative behavior of discrete time single speciesmodel with fuzzy environment𝑥𝑛+1 = 𝑥𝑛 exp(𝐴−𝐵𝑥𝑛), 𝑛 = 0, 1, 2, . . . ,where𝑥𝑛 denotes the number of individuals of generation 𝑛,𝐴 is the intrinsic growth rate, and 𝐵 is interpreted
as the carrying capacity of the surrounding environment. {𝑥𝑛} is a sequence of positive fuzzy number. 𝐴, 𝐵 and the initial value 𝑥0
are positive fuzzy numbers. Applying difference of Hukuhara (H-difference), the existence, uniqueness of the positive solution, and
global asymptotic behavior of all positive solution with themodel are obtained. Moreover a numerical example is presented to show
the effectiveness of theoretic results obtained.

1. Introduction

Difference equations or discrete time dynamical systems have
many applications in economics, biology, computer science,
control engineering, etc. (see, for example, [1–10] and the
references therein). In the recent years, many researchers
pay a close attention to the study on qualitative behavior
of difference equation in mathematical biology and popula-
tion dynamics [11–13]. In theoretical ecology, the difference
equation models are often described the interactions of
species with nonoverlapping generations. For example, in
1954, Ricker [14] forecasted fish stock recruitment using the
following discrete time single species model

𝑥𝑛+1 = 𝑥𝑛 exp (𝑟 − 𝑥𝑛𝐾 ) , 𝑛 = 0, 1, 2, . . . . (1)

where 𝑥𝑛 denotes the number of individuals of generation𝑛, 𝑟 is the intrinsic growth rate, and 𝐾 is interpreted as the
carrying capacity of the surround environment. In fact, from
a biological point of view, researchers focus onwhether or not
all species in a multispecies community can be permanent or
bounded.

As is all known, the parameters of the model are usually
based on statistical method or on the choice of some method

adapted to the identification. Therefore, these models are
subjected to inaccuracies (fuzzy uncertainty) that can be
caused by the nature of the state variables, by coefficients of
the model and by initial conditions. In our real life, scientists
are concerned with uncertainty and accept the fact that
uncertainty is very important influencing factor of dynamical
behavior of dynamical system. Fuzzy set introduced byZadeh
[15] and its development have been growing rapidly to various
situation of theory and application including the theory of
differential and difference equations with uncertainty. It is
well known that a fuzzy difference equation is a difference
equation where parameters or the initial values of systems
are fuzzy numbers, and its solutions are sequences of fuzzy
numbers.

In fact, the dynamical behavior of fuzzy difference
equation is different from the behavior of corresponding
parametric ordinary difference equation. In recent decades,
researchers have an increasing interest in studying fuzzy
difference equation. Some results on fuzzy difference equa-
tions have been reported (see, for example, [16–31]). Barros,
Bassanezi, and Tonelli [32] have investigated the dynamical
behavior of population model with fuzzy uncertainty. How-
ever, to the best of our knowledge, few authors study discrete
time single species model under fuzzy environment. This
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paper is the first to study the dynamical behavior of discrete
time single species model using fuzzy sets theory.

The main aim of this paper is to study the dynamical
behaviors of the following discrete time single species model

𝑥𝑛+1 = 𝑥𝑛 exp (𝐴 − 𝐵𝑥𝑛) , 𝑛 = 0, 1, . . . , (2)

where 𝑥𝑛 denotes the number of individuals of generation𝑛 and {𝑥𝑛} is a sequence of positive fuzzy numbers. 𝐴, 𝐵
are the intrinsic growth rate and the carrying capacity of the
surround environment, respectively. Parameters𝐴, 𝐵 and the
initial condition 𝑥0 are positive fuzzy numbers. This paper
is, to some extent, a generalization of classic discrete time
single speciesmodel, using the subjectivitywhich comes from
“fuzziness” of the biological phenomenon.

The rest of this paper is organized as follows. In the next
section, we introduce some definitions and preliminaries.
In Section 3, the dynamical behaviors on the existence,
uniqueness, and global asymptotic behaviors of the positive
fuzzy solution to system (2) are studied. A numerical example
is given to show effectiveness of results obtained in Section 4.
Finally, a general conclusion is drawn in Section 5.

2. Mathematical Preliminaries

For convenience, we give some definitions used in the sequel.

Definition 1 (see [33]). 𝐴 is said to be a fuzzy number if 𝐴 :𝑅 → [0, 1] satisfies the below (i)-(iv)
(i)𝐴 is normal; i.e., there exists an 𝑥 ∈ 𝑅 such that𝐴(𝑥) =1.
(ii) 𝐴 is fuzzy convex, i.e., for all 𝑡 ∈ [0, 1] and 𝑥1, 𝑥2 ∈ 𝑅

such that

𝐴 (𝑡𝑥1 + (1 − 𝑡) 𝑥2) ≥ min {𝐴 (𝑥1) , 𝐴 (𝑥2)} ; (3)

(iii) 𝐴 is upper semicontinuous.
(iv) The support of 𝐴, supp𝐴 = ⋃𝛼∈(0,1][𝐴]𝛼 =

{𝑥 : 𝐴(𝑥) > 0} is compact, where 𝐴 denotes the closure of 𝐴.
Let 𝐸1 be the set of all real fuzzy numbers which

are normal, upper semicontinuous, convex, and compactly
supported fuzzy sets.

Definition 2 (fuzzy number (parametric form) [34]). A fuzzy
number 𝑢 in a parametric form is a pair (𝑢, 𝑢) of function𝑢(𝑟), 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1, which satisfies the following
requirements:

(1) 𝑢(𝑟) is a bounded monotonic increasing left continu-
ous function.

(2) 𝑢(𝑟) is a bounded monotonic decreasing left continu-
ous function.

(3) 𝑢(𝑟) ≤ 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1. A crisp (real) number 𝑥 is
simply represented by (𝑢(𝑟), 𝑢2(𝑟)) = (𝑥, 𝑥), 0 ≤ 𝑟 ≤ 1. The
fuzzy number space {(𝑢(𝑟), 𝑢(𝑟))} becomes a convex cone 𝐸1
which could be embedded isomorphically and isometrically
into a Banach space. [26]

Definition 3. Let 𝑢 = (𝑢(𝑟), 𝑢(𝑟)), V = (V(𝑟), V(𝑟)) ∈ 𝐸1, 0 ≤𝑟 ≤ 1, and arbitrary 𝑘 ∈ 𝑅. Then

(i) 𝑢 = V iff 𝑢(𝑟) = V(𝑟), 𝑢(𝑟) = V(𝑟),
(ii) 𝑢 + V = (𝑢(𝑟) + V(𝑟), 𝑢(𝑟) + V(𝑟)),
(iii)

𝑘𝑢 = {{{
(𝑘𝑢 (𝑟) , 𝑘𝑢 (𝑟)) , 𝑘 ≥ 0;
(𝑘𝑢 (𝑟) , 𝑘𝑢 (𝑟)) , 𝑘 < 0, (4)

(iv) 𝑢V = (min{𝑢(𝑟)V(𝑟), 𝑢(𝑟)V(𝑟), 𝑢(𝑟)V(𝑟), 𝑢(𝑟)V(𝑟)},
max{𝑢(𝑟)V(𝑟), 𝑢(𝑟)V(𝑟), 𝑢(𝑟)V(𝑟), 𝑢(𝑟)V(𝑟)}).
Definition 4. Let 𝑢 = (𝑢(𝑟), 𝑢(𝑟)), V = (V(𝑟), V(𝑟)) ∈ 𝐸1, 0 ≤𝑟 ≤ 1, and if there exists 𝑤 = (𝑤(𝑟), 𝑤(𝑟)) ∈ 𝐸1 such that𝑢 = V + 𝑤, then 𝑤 is called the H-difference of 𝑢 and V and it
is denoted by 𝑤 = 𝑢 − V = (𝑢(𝑟) − V(𝑟), 𝑢(𝑟) − V(𝑟))

In this paper the “−” sign stands always for H-difference
and let us remark that 𝑢 − V ̸= 𝑢 + (−1)V.
Definition 5 (triangular fuzzy number [34]). A triangular
fuzzy number (TFN) denoted by𝐴 is defined as (𝑎, 𝑏, 𝑐)where
the membership function

𝐴 (𝑥) =

{{{{{{{{{{{{{{{{{{{{{{{

0, 𝑥 ≤ 𝑎;
𝑥 − 𝑎𝑏 − 𝑎 , 𝑎 ≤ 𝑥 ≤ 𝑏;
1, 𝑥 = 𝑏;
𝑐 − 𝑥𝑐 − 𝑏 , 𝑏 ≤ 𝑥 ≤ 𝑐;
0, 𝑥 ≥ 𝑐.

(5)

The 𝛼−cuts of 𝐴 = (𝑎, 𝑏, 𝑐) are denoted by [𝐴]𝛼 = {𝑥 ∈𝑅 : 𝐴(𝑥) ≥ 𝛼} = [𝑎 + 𝛼(𝑏 − 𝑎), 𝑐 − 𝛼(𝑐 − 𝑏)] = [𝐴 𝑙,𝛼, 𝐴𝑟,𝛼],𝛼 ∈ [0, 1], and it is clear that the [𝐴]𝛼 are closed interval. A
fuzzy number is positive if supp𝐴 ⊂ (0,∞).

The following proposition is fundamental since it charac-
terizes a fuzzy set through the 𝛼-levels.
Proposition 6 (see [33]). If {𝐴𝛼 : 𝛼 ∈ [0, 1]} is a compact,
convex and not empty subset family of 𝑅𝑛 such that

(i) ⋃𝐴𝛼 ⊂ 𝐴0,
(ii) 𝐴𝛼2 ⊂ 𝐴𝛼1 if 𝛼1 ≤ 𝛼2,
(iii) 𝐴𝛼 = ⋂𝑘≥1𝐴𝛼𝑘 if 𝛼𝑘 ↑ 𝛼 > 0,
then there is 𝑢 ∈ 𝐸𝑛 such that [𝑢]𝛼 = 𝐴𝛼 for all 𝛼 ∈ (0, 1]

and [𝑢]0 = ⋃0<𝛼≤1𝐴𝛼 ⊂ 𝐴0.
Definition 7 (see [27]). A sequence of positive fuzzy numbers{𝑥𝑛} persists (resp., is bounded) if there exists a positive real
number 𝑀 (resp.,𝑁) such that

supp𝑥𝑛 ⊂ [𝑀,∞) (resp. supp𝑥𝑛 ⊂ (0,𝑁]) ,
𝑛 = 1, 2, . . . . (6)

A sequence of positive fuzzy numbers {𝑥𝑛} is bounded and
persists if there exist positive real numbers 𝑀,𝑁 > 0 such
that

supp𝑥𝑛 ⊂ [𝑀,𝑁] , 𝑛 = 1, 2, . . . . (7)
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Definition 8. 𝑥𝑛 is a positive solution of (2), if {𝑥𝑛} is a
sequence of positive fuzzy numbers which satisfies (2). The
equilibrium of (2) is the solution of the equation 𝑥 =𝑥 exp (𝐴 − 𝐵𝑥).
Definition 9 (see [20]). Let 𝐴, 𝐵 be fuzzy numbers with[𝐴]𝛼 = [𝐴 𝑙,𝛼, 𝐴𝑟,𝛼], [𝐵]𝛼 = [𝐵𝑙,𝛼, 𝐵𝑟,𝛼]. Then the metric of𝐴 and 𝐵 is defined as

𝐷(𝐴, 𝐵) = sup
𝛼∈(0,1]

max {𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼 , 𝐴𝑟,𝛼 − 𝐵𝑟,𝛼} , (8)

and (𝐸1, 𝐷) is a complete metric space.

Definition 10 (see [23]). Let {𝑥𝑛} be a sequence of positive
fuzzy numbers and 𝑥 is a positive fuzzy number. Suppose that

[𝑥𝑛]𝛼 = [𝐿𝑛,𝛼, 𝑅𝑛,𝛼] , 𝛼 ∈ (0, 1] , 𝑛 = 0, 1, . . . , (9)

and

[𝑥]𝛼 = [𝐿𝛼, 𝑅𝛼] , 𝛼 ∈ (0, 1] . (10)

The sequence {𝑥𝑛} converges to 𝑥 with respect to 𝐷 as 𝑛 →∞ if lim𝑛→∞𝐷(𝑥𝑛, 𝑥) = 0.
Definition 11. Let 𝑥 be a positive equilibrium of (2). The
positive equilibrium 𝑥 is stable, if for every 𝜀 > 0, there exists
a 𝛿 = 𝛿(𝜀) > 0 such that for every positive solution 𝑥𝑛 of
(2), which satisfies 𝐷(𝑥0, 𝑥) ≤ 𝛿, we have 𝐷(𝑥𝑛, 𝑥) ≤ 𝜀 for all𝑛 ≥ 0. The positive equilibrium 𝑥 is asymptotically stable, if
it is stable and every positive solution of (2) converges to the
positive equilibrium of (2) with respect to 𝐷 as 𝑛 → ∞.
3. Main Results

3.1. Existence and Uniqueness of Positive Solution. First we
study the existence and uniqueness of the positive solutions
of (2). We need the following lemma.

Lemma 12 (see [33]). Let 𝑓 : 𝑅+ × 𝑅+ → 𝑅+ be continuous;𝐴, 𝐵 are fuzzy numbers. �en

[𝑓 (𝐴, 𝐵)]𝛼 = 𝑓 ([𝐴]𝛼 , [𝐵]𝛼) , 𝛼 ∈ (0, 1] (11)

Theorem 13. Consider (2) where 𝐴, 𝐵 are positive fuzzy
numbers, if there exists fuzzy number𝐶 such that 𝐴 = 𝐵𝑥𝑛 +𝐶
for 𝑛 ≥ 0. �en for any positive fuzzy numbers 𝑥0, there exists
a unique positive solution 𝑥𝑛 of (2).
Proof. The proof is similar to Theorem 2.3 [24]. Suppose that
there exists a sequence of fuzzy numbers 𝑥𝑛 satisfying (2)
with initial conditions 𝑥0. Consider 𝛼-cuts, 𝛼 ∈ (0, 1], 𝑛 =0, 1, 2, . . ., and applying Lemma 12, and𝐴 = 𝐵𝑥𝑛+𝐶 for 𝑛 ≥ 0,
we have

[𝑥𝑛+1]𝛼 = [𝐿𝑛+1,𝛼, 𝑅𝑛+1,𝛼] = [𝑥𝑛 exp (𝐴 − 𝐵𝑥𝑛)]𝛼
= [𝑥𝑛]𝛼 exp ([𝐴]𝛼 − [𝐵]𝛼 [𝑥𝑛]𝛼) = [𝐿𝑛,𝛼, 𝑅𝑛,𝛼]
× exp ([𝐴 𝑙,𝛼, 𝐴𝑟,𝛼] − [𝐵𝑙,𝛼, 𝐵𝑟,𝛼] × [𝐿𝑛,𝛼, 𝑅𝑛,𝛼])
= [𝐿𝑛,𝛼, 𝑅𝑛,𝛼]
× exp ([𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝐿𝑛,𝛼, 𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅𝑛,𝛼]) = [𝐿𝑛,𝛼
⋅ exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝐿𝑛,𝛼) , 𝑅𝑛,𝛼 exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅𝑛,𝛼)]

(12)

It follows from (12) and H-difference of fuzzy numbers that,
for 𝑛 = 0, 1, 2, . . . , 𝛼 ∈ (0, 1],

𝐿𝑛+1,𝛼 = 𝐿𝑛,𝛼 exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝐿𝑛,𝛼) ,
𝑅𝑛+1,𝛼 = 𝑅𝑛,𝛼 exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅𝑛,𝛼) . (13)

Then it is obvious that, for any initial condition (𝐿0,𝛼,𝑅0,𝛼), 𝛼 ∈ (0, 1], there exists a unique solution (𝐿𝑛,𝛼, 𝑅𝑛,𝛼).
Now we prove that [𝐿𝑛,𝛼, 𝑅𝑛,𝛼], 𝛼 ∈ (0, 1], where (𝐿𝑛,𝛼,𝑅𝑛,𝛼) is the solution of system (13) with initial conditions(𝐿0,𝛼, 𝑅0,𝛼), determines the solution of (2) with initial value𝑥0, such that,

[𝑥𝑛]𝛼 = [𝐿𝑛,𝛼, 𝑅𝑛,𝛼] , 𝑛 = 0, 1, 2, . . . , 𝛼 ∈ (0, 1] . (14)

From Definition 2 and since 𝐴, 𝐵, 𝑥0 are positive fuzzy
numbers, for any 𝛼1, 𝛼2 ∈ (0, 1], 𝛼1 ≤ 𝛼2, we have

0 < 𝐴 𝑙,𝛼1 ≤ 𝐴 𝑙,𝛼2 ≤ 𝐴𝑟,𝛼2 ≤ 𝐴𝑟,𝛼1
0 < 𝐵𝑙,𝛼1 ≤ 𝐵𝑙,𝛼2 ≤ 𝐵𝑟,𝛼2 ≤ 𝐵𝑟,𝛼1
0 < 𝐿0,𝛼1 ≤ 𝐿0,𝛼2 ≤ 𝑅0,𝛼2 ≤ 𝑅0,𝛼1

(15)

We claim that, for 𝑛 = 0, 1, . . .,
0 < 𝐿𝑛,𝛼1 ≤ 𝐿𝑛,𝛼2 ≤ 𝑅𝑛,𝛼2 ≤ 𝑅𝑛,𝛼1 . (16)

We prove it by induction. It is clear that (16) is true for 𝑛 = 0.
Suppose that (16) holds true for 𝑛 ≤ 𝑘, 𝑘 ∈ {1, 2, . . . , }. Then,
from (13), (15), and (16) for 𝑛 ≤ 𝑘, it follows that

𝐿𝑘+1,𝛼1 = 𝐿𝑘,𝛼1 exp (𝐴 𝑙,𝛼1 − 𝐵𝑙,𝛼1𝐿𝑘,𝛼1)
≤ 𝐿𝑘,𝛼2 exp (𝐴 𝑙,𝛼2 − 𝐵𝑙,𝛼2𝐿𝑘,𝛼2) = 𝐿𝑘+1,𝛼2
≤ 𝑅𝑘,𝛼2 exp (𝐴𝑟,𝛼2 − 𝐵𝑟,𝛼2𝑅𝑘,𝛼2) = 𝑅𝑘+1,𝛼2
≤ 𝑅𝑘,𝛼1 exp (𝐴𝑟,𝛼1 − 𝐵𝑟,𝛼1𝑅𝑘,𝛼1) = 𝑅𝑘+1,𝛼1 .

(17)

Therefore (16) is satisfied. Moreover, for ∀𝛼 ∈ (0, 1], it follows
from (13) that

𝐿1,𝛼 = 𝐿0,𝛼 exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝐿0,𝛼) ,
𝑅1,𝛼 = 𝑅0,𝛼 exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅0,𝛼) . (18)

Since 𝐴, 𝐵, 𝑥0 are positive fuzzy numbers, from Definition 2,
then 𝐴 𝑙,𝛼, 𝐴𝑟,𝛼, 𝐵𝑙,𝛼, 𝐵𝑟,𝛼, 𝐿0,𝛼, 𝑅0,𝛼 are left continuous. From
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(18) we have 𝐿1,𝛼, 𝑅1,𝛼 are left continuous. By induction we
can get that 𝐿𝑛,𝛼, 𝑅𝑛,𝛼 are left continuous.

Next we prove that the support of 𝑥𝑛, supp𝑥𝑛 =⋃𝛼∈(0,1][𝐿𝑛,𝛼, 𝑅𝑛,𝛼] is compact. It is sufficient to prove that⋃𝛼∈(0,1][𝐿𝑛,𝛼, 𝑅𝑛,𝛼] is bounded. Let 𝑛 = 1, and since 𝐴, 𝐵 and𝑥0 are positive fuzzy numbers, there exist constants 𝑀𝐴 > 0,𝑁𝐴 > 0, 𝑀𝐵 > 0, 𝑁𝐵 > 0, 𝑀0 > 0, 𝑁0 > 0 such that, for𝛼 ∈ (0, 1],
[𝐴 𝑙,𝛼, 𝐴𝑟,𝛼] ⊂ ⋃

𝛼∈(0,1]

[𝐴 𝑙,𝛼, 𝐴𝑟,𝛼] ⊂ [𝑀𝐴, 𝑁𝐴] ,
[𝐵𝑙,𝛼, 𝐵𝑟,𝛼] ⊂ ⋃

𝛼∈(0,1]

[𝐵𝑙,𝛼, 𝐵𝑟,𝛼] ⊂ [𝑀𝐵, 𝑁𝐵] ,
[𝐿0,𝛼, 𝐿0,𝛼] ⊂ ⋃

𝛼∈(0,1]

[𝐿0,𝛼, 𝑅0,𝛼] ⊂ [𝑀0, 𝑁0] ,
(19)

Hence, from (18) and (19), for 𝛼 ∈ (0, 1], we get
[𝐿1,𝛼, 𝑅1,𝛼]
⊂ [𝑀0 exp (𝑀𝐴 − 𝑁𝐵𝑁0) ,𝑁0 exp (𝑁𝐴 − 𝑀𝐵𝑀0)] , (20)

from which it is clear that

⋃
𝛼∈(0,1]

[𝐿1,𝛼, 𝑅1,𝛼]
⊂ [𝑀0 exp (𝑀𝐴 − 𝑁𝐵𝑁0) ,𝑁0 exp (𝑁𝐴 − 𝑀𝐵𝑀0)] ,

(21)

Therefore (21) implies ⋃𝛼∈(0,1][𝐿1,𝛼, 𝑅1,𝛼] is compact, and
⋃𝛼∈(0,1][𝐿1,𝛼, 𝑅1,𝛼] ⊂ (0,∞). Deducing inductively it can
follow easily that

⋃
𝛼∈(0,1]

[𝐿𝑛,𝛼, 𝑅𝑛,𝛼] is compact, and ⋃
𝛼∈(0,1]

[𝐿𝑛,𝛼, 𝑅𝑛,𝛼]
⊂ (0,∞) .

(22)

Therefore, from (16), (22) and 𝐿𝑛,𝛼, 𝑅𝑛,𝛼 are left continuous.
It can conclude that [𝐿𝑛,𝛼, 𝑅𝑛,𝛼] determines a sequence of
positive fuzzy numbers {𝑥𝑛} such that (14) holds.

We prove that 𝑥𝑛 is a solution of (12) with initial value 𝑥0.
Since ∀𝛼 ∈ (0, 1],

[𝑥𝑛+1]𝛼 = [𝐿𝑛+1,𝛼, 𝑅𝑛+1,𝛼] = [𝐿𝑛,𝛼 exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝐿𝑛,𝛼) , 𝑅𝑛,𝛼 exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅𝑛,𝛼)] = [𝑥𝑛 exp (𝐴 − 𝐵𝑥𝑛)]𝛼 . (23)

Namely, 𝑥𝑛 is a solution of (12) with initial value 𝑥0.
Suppose that there exists another solution 𝑥𝑛 of (12) with

initial value 𝑥0. Then from arguing as above we can easily get
that, for 𝑛 = 0, 1, 2, . . .,

[𝑥𝑛]𝛼 = [𝐿𝑛,𝛼, 𝑅𝑛,𝛼] , 𝛼 ∈ (0, 1] . (24)

Then from (14) and (24), we have [𝑥𝑛]𝛼 = [𝑥𝑛]𝛼, 𝛼 ∈(0, 1], 𝑛 = 0, 1, 2, . . ., and hence 𝑥𝑛 = 𝑥𝑛, 𝑛 = 0, 1, 2, . . ., and
this completes the proof of Theorem 13.

3.2. Dynamical Behaviour of Positive Solution. In order to
study the dynamical behavior of the solution 𝑥𝑛 to (2), we first
consider the following system of difference equations

𝑦𝑛+1 = 𝑦𝑛 exp (𝑎 − 𝑝𝑦𝑛) ,
𝑧𝑛+1 = 𝑧𝑛 exp (𝑏 − 𝑞𝑧𝑛) ,

𝑛 = 0, 1, . . . ,
(25)

It is clear that the equilibrium points (𝑦, 𝑧) of (25) include the
following four cases:

(𝑖) (0, 0) ,
(𝑖𝑖) (0, 𝑏𝑞) ,

(𝑖𝑖𝑖) ( 𝑎𝑝 , 0) ,
(𝑖V) ( 𝑎𝑝 , 𝑏𝑞) .

(26)

Lemma 14. Consider difference equation

𝑦𝑛+1 = 𝑦𝑛 exp (𝑎 − 𝑝𝑦𝑛) , 𝑛 = 0, 1, 2, . . . . (27)

If 𝑎 > 0, 𝑝 > 0, then 0 < 𝑦𝑛 ≤ (1/𝑝) exp (𝑎 − 1).
Proof. Consider function 𝑓(𝑦) = 𝑦 exp (𝑎−𝑝𝑦), and we have𝑓(𝑦) = (1 − 𝑝𝑦) exp (𝑎 − 𝑝𝑦). It follows that

𝑓 (𝑦) > 0 if 𝑦 < 1𝑝,
𝑓 (𝑦) < 0 if 𝑦 > 1𝑝.

(28)

It is clear that the maximum of 𝑓 is equal to (1/𝑝) exp (𝑎−1).
Therefore we have 0 < 𝑦𝑛 ≤ (1/𝑝) exp (𝑎 − 1).
Lemma 15 (see [2]). Suppose the vector difference equation

𝑋𝑛+1 = 𝐻(𝑋𝑛) , 𝑛 = 0, 1, 2, . . . , (29)

where𝑋𝑛 ∈ 𝑅𝑘+1, 𝐻 ∈ 𝐶1[𝑅𝑘+1, 𝑅𝑘+1]. Let𝑋 be an equilibrium
point (29), and𝐷𝐻(𝑋) denote the JacobianMatrix of function𝐻 at𝑋. �en
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(i) 𝑋 is called a hyperbolic equilibrium if 𝐷𝐻(𝑋) has no
eigenvalues with absolute value equal to 1.

(ii) 𝑋 is called a sink or an attracting equilibrium if every
eigenvalue of 𝐷𝐻(𝑋) has absolute value less than 1.

(iii) 𝑋 is called a source or a repelling equilibrium if every
eigenvalue of 𝐷𝐻(𝑋) has absolute value greater than 1.

(iv) 𝑋 is called a saddle point if some of the eigenvalues of𝐷𝐻(𝑋) are greater and some are less than 1 in absolute value.

Theorem 16. Consider the system of difference equations (25),
where 𝑎, 𝑏, 𝑝, and 𝑞 are positive real constants, and the initial
values 𝑦0, 𝑧0 are positive real numbers; then the following
statements are true.

(i) �e equilibrium (0, 0) is a source (a repelling equilib-
rium).

(ii) �e equilibrium (0, 𝑏/𝑞) is a saddle point if 0 < 𝑏 < 2;
the equilibrium (0, 𝑏/𝑞) is a source (a repelling equilibrium) if𝑏 > 2.

(iii) �e equilibrium (𝑎/𝑝, 0) is a saddle point if 0 < 𝑎 < 2;
the equilibrium (𝑎/𝑝, 0) is a source (a repelling equilibrium) if𝑎 > 2.
Proof. (i) It is clear that (0, 0) is always an equilibrium. We
can easily obtain that the linearized system of (25) about the
positive equilibrium (0, 0) is

𝑋𝑛+1 = 𝐷1𝑋𝑛, 𝑛 = 0, 1, . . . , (30)

where

𝑋𝑛 = (𝑦𝑛𝑧𝑛) ,

𝐷1 = (𝑒𝑎 0
0 𝑒𝑏) .

(31)

We can easily obtain that the eigenvalue of Jacobian matrix𝐷1, 𝜆1 = 𝑒𝑎, 𝜆2 = 𝑒𝑏. It is clear that |𝜆| > 1. This implies that
the equilibrium (0, 0) is a source (a repelling equilibrium).

(ii) We can obtain that the linearized system of (25) about
the equilibrium (0, 𝑎/𝑝) is

𝑋𝑛+1 = 𝐷2𝑋𝑛, (32)

where

𝑋𝑛 = (𝑦𝑛𝑧𝑛) ,

𝐷2 = (𝑒𝑎 0
0 1 − 𝑏)

(33)

It is easy to obtain the following: if 0 < 𝑏 < 2, the eigenvalue of𝐷2, |𝜆1| > 1, |𝜆2| < 1, then (0, 𝑎/𝑝) is a saddle point. if 𝑏 > 2,
all the eigenvalue of 𝐷2, |𝜆| > 1, then (0, 𝑎/𝑝) is a source (a
repelling equilibrium).

(iii) The proof of (iii) is similar to the proof of (ii). So we
omit it.

Theorem 17. Consider the system of difference equations (25),
where the initial values 𝑦0, 𝑧0 are positive real numbers. If 0 <𝑎 < 2, 0 < 𝑏 < 2, then (25) has a unique positive equilibrium
point (𝑎/𝑝, 𝑏/𝑞) which is globally asymptotically stable.

Proof. It follows easily from (25) that (𝑎/𝑝, 𝑏/𝑞) is a unique
positive equilibrium point.

We can obtain that the linearized system of (25) about the
positive equilibrium (𝑎/𝑝, 𝑏/𝑞) is

𝑋𝑛+1 = 𝐷3𝑋𝑛, (34)

where

𝑋𝑛 = (𝑦𝑛𝑧𝑛) ,

𝐷3 = (1 − 𝑎 0
0 1 − 𝑏)

(35)

We can easily obtain that the eigenvalue of Jacobian
matrix 𝐷3, 𝜆1 = 1 − 𝑎, 𝜆2 = 1 − 𝑏. It is clear that |𝜆| <1. Hence the equilibrium (𝑎/𝑝, 𝑏/𝑞) is a sink (an attracting
equilibrium).

Noting Lemma 14, we have

lim
𝑛→∞

sup 𝑦𝑛 = 𝐿1,
lim
𝑛→∞

inf 𝑦𝑛 = 𝑙1,
lim
𝑛→∞

sup 𝑧𝑛 = 𝐿2,
lim
𝑛→∞

inf 𝑧𝑛 = 𝑙2.
(36)

where 𝐿 𝑖, 𝑙𝑖 ∈ (0,∞), 𝑖 = 1, 2. Then from (25) we have

𝐿1 ≤ 𝐿1 exp (𝑎 − 𝑝𝑙1) ,
𝑙1 ≥ 𝑙1 exp (𝑎 − 𝑝𝐿1) ,
𝐿2 ≤ 𝐿2 exp (𝑏 − 𝑞𝑙2) ,
𝑙2 ≥ 𝑙2 exp (𝑏 − 𝑞𝐿2) .

(37)

From this, we have

1 ≤ exp (𝑎 − 𝑝𝑙1) ,
1 ≥ exp (𝑎 − 𝑝𝐿1) ,
1 ≤ exp (𝑏 − 𝑞𝑙2) ,
1 ≥ exp (𝑏 − 𝑞𝐿2) .

(38)

The relation (38) implies 𝑙1 ≤ 𝐿1, 𝑙2 ≤ 𝐿2. We claim that

𝑙1 = 𝐿1,
𝑙2 = 𝐿2. (39)
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Suppose on the contrary that 𝑙1 < 𝐿1, 𝑙2 < 𝐿2. From (38), we
have

𝑙1 ≤ 𝑎𝑝 < 𝐿1 ≤ 1𝑝 exp (𝑎 − 1) ,
𝑙2 ≤ 𝑏𝑞 < 𝐿2 ≤ 1𝑞 exp (𝑏 − 1) ,

(40)

from which we have

𝑎 < exp (𝑎 − 1) ,
𝑏 < exp (𝑏 − 1) , (41)

It follows from (41) that 𝑎 ̸= 1 and 𝑏 ̸= 1, which is
contradicting with 0 < 𝑎 < 2, 0 < 𝑏 < 2. So 𝐿 𝑖 =𝑙𝑖, 𝑖 = 1, 2.. Hence we have lim𝑛→∞ 𝑦𝑛 = 𝑎/𝑝, lim𝑛→∞ 𝑧𝑛 =𝑏/𝑞. Therefore the unique positive equilibrium (𝑎/𝑝, 𝑏/𝑞) is
globally asymptotically stable.

Theorem 18. Consider the fuzzy difference equation (2), where𝐴, 𝐵 are positive fuzzy numbers. Consider that there exists
positive constants 𝑁𝐴, for all 𝛼 ∈ (0, 1] such that

𝐴𝑟,𝛼 < 𝑁𝐴 < 2. (42)

�en the following statements are true.
(i) Every positive solution 𝑥𝑛 of (2) is bounded.
(ii) Equation (2) has a unique positive equilibrium 𝑥.
(iii) Every positive solution 𝑥𝑛 of (2) converges the unique

equilibrium 𝑥 with respect to 𝐷 as 𝑛 → ∞.
Moreover the unique positive equilibrium 𝑥 is asymptoti-

cally stable.

Proof. (i) Let 𝑥𝑛 be a positive solution of (2) with initial
conditions 𝑥0. Suppose that (19) holds; from (25) and using
Lemma 14, we get that

0 < 𝐿𝑛,𝛼 ≤ 1𝐵𝑙,𝛼 exp (𝐴 𝑙,𝛼 − 1) ,
0 < 𝑅𝑛,𝛼 ≤ 1𝐵𝑟,𝛼 exp (𝐴𝑟,𝛼 − 1) ,

𝛼 ∈ (0, 1] ,
(43)

From (19) and (43), we have that for all 𝛼 ∈ (0, 1]
[𝐿𝑛,𝛼, 𝑅𝑛,𝛼] ⊂ (0,𝑁] , 𝑛 ≥ 1, (44)

where𝑁 = (1/𝑀𝐵) exp (𝑁𝐴−1). From (44), we have for 𝑛 ≥ 1,⋃𝛼∈(0,1][𝐿𝑛,𝛼, 𝑅𝑛,𝛼] ⊂ (0,𝑁], so ⋃𝛼∈(0,1][𝐿𝑛,𝛼, 𝑅𝑛,𝛼] ⊂ (0,𝑁].
Thus the proof of Part (i) is completed.

(ii) We consider the system

𝐿𝛼 = 𝐿𝛼exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝐿𝛼) ,
𝑅𝛼 = 𝑅𝛼exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅𝛼) . (45)

Then the positive solution (𝐿𝛼, 𝑅𝛼) of (45) is given by

𝐿𝛼 = 𝐴 𝑙,𝛼𝐵𝑙,𝛼 ,
𝑅𝛼 = 𝐴𝑟,𝛼𝐵𝑟,𝛼 ,

𝛼 ∈ (0, 1] .
(46)

Let 𝑥𝑛 be a positive solution of (2) such that [𝑥𝑛]𝛼 = [𝐿𝑛,𝛼,𝑅𝑛,𝛼], 𝛼 ∈ (0, 1], 𝑛 = 0, 1, 2, ⋅ ⋅ ⋅ .Then applying Theorem 17 to
system (13) we have

lim
𝑛→∞

𝐿𝑛,𝛼 = 𝐿𝛼,
lim
𝑛→∞

𝑅𝑛,𝛼 = 𝑅𝛼 (47)

From (44) and (47) we have for 0 < 𝛼1 < 𝛼2 < 1,
0 < 𝐿𝛼1 ≤ 𝐿𝛼2 ≤ 𝑅𝛼2 ≤ 𝑅𝛼1 . (48)

Since 𝐴 𝑙,𝛼, 𝐴𝑟,𝛼, 𝐵𝑙,𝛼, 𝐵𝑟,𝛼 are left continuous, from (45), it
follows that 𝐿𝛼, 𝑅𝛼 are also left continuous. From (46) and
(19), we have

𝑐 = 𝑀𝐴𝑁𝐵 ≤ 𝐿𝛼 ≤ 𝑅𝛼 ≤ 𝑁𝐴𝑀𝐵 = 𝑑. (49)

Therefore (49) implies that [𝐿𝛼, 𝑅𝛼] ⊂ [𝑐, 𝑑], and so⋃𝛼∈(0,1][𝐿𝛼, 𝑅𝛼] ⊂ [𝑐, 𝑑]. It is clear that
⋃
𝛼∈(0,1]

[𝐿𝛼, 𝑅𝛼] is compact and ⋃
𝛼∈(0,1]

[𝐿𝛼, 𝑅𝛼]
⊂ (0,∞) .

(50)

So from Definition 2, (45), (48), (50) and 𝐿𝛼, 𝑅𝛼, 𝛼 ∈ (0, 1]
determine a fuzzy number 𝑥 such that

𝑥 = 𝑥 exp (𝐴 − 𝐵𝑥) , [𝑥]𝛼 = [𝐿𝛼, 𝑅𝛼] , 𝛼 ∈ (0, 1] . (51)

Provided that there exists another positive equilibrium 𝑥
of (2), then there exist functions 𝐿𝛼, 𝑅𝛼 : (0, 1) → (0,∞)
such that

𝑥 = 𝑥 exp (𝐴 − 𝐵𝑥) , [𝑥]𝛼 = [𝐿𝛼, 𝑅𝛼] , 𝛼 ∈ (0, 1] . (52)

From this we get

𝐿𝛼 = 𝐿𝛼 exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝐿𝛼) ,
𝑅𝛼 = 𝑅𝛼 exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅𝛼) . (53)

So 𝐿𝛼 = 𝐿𝛼, 𝑅𝛼 = 𝑅𝛼, 𝛼 ∈ (0, 1]. Hence 𝑥 = 𝑥. This completes
the proof of Part (ii).

(iii) From (47) we have

lim
𝑛→∞

𝐷 (𝑥𝑛, 𝑥)
= lim
𝑛→∞

sup
𝛼∈(0,1]

{max {𝐿𝑛,𝛼 − 𝐿𝛼 , 𝑅𝑛,𝛼 − 𝑅𝛼}} = 0. (54)
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Namely, every positive solution𝑥𝑛 of (2) converges the unique
equilibrium 𝑥 with respect to𝐷 as 𝑛 → ∞.

Let 𝜀 be an arbitrary positive real number; we consider the
positive real number 𝛿 as follows

0 < 𝛿 < 𝜀1 − 𝑀𝐵𝛾 exp (𝑁𝐴 − 𝑀𝐵𝛾) . (55)

where 0 < 𝛾 = min{𝐿0,𝛼, inf𝑛≥1𝐿𝑛,𝛼}, 𝛼 ∈ (0, 1].
Let 𝑥𝑛 be a positive solution of (2) such that 𝐷(𝑥0, 𝑥) ≤𝛿 < 𝜀. From this we have

𝐿0,𝛼 − 𝐿𝛼 ≤ 𝛿,
𝑅0,𝛼 − 𝑅𝛼 ≤ 𝛿,

𝛼 ∈ (0, 1] .
(56)

From (18), (19), and (45), we have
𝐿1,𝛼 − 𝐿𝛼 = 𝐿0,𝛼 exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝐿0,𝛼)

− 𝐿𝛼 exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝐿𝛼)
≤ (1 − 𝐵𝑙,𝛼𝜉) exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝜉) 𝐿0,𝛼 − 𝐿𝛼
= 𝛿 (1 − 𝐵𝑙,𝛼𝜉) exp (𝐴 𝑙,𝛼 − 𝐵𝑙,𝛼𝜉)
< 𝛿 (1 − 𝑀𝐵𝜉) exp (𝑁𝐴 − 𝑀𝐵𝜉)

(57)

𝑅1,𝛼 − 𝑅𝛼 = 𝑅0,𝛼 exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅0,𝛼)
− 𝑅𝛼 exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅𝛼)
≤ (1 − 𝐵𝑟,𝛼𝜂) exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝜂) 𝑅0,𝛼 − 𝑅𝛼
= 𝛿 (1 − 𝐵𝑟,𝛼𝜂) exp (𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝜂)
< 𝛿 (1 − 𝑀𝐵𝜂) exp (𝑁𝐴 − 𝑀𝐵𝜂)

(58)

where 𝜉 = min{𝐿0,𝛼, 𝐿𝛼}, 𝜂 = min{𝑅0,𝛼, 𝑅𝛼}, 𝛼 ∈ (0, 1].
From (55), it is obvious that

𝐿1,𝛼 − 𝐿𝛼 < 𝜀,
𝑅1,𝛼 − 𝑅𝛼 < 𝜀. (59)

From this and working inductively we can easily prove that
𝐿𝑛,𝛼 − 𝐿𝛼 < 𝜀,
𝑅𝑛,𝛼 − 𝑅𝛼 < 𝜀,

𝛼 ∈ (0, 1] , 𝑛 = 0, 1, 2, ⋅ ⋅ ⋅ .
(60)

And so 𝐷(𝑥𝑛, 𝑥) < 𝜀. Therefore the positive equilibrium 𝑥 is
stable. Moreover relation (54) holds. So the equilibrium 𝑥 is
asymptotically stable. The proof of Theorem 18 is completed.

Remark 19. FromTheorem 18, we can know that the dynam-
ical behavior of (2) is relevant to the intrinsic growth rate 𝐴

of population. Nomatter what the initial population quantity𝑥0 is small and no matter what the carrying capacity of the
surround environment 𝐵 is large. As long as the intrinsic
growth rate of population 𝐴 satisfies 𝐴𝑟,𝛼 < 2, 0 < 𝐴 𝑙,𝛼 −𝐵𝑙,𝛼𝐿𝑛,𝛼 ≤ 𝐴𝑟,𝛼 − 𝐵𝑟,𝛼𝑅𝑛,𝛼, for all 𝛼 ∈ (0, 1), the solution
of fuzzy difference equation (2) is bounded and eventually
converges to the unique positive equilibrium.

4. An Illustrative Example

In order to illustrate our obtained results, we give a numerical
example to show effectiveness of theoretic results.

Example 1. Consider discrete time fuzzy single species model

𝑥𝑛+1 = 𝑥𝑛 exp (𝐴 − 𝐵𝑥𝑛) , 𝑛 = 0, 1, . . . , (61)

where 𝐴, 𝐵 and the initial value 𝑥0 are positive triangular
fuzzy numbers such that

𝐴 = (1.2, 1.5, 1.8) ,
𝐵 = (0.9, 1, 1.1) ,
𝑥0 = (1, 1.1, 1.2)

(62)

from which, we get, for 𝛼 ∈ (0, 1],
[𝐴]𝛼 = [1.2 + 0.3𝛼, 1.8 − 0.3𝛼] ,
[𝐵]𝛼 = [0.9 + 0.1𝛼, 1.1 − 0.1𝛼] ,
[𝑥0]𝛼 = [1 + 0.1𝛼, 1.2 − 0.1𝛼] .

(63)

From (61) and (63), it results in a coupled system of difference
equation with parameter 𝛼 ∈ (0, 1],

𝐿𝑛+1,𝛼 = 𝐿𝑛,𝛼 exp [1.2 + 0.3𝛼 − (0.9 + 0.1𝛼) 𝐿𝑛,𝛼] ,
𝑅𝑛+1,𝛼 = 𝑅𝑛,𝛼 exp [1.8 − 0.3𝛼 − (1.1 − 0.1𝛼) 𝑅𝑛,𝛼] . (64)

It is clear that (42) of Theorem 18 is satisfied. Therefore the
solution of (61) converges to the unique positive equilibrium𝑥 = (4/3, 1.5, 18/11) (see Figures 1–5).
5. Conclusion

Difference equation is one of the most important models
when it is applicable in various problems in different fields. It
is also important if it is applied to study population dynamic
in fuzzy environment. When it can be studied in fuzzy
environment the behavior of it changes. In this work, we
first consider the dynamical behavior of discrete time single
species 𝑥𝑛+1 = 𝑥𝑛 exp (𝐴 − 𝐵𝑥𝑛) with fuzzy parameters
and fuzzy initial conditions. Compared with crisp discrete
time single species model, the dynamical behavior of system
is different. The parameters of system 𝐴 and 𝐵 satisfy the
condition𝐴𝑟,𝛼 < 2, 0 < 𝐴 𝑙,𝛼−𝐵𝑙,𝛼𝐿𝑛,𝛼 ≤ 𝐴𝑟,𝛼−𝐵𝑟,𝛼𝑅𝑛,𝛼, for all𝛼 ∈ (0, 1], 𝑛 = 0, 1, 2, . . ., and the solution of (2) is bounded
and converges to unique fuzzy positive equilibrium.
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Figure 1: The dynamics of system (64).
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Figure 2: The solution of system (64) at 𝛼 = 0.
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Figure 3: The solution of system (64) at 𝛼 = 0.25.
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Figure 4: The solution of system (64) at 𝛼 = 0.75.

0 10 20 30 40 50
n

，Ｈ

２Ｈ

，
Ｈ
&

２
Ｈ

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5: The solution of system (64) at 𝛼 = 1.
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