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In this paper, we discuss a class of fractional differential equations of the form 𝐷𝛼+1− 𝑦(𝑡) ⋅ 𝐷𝛼−𝑦(𝑡) − 𝑝(𝑡)𝑓(𝐷𝛼−𝑦(𝑡)) +𝑞(𝑡)ℎ(∫∞
𝑡

(𝑠 − 𝑡)−𝛼𝑦(𝑠)𝑑𝑠) = 0.𝐷𝛼−𝑦(𝑡) is the Liouville right-sided fractional derivative of order𝛼 ∈ (0, 1).We obtain some oscillation
criteria for the equation by employing a generalized Riccati transformation technique. Some examples are given to illustrate the
significance of our results.

1. Introduction

The theory of fractional derivatives was originated from
G.W. Leibniz’s conjecture. To this day, the theory about
fractional calculus and fractional differential equation have
been well developed; see [1–7]. In the beginning, the
theory of fractional derivatives developed mainly as a pure
theoretical filed of mathematics, which can be used only for
mathematicians. However, in the past few decades, fractional
differential equations were widely used in many fields, such
as fluid flow, rheology, electrical networks, and many other
branches of science. Great attention was paid to study the
properties of solutions of fractional differential equations.

Because only few differential equations can be solved,
many researches focus on the analysis of qualitative theory
for fractional differential equations, such as the existence,
uniqueness of solutions, numerical solutions, stability, and
oscillation of solutions; see [8–34] and the references therein.
Among them, there have beenmany results for the oscillation
of solutions for fractional differential equations.

In 2013, Chen [16] studied oscillatory behavior of the
fractional differential equation in the form of

𝐷𝛼+1− 𝑦 (𝑡) − 𝑝 (𝑡)𝐷𝛼−𝑦 (𝑡)
+ 𝑞 (𝑡) 𝑓(∫∞

𝑡
(V − 𝑡)−𝛼 𝑦 (V) 𝑑V) = 0, (1)

for 𝑡 > 0, where 𝐷𝛼−𝑦 is the Liouville right-sided fractional
derivative of order 𝛼 ∈ (0, 1).

In 2013, Han [17] brought up the oscillation of fractional
differential equations

[𝑟 (𝑡) 𝑔 ((𝐷𝛼−𝑦) (𝑡))]󸀠 − 𝑝 (𝑡) 𝑓(∫∞
𝑡

(𝑠 − 𝑡)−𝛼 𝑦 (𝑠))
= 0, (2)

for 𝑡 > 0, where 0 < 𝛼 < 1 is a real number, and 𝐷𝛼−𝑦 is the
Liouville right-sided fractional derivative of 𝑦.

In 2013, Xu [18] studied the oscillation of nonlinear
fractional differential equations of the form

{𝑎 (𝑡) [(𝑟 (𝑡) 𝐷𝛼−𝑥 (𝑡))󸀠]𝜂}󸀠
− 𝐹(𝑡, ∫∞

𝑡
(V − 𝑡)−𝛼 𝑥 (V) 𝑑V) = 0, 𝑡 ≥ 𝑡0 > 0, (3)

where 𝛼 ∈ (0, 1) is a constant, and 𝜂 is a ratio of two odd
positive integers.

In 2013, based on themodified Riemann-Liouville deriva-
tive, Qin and Zheng [19] discussed the oscillation of a class
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of fractional differential equations with damping term as
follows:

𝐷𝛼𝑡 [𝑎 (𝑡) 𝐷𝛼𝑡 (𝑟 (𝑡) 𝐷𝛼𝑡 𝑥 (𝑡))] + 𝑝 (𝑡) 𝐷𝛼𝑡 (𝑟 (𝑡) 𝐷𝛼𝑡 𝑥 (𝑡))+ 𝑞 (𝑡) 𝑥 (𝑡) = 0, (4)

for 𝑡 ≥ 𝑡0 > 0, 0 < 𝛼 < 1, where 𝐷𝛼𝑡 (⋅) denotes the modified
Riemann-Liouville derivative regarding the variable 𝑡, the
function 𝑎 ∈ 𝐶𝛼([𝑡0,∞), 𝑅+), 𝑟 ∈ 𝐶2𝛼([𝑡0,∞), 𝑅+), 𝑝, 𝑞 ∈𝐶𝛼([𝑡0,∞), 𝑅+), and 𝐶𝛼 denotes continuous derivative of
order.

In 2014, Jehad Alzabut andThabet Abdeljawad [20] stud-
ied the oscillatory theory of fractional difference equations in
the form

∇𝑞
𝑎(𝑞)−1

𝑥 (𝑡) + 𝑓1 (𝑡, 𝑥 (𝑡) = 𝑟 (𝑡) + 𝑓2 (𝑡, 𝑥 (𝑡)) ,
𝑡 ∈ N𝑎(𝑞),

∇−(1−𝑞)
𝑎(𝑞)−1

𝑥 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑎(𝑞) = 𝑥 (𝑎 (𝑞)) = 𝑐, 𝑐 ∈ R,
(5)

where𝑚 − 1 < 𝑞 < 𝑚,𝑚 ∈ N, ∇𝑞
𝑎(𝑞)

is the Riemann-Liouville
difference operator of order 𝑞 and ∇−𝑞

𝑎(𝑞)
is the Riemann-

Liouville sum operator where N𝑎(𝑞) = {𝑎(𝑞) + 1, 𝑎(𝑞) +2, . . .}, 𝑎(𝑞) = 𝑎 + 𝑚 − 1,𝑚 = [𝑞] + 1 and [𝑞] is the greatest
integer less than or equal to 𝑞.

In 2017, B. Abdalla, K. Abodayeh, T. Abdeljawad, J.
Alzabut [21] studied the oscillation of solutions of nonlinear
forced fractional difference equations in the form

∇𝑞
𝑎(𝑞)−1

𝑥 (𝑡) + 𝑓1 (𝑡, 𝑥 (𝑡) = 𝑟 (𝑡) + 𝑓2 (𝑡, 𝑥 (𝑡)) ,
𝑡 ∈ N𝑎(𝑞),

∇−(𝑚−𝑞)
𝑎(𝑞)−1

𝑥 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑎(𝑞) = 𝑥 (𝑎 (𝑞)) = 𝑐, 𝑐 ∈ R,
(6)

where 𝑞 > 0,𝑚 = [𝑞] + 1,𝑚 ∈ N, [𝑞] is the greatest integer
less than or equal to 𝑞, N𝑎(𝑞) = {𝑎(𝑞) + 1, 𝑎(𝑞) + 2, . . .}, 𝑎(𝑞) =𝑎 + 𝑚 − 1, 𝑓𝑖 : N𝑎(𝑞) × R 󳨀→ R(𝑖 = 1, 2), and ∇−𝑞

𝑎(𝑞)
and ∇𝑞

𝑎(𝑞)

are the Riemann-Liouville sum and difference operators.
In 2018, Bai and Xu [22] discussed the oscillation problem

of a class of nonlinear fractional difference equations with the
damping term in the from

Δ(𝑐 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾) + 𝑝 (𝑡) [Δ (𝑟 (𝑡) Δ𝛼𝑥 (𝑡))]𝛾
+ 𝑞 (𝑡) 𝑓(𝑡−1+𝛼∑

𝑠=𝑡0

(𝑡 − 𝑠 − 1)(−𝛼) 𝑥 (𝑠)) = 0,
𝑡 ∈ 𝑁𝑡0 ,

(7)

where 𝛾 ≥ 1 is a quotient of two odd positive integers, 0 < 𝛼 ≤1 is a constant, Δ𝛼 denotes the Riemann-Liouville fractional
difference operator of order 𝛼, and𝑁𝑡0 = {𝑡0, 𝑡0+1, 𝑡0+2, . . .}.

In 2018, Bahaaeldin Abdalla andThabet Abdeljawad [23]
studied the oscillation of Hadamard fractional differential
equation of the form

𝐷𝛼𝑎𝑥 (𝑡) + 𝑓1 (𝑡, 𝑥) = 𝑟 (𝑡) + 𝑓2 (𝑡, 𝑥) , 𝑡 > 𝑎,
lim
𝑡󳨀→𝑎+

𝐷𝛼−𝑗𝑎 𝑥 (𝑡) = 𝑏𝑗 (𝑗 = 1, 2, . . . , 𝑛) (8)

where 𝑛 = ⌈𝛼⌉, 𝐷𝛼𝑎 is the left-fractional Hadamard derivative
of order 𝛼 ∈ C, Re(𝛼) ≥ 0 in the Riemann-Liouville setting.

In 2018, J. Alzabut, T. Abdeljawad, H. Alrabaiah [24]
considered the following forced and damped nabla fractional
difference equation

(1 − 𝑝 (𝑛)) ∇∇𝛼0 𝑦 (𝑛) + 𝑝 (𝑛) ∇𝛼0 𝑦 (𝑛) + 𝑞 (𝑛) 𝑓 (𝑦 (𝑛))
= 𝑔 (𝑛) , 𝑛 ∈ N1,

∇−(1−𝛼)0 𝑦 (1) = 𝑦 (1) = 𝑐,
(9)

where ∇𝛼0 𝑦 and ∇−𝛼0 𝑦 are the Riemann-Liouville fractional
difference and sum operators of 𝑦 of order 𝛼, respectively,𝛼 is a real number, 𝑐 is constant, N1 = 1, 2, . . . and 𝑝, 𝑞 are
real sequences from N1 󳨀→ R, 𝑝(𝑛) < 1, 𝑞 is a positive real
sequence from N1 󳨀→ R+ and 𝑓 : R 󳨀→ R such that 𝑓(𝑠)/𝑠 > 0 for all 𝑠 ̸= 0.

In 2018, B. Abdalla, J. Alzabut, T. Abdeljawad [25] inves-
tigated the oscillation of solutions for fractional difference
equations with mixed nonlinearities in forms

∇𝛼𝑎(𝛼)−1𝑥 (𝑡) − 𝑝 (𝑡) 𝑥 (𝑡) + 𝑛∑
𝑖=1

𝑞𝑖 (𝑡) |𝑥 (𝑡)|𝜆𝑖−1 𝑥 (𝑡)
= V (𝑡) , 𝑡 ∈ N𝑎(𝛼)+1,

∇−(𝑚−𝑎)𝑎(𝛼−1) 𝑥 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=𝑎(𝛼) = 𝑥 (𝑎 (𝛼)) = 𝑐, 𝑐 ∈ R,
(10)

and

𝑐∇𝛼𝑎(𝛼)𝑥 (𝑡) − 𝑝 (𝑡) 𝑥 (𝑡) + 𝑛∑
𝑖=1

𝑞𝑖 (𝑡) |𝑥 (𝑡)|𝜆𝑖−1 𝑥 (𝑡)
= V (𝑡) , 𝑡 ∈ N𝑎(𝛼),

∇𝑘𝑥 (𝑎 (𝛼)) = 𝑏𝑘, 𝑘 ∈ R, 𝑘 = 0, 1, 2, . . . , 𝑚 − 1,
(11)

where 𝑚 = [𝛼] + 1, 𝛼 > 0, 𝑝(𝑡), V(𝑡) and 𝑞𝑖(𝑡)(1 ≤ 𝑖 ≤ 𝑛) are
functions defined fromN𝑎(𝛼) to𝑅, and 𝜆𝑖(1 ≤ 𝑖 ≤ 𝑛) are ratios
of odd positive integers with 𝜆1 > . . . > 𝜆𝑙 > 1 > 𝜆𝑙+1 > . . . >𝜆𝑛.

Inspired by the above results, in this paper, we discuss the
oscillatory behavior of the fractional differential equational
with damping

𝐷𝛼+1− 𝑦 (𝑡) ⋅ 𝐷𝛼−𝑦 (𝑡) − 𝑝 (𝑡) 𝑓 (𝐷𝛼−𝑦 (𝑡))
+ 𝑞 (𝑡) ℎ (∫∞

𝑡
(𝑠 − 𝑡)−𝛼 𝑦 (𝑠) 𝑑𝑠) = 0, 𝑡 > 0, (12)

where 0 < 𝛼 < 1 is a real number. 𝐷𝛼−𝑦 is the Liouville right-
sided fractional derivative of 𝑦. We always assume that the
following conditions are valid.
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(𝐴1) 𝑝(𝑡) ≥ 0 and 𝑞(𝑡) ≥ 0 are continuous functions on𝑡 ∈ [𝑡0,∞), 𝑡0 > 0.
(𝐴2) ℎ, 𝑓 : R 󳨀→ R are continuous functions with𝑥ℎ(𝑥) > 0, 𝑥𝑓(𝑥) > 0 for 𝑥 ̸= 0, and there exist positive

constants 𝑘1, 𝑘2 such that ℎ(𝑥)/𝑥 ≥ 𝑘1, 𝑥/𝑓(𝑥) ≥ 𝑘2 for all𝑥 ̸= 0.(𝐴3) 𝑓󸀠(𝑢) ≤ 𝑢, 𝑓−1(𝑢) ∈ 𝐶(R,R) are continuous
functions with 𝑓−1(𝑢) > 0 for 𝑢 ̸= 0, and there exists some
positive constant 𝛼1 such that 𝑓−1(𝑢V) ≥ 𝛼1𝑓−1(𝑢)𝑓−1(V) for𝑢V ̸= 0.
2. Preliminaries

For convenience, some background materials from fractional
calculus are given.

From [4], we can get the definition for Liouville right-
side fractional integral and Liouville right-side fractional
derivative on the whole axis R of order 𝛽 for a function𝑔 : R+ 󳨀→ R as follows,

(𝐼𝛽−𝑔) (𝑡) fl 1Γ (𝛽) ∫
∞

𝑡
(V − 𝑡)𝛽−1 𝑔 (V) 𝑑V, 𝑡 > 0, (13)

(𝐷𝛽−𝑔) (𝑡) fl (−1)⌈𝛽⌉ 𝑑⌈𝛽⌉𝑑𝑡⌈𝛽⌉ (𝐼⌈𝛽⌉−𝛽− 𝑔) (𝑡)
= (−1)⌈𝛽⌉ 1Γ (⌈𝛽⌉ − 𝛽) ∫

∞

𝑡
(V − 𝑡)⌈𝛽⌉−𝛽−1 𝑔 (V) 𝑑V,

𝑡 > 0,
(14)

provided the right hand side is pointwise defined on R+,
where Γ(⋅) is the gamma function defined by Γ(𝑡) fl∫∞
𝑡

𝑠𝑡−1𝑒−𝑠𝑑𝑠, and △ fl min{𝑧 ∈ Z : 𝑧 ≥ 𝛽} is the ceiling
function.

If 𝛽 ∈ (0, 1), we have
𝐷𝛼−𝑦 (𝑡) fl − 1Γ (1 − 𝛼) 𝑑𝑑𝑡 ∫

∞

𝑡
(𝑠 − 𝑡)−𝛼 𝑦 (𝑠) 𝑑𝑠, (15)

for 𝑡 ∈ R+ fl (0,∞).
The following relations also existed:

(𝐷(1+𝛼)− 𝑦) (𝑡) = − (𝐷𝛼−𝑦)󸀠 (𝑡) , 𝛼 ∈ (0, 1) , 𝑡 > 0. (16)

Set

𝐺 (𝑡) fl ∫∞
𝑡

(V − 𝑡)−𝛼 𝑦 (V) 𝑑V, 𝛼 ∈ (0, 1) , (17)

and then

𝐺󸀠 (𝑡) = −Γ (1 − 𝛼) (𝐷𝛼−𝑦) (𝑡) , 𝛼 ∈ (0, 1) . (18)

3. Main Results

First, we study the oscillation of (12) under the following
condition:

∫∞
𝑡0

𝑓−1 (exp(−∫𝑠
𝑡0

𝑝 (V) 𝑑V))𝑑𝑠 = ∞. (19)

Theorem 1. Suppose that (𝐴1) − (𝐴3) and (19) hold; fur-
thermore, assume that there exists a positive function 𝑟(𝑡) ∈𝐶1[𝑡0,∞] such that

lim sup
𝑡󳨀→∞

∫𝑡
𝑡0

V (𝑠)
⋅ [[𝑘1𝑟 (𝑠) 𝑞 (𝑠) −

(𝑟󸀠 (𝑠))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)]]𝑑𝑠 = ∞,
(20)

where 𝑘1, 𝑘2 are defined as in (𝐴2), and
V (𝑠) fl exp(∫𝑠

𝑡0

𝑝 (V) 𝑑V) , 𝑠 ≥ 𝑡0. (21)

Then every solution of (12) is oscillatory.

Proof. Suppose that 𝑦(𝑡) is a nonoscillation solution of (12);
without loss of generality, we may assume that 𝑦(𝑡) is an
eventually positive solution of (12). Then there exists 𝑡1 ∈[𝑡0,∞] such that 𝑦(𝑡) > 0 and 𝐺(𝑡) > 0 for 𝑡 ∈ [𝑡1,∞], where𝐺 is defined in (16). From (𝐴3), (12), and (16) we have

[𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡)]󸀠 = −𝑓󸀠 (𝐷𝛼−𝑦 (𝑡)) V (𝑡) 𝐷𝛼+1− 𝑦 (𝑡)
+ 𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡) 𝑝 (𝑡)

= 𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡) 𝑝 (𝑡)
− 𝑓󸀠 (𝐷𝛼−𝑦 (𝑡))𝐷𝛼+1− 𝑦 (𝑡) V (𝑡)

≥ 𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡) 𝑝 (𝑡)
− 𝐷𝛼+1− 𝑦 (𝑡) 𝐷𝛼−𝑦 (𝑡) V (𝑡)

= 𝑞 (𝑡) ℎ (𝐺 (𝑡)) V (𝑡) > 0,
𝑡 ∈ [𝑡0,∞] .

(22)

Thus 𝑓(𝐷𝛼−𝑦(𝑡))V(𝑡) is strictly increasing on [𝑡0,∞]. Since
V(𝑡) > 0 for 𝑡 ∈ [𝑡0,∞], and from (𝐴3), we see that 𝐷𝛼−𝑦(𝑡) is
eventually of one sign. Now we can claim

𝐷𝛼−𝑦 (𝑡) < 0, 𝑡 ∈ [𝑡1,∞] . (23)

If not, then there exists 𝑡2 ∈ [𝑡1,∞] such that 𝐷𝛼−𝑦(𝑡2) >0. Since 𝑓(𝐷𝛼−𝑦(𝑡))V(𝑡) is strictly increasing on [𝑡1,∞], it is
clear that 𝑓(𝐷𝛼−𝑦(𝑡))V(𝑡) ≥ 𝑓(𝐷𝛼−𝑦(𝑡2))V(𝑡2) fl 𝑐 > 0 for𝑡 ∈ [𝑡2,∞]. Therefore, from (18), we have

− 𝐺󸀠 (𝑡)Γ (1 − 𝛼) = 𝐷𝛼−𝑦 (𝑡) ≥ 𝑓−1 ( 𝑐
V (𝑡))

= 𝑓−1 (𝑐 ⋅ exp(−∫𝑡
𝑡0

𝑝 (V) 𝑑V))
≥ 𝛼1𝑓−1 (𝑐) 𝑓−1 (exp(−∫𝑡

𝑡0

𝑝 (V) 𝑑V)) ,
𝑡 ∈ [𝑡2,∞] .

(24)
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Then, we get

𝑓−1 (exp(−∫𝑡
𝑡0

𝑝 (V) 𝑑V)) ≤ − 𝐺󸀠 (𝑡)𝛼1𝑓−1 (𝑐) Γ (1 − 𝛼) ,
𝑡 ∈ [𝑡2,∞] . (25)

Integrating the above inequality from 𝑡2 to 𝑡, we have
∫𝑡
𝑡2

𝑓−1 (exp(−∫𝑠
𝑡0

𝑝 (V) 𝑑V))𝑑𝑠
≤ −∫𝑡
𝑡2

𝐺󸀠 (𝑠)𝛼1𝑓−1 (𝑐) Γ (1 − 𝛼)𝑑𝑠
= − 𝐺 (𝑡) − 𝐺 (𝑡2)𝛼1𝑓−1 (𝑐) Γ (1 − 𝛼) < 𝐺 (𝑡2)𝛼1𝑓−1 (𝑐) Γ (1 − 𝛼) ,

𝑡 ∈ [𝑡2,∞] .

(26)

Letting 𝑡 󳨀→ ∞, we see

∫∞
𝑡2

𝑓−1 (exp(−∫𝑠
𝑡0

𝑝 (V) 𝑑V))𝑑𝑠
≤ 𝐺 (𝑡2)𝛼1𝑓−1 (𝑐) Γ (1 − 𝛼) < ∞. (27)

This is in contradiction with (19). Hence, (23) holds.
Define the function 𝑤 as generalized Riccati substitution

𝑤 (𝑡) = 𝑟 (𝑡) −V (𝑡) 𝑓 (𝐷𝛼−𝑦 (𝑡))𝐺 (𝑡) , 𝑡 ∈ [𝑡1,∞] . (28)

Then we have 𝑤(𝑡) > 0 for 𝑡 ∈ [𝑡1,∞]. From (18), (22), (28),
and (𝐴1) − (𝐴3), it follows that
𝑤󸀠 (𝑡) = 𝑟󸀠 (𝑡) −𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡)𝐺 (𝑡) + 𝑟 (𝑡)

⋅ − [𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡)]󸀠 𝐺 (𝑡) + 𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡) 𝐺󸀠 (𝑡)𝐺2 (𝑡)
≤ 𝑟󸀠 (𝑡) −𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡)𝐺 (𝑡) + 𝑟 (𝑡)
⋅ [−𝑞 (𝑡) ℎ (𝐺 (𝑡)) V (𝑡)𝐺 (𝑡) + 𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡) 𝐺󸀠 (𝑡)𝐺2 (𝑡) ]
= 𝑟󸀠 (𝑡)𝑟 (𝑡) 𝑤 (𝑡) + 𝑟 (𝑡) −𝑞 (𝑡) ℎ (𝐺 (𝑡)) V (𝑡)𝐺 (𝑡) + 𝑟 (𝑡)
⋅ 𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡) (−Γ (1 − 𝛼)𝐷𝛼−𝑦 (𝑡))𝐺2 (𝑡) ≤ 𝑟󸀠 (𝑡)𝑟 (𝑡) 𝑤 (𝑡)
− 𝑘1𝑟 (𝑡) 𝑞 (𝑡) V (𝑡) + 𝑤2 (𝑡) (−Γ (1 − 𝛼)𝐷𝛼−𝑦 (𝑡))𝑟 (𝑡) 𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡)
≤ 𝑟󸀠 (𝑡)𝑟 (𝑡) 𝑤 (𝑡) − 𝑘1𝑟 (𝑡) 𝑞 (𝑡) V (𝑡) − 𝑘2Γ (1 − 𝛼)𝑟 (𝑡) V (𝑡) 𝑤2 (𝑡) .

(29)

That is,

𝑤󸀠 (𝑡) ≤ −𝑘1𝑟 (𝑡) 𝑞 (𝑡) V (𝑡) + 𝑟󸀠 (𝑡)𝑟 (𝑡) 𝑤 (𝑡)
− 𝑘2Γ (1 − 𝛼)𝑟 (𝑡) V (𝑡) 𝑤2 (𝑡) . (30)

Taking 𝑥 = 𝑤(𝑡), 𝑎 = 𝑘2Γ(1 − 𝛼)/𝑟(𝑡)V(𝑡) (𝑎 ̸= 0), and 𝑏 =𝑟󸀠(𝑡)/𝑟(𝑡), from 𝑎𝑥2+𝑏𝑥 ≤ −𝑏2/4𝑎 and (30)we could conclude
that

𝑤󸀠 (𝑡) ≤ −𝑘1𝑟 (𝑡) 𝑞 (𝑡) V (𝑡) + V (𝑡) (𝑟󸀠 (𝑡))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑡) . (31)

Integrating both sides of inequality (31) from 𝑡0 to 𝑡, we obtain
∞ > 𝑤(𝑡0) > 𝑤 (𝑡0) − 𝑤 (𝑡)

≥ ∫𝑡
𝑡0

[
[−𝑘1𝑟 (𝑠) 𝑞 (𝑠) V (𝑠) +

V (𝑠) (𝑟󸀠 (𝑠))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑡)]]𝑑𝑠. (32)

Taking the limit supremum of both sides of the above
inequality as 𝑡 󳨀→ ∞, we get

lim sup
𝑡󳨀→∞

∫𝑡
𝑡0

[[−𝑘1𝑟 (𝑠) 𝑞 (𝑠) V (𝑠)

+ V (𝑠) (𝑟󸀠 (𝑠))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)]]𝑑𝑠 < 𝑤 (𝑡0) < ∞,
(33)

which is in contradiction with (20).
If 𝑦(𝑡) is an eventually negative solution of (12), the proof

is similar; hence we omit it.
The proof is complete.

Theorem 2. Suppose that (𝐴1) − (𝐴3) and (19) hold. Fur-
thermore, assume that there exists a positive function 𝑟(𝑡) ∈𝐶1[𝑡0,∞] such that

lim sup
𝑡󳨀→∞

∫𝑡
𝑡0

[[𝑘1𝑟 (𝑠) 𝑞 (𝑠) −
[𝑟󸀠 (𝑠) − 𝑟 (𝑠) 𝑝 (𝑠)]24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠) ]]𝑑𝑠

= ∞,
(34)

where V(𝑠) are defined inTheorem 1.Then every solution of (12)
is oscillatory.

Proof. Suppose that 𝑦(𝑡) is a nonoscillation solution of (12);
without loss of generality, we may assume that 𝑦(𝑡) is an
eventually positive solution of (12). Proceeding the same as
in the proof of Theorem 1, we get (23). Define the function𝑤(𝑡) as follows

𝑤(𝑡) = 𝑟 (𝑡) −𝑓 (𝐷𝛼−𝑦 (𝑡))𝐺 (𝑡) , 𝑡 ∈ [𝑡1,∞] . (35)
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Then we have 𝑤(𝑡) > 0 for 𝑡 ∈ [𝑡1,∞]. From (16), (18), (22),
(35), and (𝐴1) − (𝐴3), it follows that
𝑤󸀠 (𝑡) = 𝑟󸀠 (𝑡) −𝑓 (𝐷𝛼−𝑦 (𝑡))𝐺 (𝑡) + 𝑟 (𝑡) [−𝑓 (𝐷𝛼−𝑦 (𝑡))𝐺 (𝑡) ]󸀠

= 𝑟󸀠 (𝑡) −𝑓 (𝐷𝛼−𝑦 (𝑡))𝐺 (𝑡) + 𝑟 (𝑡)
⋅ 𝑓󸀠 (𝐷𝛼−𝑦 (𝑡))𝐷𝛼+1− 𝑦 (𝑡) 𝐺 (𝑡) + 𝑓 (𝐷𝛼−𝑦 (𝑡)) 𝐺󸀠 (𝑡)𝐺2 (𝑡)
= 𝑟󸀠 (𝑡)𝑟 (𝑡) 𝑤 (𝑡) + 𝑟 (𝑡) 𝑓󸀠 (𝐷𝛼−𝑦 (𝑡))𝐷𝛼+1− 𝑦 (𝑡)𝐺 (𝑡) + 𝑟 (𝑡)
⋅ 𝑓 (𝐷𝛼−𝑦 (𝑡)) (−Γ (1 − 𝛼)𝐷𝛼−𝑦 (𝑡))𝐺2 (𝑡) ≤ 𝑟󸀠 (𝑡)𝑟 (𝑡) 𝑤 (𝑡)
+ 𝑟 (𝑡) 𝐷𝛼−𝑦 (𝑡) 𝐷𝛼+1− 𝑦 (𝑡)𝐺 (𝑡) − 𝑘2Γ (1 − 𝛼)𝑟 (𝑡) 𝑤2 (𝑡)
= 𝑟󸀠 (𝑡)𝑟 (𝑡) 𝑤 (𝑡) + 𝑟 (𝑡)
⋅ 𝑝 (𝑡) 𝑓 (𝐷𝛼−𝑦 (𝑡)) − 𝑞 (𝑡) ℎ (𝐺 (𝑡))𝐺 (𝑡) − 𝑘2Γ (1 − 𝛼)𝑟 (𝑡)
⋅ 𝑤2 (𝑡) ≤ 𝑟󸀠 (𝑡)𝑟 (𝑡) 𝑤 (𝑡) − 𝑝 (𝑡) 𝑤 (𝑡) − 𝑘1𝑟 (𝑡) 𝑞 (𝑡)
− 𝑘2Γ (1 − 𝛼)𝑟 (𝑡) 𝑤2 (𝑡) .

(36)

That is,

𝑤󸀠 (𝑡) ≤ −𝑘1𝑟 (𝑡) 𝑞 (𝑡) + 𝑟󸀠 (𝑡) − 𝑟 (𝑡) 𝑝 (𝑡)𝑟 (𝑡) 𝑤 (𝑡)
− 𝑘2Γ (1 − 𝛼)𝑟 (𝑡) 𝑤2 (𝑡) . (37)

Taking 𝑥 = 𝑤(𝑡), 𝑎 = 𝑘2Γ(1−𝛼)/𝑟(𝑡) (𝑎 ̸= 0), and 𝑏 = (𝑟󸀠(𝑡) −𝑟(𝑡)𝑝(𝑡))/𝑟(𝑡), from 𝑎𝑥2 + 𝑏𝑥 ≤ −𝑏2/4𝑎 and (37) we conclude

𝑤󸀠 (𝑡) ≤ −𝑘1𝑟 (𝑠) 𝑞 (𝑠) + [𝑟󸀠 (𝑡) − 𝑟 (𝑡) 𝑝 (𝑡)]24𝑘2Γ (1 − 𝛼) 𝑟 (𝑡) . (38)

Integrating both sides of inequality (38) from 𝑡0 to 𝑡, we obtain∞ > 𝑤(𝑡0) > 𝑤 (𝑡0) − 𝑤 (𝑡)
≥ ∫𝑡
𝑡0

[
[−𝑘1𝑟 (𝑠) 𝑞 (𝑠) +

[𝑟󸀠 (𝑠) − 𝑟 (𝑠) 𝑝 (𝑠)]24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠) ]
]𝑑𝑠. (39)

Taking the limit supremum of both sides of the above
inequality as 𝑡 󳨀→ ∞, we get

lim sup
𝑡󳨀→∞

∫𝑡
𝑡0

[[𝑘1𝑟 (𝑠) 𝑞 (𝑠) −
[𝑟󸀠 (𝑠) − 𝑟 (𝑠) 𝑝 (𝑠)]24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠) ]]𝑑𝑠

< 𝑤 (𝑡0) < ∞,
(40)

which is in contradiction with (34).

If 𝑦(𝑡) is an eventually negative solution of (12), the proof
is similar; here we omit it.

The proof is complete.

We define a function class𝐺; setD fl {(𝑡, 𝑠) fl 𝑡 ≥ 𝑠 ≥ 𝑡0},
D0 fl {(𝑡, 𝑠) fl 𝑡 > 𝑠 ≥ 𝑡0}.We say𝐻(𝑡, 𝑠) ∈ 𝐺, if𝐻(𝑡, 𝑠) satisfy𝐻(𝑡, 𝑡) = 0, 𝑡 ≥ 𝑡0,𝐻 (𝑡, 𝑠) > 0, (𝑡, 𝑠) ∈ D0, (41)

and 𝐻 has a nonpositive continuous partial derivative𝐻󸀠𝑠(𝑡, 𝑠) fl 𝜕𝐻(𝑡, 𝑠)/𝜕𝑠 on D0 with respect to the second
variable.

Theorem 3. Suppose that (𝐴1) − (𝐴3) and (19) hold. Fur-
thermore, assume that there exists a positive function 𝑟(𝑡) ∈𝐶1[𝑡0,∞] and a function𝐻 ∈ 𝐺 satisfies

lim sup
𝑡󳨀→∞

1𝐻 (𝑡, 𝑡0)
⋅ ∫𝑡
𝑡0

𝐻(𝑡, 𝑠) [[𝑟 (𝑠) 𝑞 (𝑠) −
(𝑟󸀠 (𝑠))24𝑘1𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)]] 𝑑𝑠

= ∞.
(42)

Then every solution of (12) is oscillatory.

Proof. Suppose that 𝑦 is a nonoscillation solution of (12);
without loss of generality, we may assume that 𝑦 is an
eventually positive solution of (12). Proceeding as in the proof
of Theorem 2 we get (37).

Multiplying (37) by 𝐻(𝑡, 𝑠) and integrating from 𝑡1 to 𝑡,
we get

∫𝑡
𝑡1

𝑘1𝑟 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) 𝑑𝑠
≤ −∫𝑡
𝑡1

𝐻(𝑡, 𝑠) 𝑤󸀠 (𝑠) 𝑑𝑠
+ −∫𝑡
𝑡1

𝐻(𝑡, 𝑠) 𝑤 (𝑠) 𝑟󸀠 (𝑠)𝑟 (𝑠) 𝑑𝑠
− ∫𝑡
𝑡1

𝐻(𝑡, 𝑠) 𝑤2 (𝑠) 𝑘2Γ (1 − 𝛼)𝑟 (𝑠) 𝑑𝑠,
𝑡 ∈ [𝑡1,∞] .

(43)

Using the formula integration by parts, we obtain

−∫𝑡
𝑡1

𝐻(𝑡, 𝑠) 𝑤󸀠 (𝑠) 𝑑𝑠 = − [𝐻 (𝑡, 𝑠) 𝑤 (𝑠)]𝑠=𝑡𝑠=𝑡1
+ ∫𝑡
𝑡1

𝐻󸀠𝑠 (𝑡, 𝑠) 𝑤 (𝑠) 𝑑𝑠
= 𝐻 (𝑡, 𝑡1)𝑤 (𝑡1)

+ ∫𝑡
𝑡1

𝐻󸀠𝑠 (𝑡, 𝑠) 𝑤 (𝑠) 𝑑𝑠,
𝑡 ∈ [𝑡1,∞) .

(44)
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Substituting (44) with (43), we have

𝑘1 ∫𝑡
𝑡1

𝑟 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) 𝑑𝑠 ≤ 𝐻 (𝑡, 𝑡1)𝑤 (𝑡1)
+ ∫𝑡
𝑡1

{[𝐻󸀠𝑠 (𝑡, 𝑠) + 𝐻 (𝑡, 𝑠) 𝑟󸀠 (𝑠)𝑟 (𝑠) ]𝑤 (𝑠)

− 𝑘2Γ (1 − 𝛼) 𝐻 (𝑡, 𝑠)𝑟 (𝑠) 𝑤2 (𝑠)} 𝑑𝑠.
(45)

Taking 𝑥 = 𝑤(𝑡), 𝑎 = −𝑘2Γ(1 − 𝛼)(𝐻(𝑡, 𝑠)/𝑟(𝑠)) (𝑎 ̸= 0), and𝑏 = 𝐻󸀠𝑠(𝑡, 𝑠) + 𝐻(𝑡, 𝑠)(𝑟󸀠(𝑠)/𝑟(𝑠)), from 𝑎𝑥2 + 𝑏𝑥 ≤ −𝑏2/4𝑎 we
get

∫𝑡
𝑡1

{[𝐻󸀠𝑠 (𝑡, 𝑠) + 𝐻 (𝑡, 𝑠) 𝑟󸀠 (𝑠)𝑟 (𝑠) ]𝑤 (𝑠) − 𝑘2Γ (1 − 𝛼) 𝐻 (𝑡, 𝑠)𝑟 (𝑠) 𝑤2 (𝑠)} 𝑑𝑠

≤ ∫𝑡
𝑡1

(𝐻󸀠𝑠 (𝑡, 𝑠))2 + 𝐻2 (𝑡, 𝑠) (𝑟󸀠 (𝑠))2 /𝑟2 (𝑠) + 2𝐻󸀠𝑠 (𝑡, 𝑠)𝐻 (𝑡, 𝑠) (𝑟󸀠 (𝑠) /𝑟 (𝑠))4𝑘2Γ (1 − 𝛼)𝐻 (𝑡, 𝑠) /𝑟 (𝑠) 𝑑𝑠

≤ ∫𝑡
𝑡1

[(𝐻󸀠𝑠 (𝑡, 𝑠))2 + 𝐻2 (𝑡, 𝑠) (𝑟󸀠 (𝑠))2 /𝑟2 (𝑠)] 𝑟 (𝑠)
4𝑘2Γ (1 − 𝛼)𝐻 (𝑡, 𝑠) 𝑑𝑠 = ∫𝑡

𝑡1

[𝐻󸀠𝑠 (𝑡, 𝑠) 𝑟 (𝑠)]2 + [𝐻 (𝑡, 𝑠) 𝑟󸀠 (𝑠)]2)
4𝑘2Γ (1 − 𝛼)𝐻 (𝑡, 𝑠) 𝑑𝑠

≤ ∫𝑡
𝑡1

[𝐻󸀠𝑠 (𝑡, 𝑠) 𝑟 (𝑠) + 𝐻 (𝑡, 𝑠) 𝑟󸀠 (𝑠)]2)
4𝑘2Γ (1 − 𝛼)𝐻 (𝑡, 𝑠) 𝑑𝑠 ≤ ∫𝑡

𝑡1

[𝐻 (𝑡, 𝑠) 𝑟󸀠 (𝑠)]24𝑘2Γ (1 − 𝛼)𝐻 (𝑡, 𝑠)𝑑𝑠 = ∫𝑡
𝑡1

𝐻(𝑡, 𝑠) (𝑟󸀠 (𝑠))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)𝑑𝑠.

(46)

Substituting (46) in (45), we have

𝑘1 ∫𝑡
𝑡1

𝑟 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) 𝑑𝑠
≤ 𝐻 (𝑡, 𝑡1) 𝑤 (𝑡1) + ∫𝑡

𝑡1

𝐻(𝑡, 𝑠) (𝑟󸀠 (𝑠))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)𝑑𝑠.
(47)

Since 𝐻󸀠𝑠(𝑡, 𝑠) ≤ 0 for 𝑡 > 𝑠 ≥ 𝑡0, we have 0 < 𝐻(𝑡, 𝑡1) ≤𝐻(𝑡, 𝑡0) for 𝑡 > 𝑡1 ≥ 𝑡0. Therefore, from the previous
inequality, we get

∫𝑡
𝑡1

[
[𝑟 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) 𝑑𝑠 − 𝐻 (𝑡, 𝑠) (𝑟󸀠 (𝑠))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)]]𝑑𝑠
≤ 𝑘−1𝐻(𝑡, 𝑡1) 𝑤 (𝑡1) ≤ 𝑘−1𝐻(𝑡, 𝑡0) 𝑤 (𝑡1) ,

𝑡 ∈ [𝑡1,∞) .
(48)

Since 0 < 𝐻(𝑡, 𝑡1) ≤ 𝐻(𝑡, 𝑡0) for 𝑡 > 𝑠 ≥ 𝑡0, we have 0 <𝐻(𝑡, 𝑠)/𝐻(𝑡, 𝑡0) ≤ 1 for 𝑡 > 𝑠 ≥ 𝑡0. Hence, it follows from (48)
that we have

1𝐻 (𝑡, 𝑡0) ∫
𝑡

𝑡0

[
[𝑟 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) 𝑑𝑠

− 𝐻 (𝑡, 𝑠) (𝑟󸀠 (𝑠))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)]]𝑑𝑠 = 1𝐻 (𝑡, 𝑡1)
⋅ ∫𝑡1
𝑡0

[
[𝑟 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) 𝑑𝑠

− 𝐻 (𝑡, 𝑠) (𝑟󸀠 (𝑠))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)]]𝑑𝑠 + 1𝐻 (𝑡, 𝑡0)
⋅ ∫𝑡
𝑡1

[[𝑟 (𝑠) 𝑞 (𝑠)𝐻 (𝑡, 𝑠) 𝑑𝑠

− 𝐻 (𝑡, 𝑠) (𝑟󸀠 (𝑠))24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)]]𝑑𝑠 ≤ 1𝐻 (𝑡, 𝑡1) ∫
𝑡1

𝑡0

𝑟 (𝑠)
⋅ 𝑞 (𝑠)𝐻 (𝑡, 𝑠) 𝑑𝑠 + 1𝐻 (𝑡, 𝑡1)𝑘−1𝐻(𝑡, 𝑡0)𝑤 (𝑡1)
≤ ∫𝑡1
𝑡0

𝑟 (𝑠) 𝑞 (𝑠) 𝑑𝑠 + 𝑘−1𝑤 (𝑡1) , 𝑡 ∈ [𝑡1,∞) .
(49)

Letting 𝑡 󳨀→ ∞, we obtain

lim sup
𝑡󳨀→∞

1𝐻 (𝑡, 𝑡0)
⋅ ∫𝑡
𝑡0

𝐻(𝑡, 𝑠) [[𝑟 (𝑠) 𝑞 (𝑠) −
(𝑟󸀠 (𝑠))24𝑘1𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)]]𝑑𝑠

≤ ∫𝑡1
𝑡0

𝑟 (𝑠) 𝑞 (𝑠) 𝑑𝑠 + 𝑘−1𝑤 (𝑡1) < ∞,
(50)

which yields a contradiction to (42). The proof is complete.
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Second, we study the oscillation of (12) under the follow-
ing condition:

∫∞
𝑡0

𝑓−1 (exp(−∫𝑠
𝑡0

𝑝 (V) 𝑑V))𝑑𝑠 < ∞. (51)

Theorem4. Suppose that (𝐴1)−(𝐴3) and (51) hold, and there
exists a positive function 𝑟(𝑡) ∈ 𝐶1[𝑡0,∞] such that (20) holds.
Furthermore, assume that, for every constant 𝑇 ≥ 𝑡0,

∫∞
𝑇

𝑓−1 [ 1
V (𝑡) ∫

𝑡

𝑇
𝑞 (𝑠) V (𝑠) 𝑑𝑠] 𝑑𝑡 = ∞, (52)

where V(𝑠) are defined as in Theorem 1. Then every solution of
(12) is oscillatory or satisfies lim𝑡󳨀→∞ ∫∞

𝑡0
(𝑠 − 𝑡)−𝛼𝑦(𝑠)𝑑𝑠 = 0.

Proof. Suppose that 𝑦 is a nonoscillation solution of (12);
without loss of generality, we may assume that 𝑦 is an
eventually positive solution of (12). Proceeding as in the proof
of Theorem 1, we know that 𝐷𝛼−𝑦(𝑡) is eventually one sign;
then there are two cases for the sign of𝐷𝛼−𝑦(𝑡).

If 𝐷𝛼−𝑦(𝑡) is eventually negative, similar to Theorem 1,
we have the oscillation of (12). Next, if 𝐷𝛼−𝑦(𝑡) is eventually
positive, then there exists 𝑡2 ≥ 𝑡1 such that 𝐷𝛼−𝑦(𝑡) > 0 for𝑡 ≥ 𝑡2. From (18), we get 𝐺󸀠(𝑡) < 0 for 𝑡 ≥ 𝑡2. Thus, we get
lim𝑡󳨀→∞𝐺(𝑡) fl 𝐿 ≥0 and 𝐺(𝑡) ≥ 𝐿. We now claim that 𝐿 = 0.
Assuming not, that is, 𝐿 > 0, then from (23) and (𝐴3) we get

[𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡)]󸀠 ≥ 𝑞 (𝑡) ℎ (𝐺 (𝑡)) V (𝑡)
≥ 𝑘1𝑞 (𝑡) 𝐺 (𝑡) V (𝑡)
≥ 𝑘1𝐿𝑞 (𝑡) V (𝑡) , 𝑡 ∈ [𝑡2,∞) .

(53)

Integrating both sides of the above inequality from 𝑡2 to 𝑡, we
have

𝑓 (𝐷𝛼−𝑦 (𝑡)) V (𝑡) ≥ 𝑓 (𝐷𝛼−𝑦 (𝑡2)) V (𝑡2)
+ 𝑘1𝐿∫𝑡

𝑡2

𝑞 (𝑠) V (𝑠) 𝑑𝑠
> 𝑘1𝐿∫𝑡

𝑡2

𝑞 (𝑠) V (𝑠) 𝑑𝑠,
𝑡 ∈ [𝑡2,∞) .

(54)

Hence, from (17), we get

− 𝐺󸀠 (𝑡)Γ (1 − 𝛼) = 𝐷𝛼−𝑦 (𝑡) ≥ 𝑓−1(𝑘1𝐿 ∫𝑡𝑡2 𝑞 (𝑠) V (𝑠) 𝑑𝑠
V (𝑡) )

≥ 𝛼1𝑓−1 (𝑘1𝐿) 𝑓−1(∫𝑡
𝑡2
𝑞 (𝑠) V (𝑠) 𝑑𝑠
V (𝑡) ) ,

𝑡 ∈ [𝑡2,∞) .

(55)

Integrating both sides of the last inequality from 𝑡2 to 𝑡, we
obtain

𝐺 (𝑡) ≤ 𝐺 (𝑡2) − 𝛼1Γ (1 − 𝛼) 𝑓−1 (𝑘1𝐿)
⋅ ∫𝑡
𝑡2

𝑓−1(∫𝑡
𝑡2
𝑞 (𝑠) V (𝑠) 𝑑𝑠
V (𝑢) )𝑑𝑢,

𝑡 ∈ [𝑡2,∞) .
(56)

Letting 𝑡 󳨀→ ∞, from (52), we get lim𝑡󳨀→∞𝐺(𝑡) = −∞; this
is in contradiction with 𝐺(𝑡) > 0. Therefore, we have 𝐿 = 0,
that is, lim𝑡󳨀→∞𝐺(𝑡) = 0. The proof is complete.

Theorem 5. Suppose that (𝐴1) − (𝐴3) and (51) hold. Let 𝑟(𝑡)
and 𝐻(𝑡, 𝑠) be defined as in Theorem 3 such that (42) holds.
Furthermore, assume that, for every constant 𝑇 ≥ 𝑡0, (52)
holds. Then every solution of (12) is oscillatory or satisfies
lim𝑡󳨀→∞ ∫∞

𝑡0
(𝑠 − 𝑡)−𝛼𝑦(𝑠)𝑑𝑠 = 0.

From Theorem 3, proceeding as in the proof of
Theorem 4, we get the results of the theorem.

4. Examples

Example 1. Consider the fractional differential equation

(𝐷3/2− 𝑦) (𝑡) ⋅ (𝐷1/2− 𝑦) (𝑡) − 1𝑡2 (𝐷1/2− 𝑦) (𝑡)
+ 1𝑡 ∫

∞

𝑡
(𝑠 − 𝑡)−𝛼 𝑦 (𝑠) 𝑑𝑠 = 0, 𝑡 > 0. (57)

In (57), 𝛼 = 1/2, 𝑝(𝑡) = 1/𝑡2, 𝑞(𝑡) = 1/𝑡, and 𝑓(𝑥) = ℎ(𝑥) = 𝑥.
Since

∫∞
𝑡0

𝑓−1 (exp(−∫𝑡
𝑡0

𝑝 (V) 𝑑V))𝑑𝑡
= ∫∞
𝑡0

(exp(−∫𝑡
𝑡0

𝑝 (V) 𝑑V))𝑑𝑡
= ∫∞
𝑡0

exp(1𝑡 − 1𝑡0)𝑑𝑡 ≥ ∫∞
𝑡0

exp(− 1𝑡0)𝑑𝑡 = ∞,
(58)

then (19) holds.
Taking 𝑡0 = 1, 𝑘1 = 𝑘2 = 1. It is clear that conditions(𝐴1) − (𝐴3) hold. Furthermore, taking 𝑟(𝑡) = 𝑡2, we have
lim sup
𝑡󳨀→∞

∫𝑡
1

[
[𝑘1𝑟 (𝑠) 𝑞 (𝑠) −

[𝑟󸀠 (𝑠) − 𝑟 (𝑠) 𝑝 (𝑠)]24𝑘2Γ (1 − 𝛼) 𝑟 (𝑠) ]
]𝑑𝑠

= lim sup
𝑡󳨀→∞

∫𝑡
1

[
[
1𝑠 𝑠2 − (2𝑠 − 𝑠2 (1/𝑠2))24√𝜋𝑠2 ]

]𝑑𝑠
= lim sup
𝑡󳨀→∞

∫𝑡
1
(𝑠 − 14√𝜋 (2𝑠 − 1𝑠 )2)𝑑𝑠 = ∞,

(59)

which shows that (34) holds. Therefore, by Theorem 2, every
solution of (12) is oscillatory.



8 Discrete Dynamics in Nature and Society

Example 2. Consider the fractional differential equation

(𝐷5/4− 𝑦) (𝑡) ⋅ (𝐷1/4− 𝑦) (𝑡) − 1𝑡2 (𝐷1/4− 𝑦) (𝑡)
+ 𝑡 ∫∞
𝑡

(𝑠 − 𝑡)−𝛼 𝑦 (𝑠) 𝑑𝑠 = 0, 𝑡 > 0. (60)

In (60), 𝛼 = 1/4, 𝑝(𝑡) = 1/𝑡2, 𝑞(𝑡) = 𝑡, and 𝑓(𝑥) = ℎ(𝑥) = 𝑥.
Proceeding the same process as Example 1, we see that

(19) holds. Taking 𝑡0 = 1, 𝑘1 = 𝑘2 = 1, 𝑟(𝑡) = 1. It is clear that
conditions (𝐴1) − (𝐴3) hold. Furthermore, taking 𝐻(𝑡, 𝑠) =(𝑡 − 𝑠)1/4, it meets𝐻󸀠𝑠(𝑡, 𝑠) = −(1/4)(𝑡 − 𝑠) < 0 for (𝑡, 𝑠) ∈ D0,
D0 fl {(𝑡, 𝑠) : 𝑡 > 𝑠 ≥ 𝑡0}.

Since

lim sup
𝑡󳨀→∞

1𝐻 (𝑡, 𝑡0)
⋅ ∫𝑡
𝑡0

𝐻(𝑡, 𝑠) [[𝑟 (𝑠) 𝑞 (𝑠) −
(𝑟󸀠 (𝑠))24𝑘1𝑘2Γ (1 − 𝛼) 𝑟 (𝑠)]]𝑑𝑠

= lim sup
𝑡󳨀→∞

1(𝑡 − 𝑡0)1/4 ∫
𝑡

𝑡0

𝑠 (𝑡 − 𝑠)1/4 𝑑𝑠 = lim sup
𝑡󳨀→∞

⋅ 1(𝑡 − 𝑡0)1/4 [
45 (𝑡 − 𝑡0)5/4 𝑡0 + 1645 (𝑡 − 𝑡0)9/4]

= lim sup
𝑡󳨀→∞

(45 (𝑡 − 𝑡0) 𝑡0 + 1645 (𝑡 − 𝑡0)2) = ∞,

(61)

which shows that (42) holds, byTheorem 3, every solution of
(12) is oscillatory.

5. Conclusion

In the paper, by using the generalized Riccati transformation
and inequality technique, we study a class of 2𝛼 + 1 order
fractional differential equations in the form (12), which con-
tains the damping term and has not been studied before.The
oscillation criteria of (12) are obtained and some examples are
given to reinforce our results.
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