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This paper introduces a concession equilibrium solution without weighted aggregation operators to multiattribute group decision-
making problems (in shortMGDMPs). It is of practical significance for all decision-makers to find an optimal solution toMGDMPs
or to sort out all candidate solutions to MGDMPs. It is proved that under certain conditions the optimal concession equilibrium
solution does exist, and on this important result the optimal concession equilibrium solution is obtained by solving a single objective
optimization problem. Moreover, the optimal concession equilibrium solution is equivalent to the robust optimal solution with
the group weight aggregation under the worst weight condition. Finally, it is proved that the concession equilibrium solution is
equivalent to a complete order, i.e. all candidate alternatives can be sorted by concession equilibrium solution. By defining the
triangular fuzzy numbers of target concession value, the optimal concession equilibrium solution or the order of the alternative
solutions can be obtained in the range of objective concession ambiguity. Numerical experiment shows that the solution can
balance the evaluations of multiattribute group decision makers. This paper provides a new approach to solving multiattribute
group decision-making problems.

1. Introduction

The multiattribute group decision-making problems
(MGDMP) exist in many areas such as social network,
supplier selection, competitive business environment,
economic analysis, strategic planning, medical diagnosis,
venture capital, and etc. Because of the conflict between
attributes and decision makers, it is very difficult to solve a
MGDMP.

Suppose that there are 𝑟 decision makers,𝐷𝑀1, 𝐷𝑀2, . . . ,𝐷𝑀𝑟 (𝑟 > 1) –a group of experts– and the multiattribute
evaluation (cost or benefit) function for 𝐷𝑀𝑖 is 𝑓𝑖 : 𝑅𝑛 →𝑅𝑚, 𝑖 = 1, 2, . . . , 𝑟. Let 𝑥 be a candidate scheme (solution)
and the set of all candidate schemes be𝑋 ⊂ 𝑅𝑛. Each decision
maker selects a solution or a ranking of the candidate schemes
from𝑋 by evaluating 𝑓𝑖(𝑥).This paper studies multiattribute
group decision-making problem as follows:

(MGDMP)

(P1) min 𝑓1 (𝑥)
(P2) min 𝑓2 (𝑥)

...
(P𝑟) min 𝑓𝑟 (𝑥)

s.t. 𝑥 ∈ 𝑋.

(1)

When 𝑟 = 1, (MGDMP) becomes a group decision-making
problem (GDMP), which is a single-attribute one. So far,
almost all the studies on MGDMPs focus on the weighted
aggregation methods and fall within the following four main
areas:
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(1) The weighted aggregation method used earlier is
mainly based on given weights. For example, Choi (1998) [1]
and Kim (1999) [2] et al. gave a method involving multiat-
tribute weights and group members’ weights to find out the
best candidate. Wei (2000) [3] et al. gave the compromise
weight method with individual preference. This idea of the
aggregating OWA operator weights has been widely studied
and promoted (see Xu (2009) [4]; Yue (2012) [5]; Zhou, Chen,
and Liu (2012) [6]; Liu, Cai, and Martnez (2013) [7]; Liu,
Zhang, and Zhang (2014) [8]; Gao, Li, and Liu (2015) [9];
Dong, Xiao, Zhang, and Wang (2016) [10]).(2) Some studies focus on weighted aggregation methods
that consider the uncertainty of weights, such as weights
being an interval or a probability distribution. For example,
Merig, Casanovas, and Yang (2014) [11] studied the uncer-
tain generalized probabilistic weighted averaging (UGPWA)
operator. Qi, Liang, and Zhang (2015) [12] presented a
method of generalized cross-entropy based group decision-
making with unknown experts and attribute weights under
interval-valued intuitionistic fuzzy environment.(3) In recent years, some new complex methods using
fuzzy theory are applied to the weighted aggregation meth-
ods. For example, Sadi-Nezhad and Akhtari (2008) [13]
studied a possibilistic programming approach with fuzzy
multidimensional analysis preference. Yan and Ma (2015)
[14] proposed an approach to uncertain quality function
deployment based on fuzzy preference relation and fuzzy
majority. More research literatures can be seen in Xu, Chen,
Rodrguez, Herrera, andWang (2016) [15]; Bayrama and Sahin
(2016) [16]; Chen and Kuo (2017) [17]; Banaeian, Mobli,
Fahimnia, Nielsen, and Omida (2018) [18].(4)Thehesitant fuzzy linguistic term set and the linguistic
distribution are becoming popular tools to solve MGDMPs.
For example, Thuong, Zhang, Li, and Hong (2018) [19] pro-
posed a quantitative hesitant fuzzy judgment descriptionwith
an embedded assessing attitude to evaluate financial state-
ment quality (FSQ) to overcome the weighting difficulties,
and applied a distance-based method to determine the evalu-
ators’ weights and a weighted averaging operator to compute
the criteria weights of MGDMPs. Wu, Xu, and Xu (2016) [20]
proposed an entropymethod that is generalized to a linguistic
setting to derive the important weights for the attributes with
quite different values, which are considered more important
and therefore have higher weights for MGDMPs. Wu and Xu
(2018) [21] considered the preferences of the decision-makers
using fuzzy preference relations and a novel distance measure
over the possibility distribution based hesitant fuzzy elements
is defined to compute the various consensus measures. More
research literatures can be seen in Wu, Li, Chen, and Dong
(2018) [22]; Wu, Dai, Chiclana, Fujita, and Herrera-Viedma
(2018) [23]; Li, Rodrguez,Martnez, Dong, and Herrera (2018)
[24]; Wu and Xu (2016) [25]; Wu, Jin, and Xu (2018) [26].

All the above literatures on weighted aggregation almost
all focus on limited number of candidate schemes (solutions)
to MGDMPs. But, the weighted aggregation method is
a commonly used method in solving MGDMPs. Its fatal
weakness is that different weights lead to different ranking of
the candidate schemes (or candidates), and it is impossible
to prove which weighted aggregation method is the best.

In literatures on MGDMPs, the attributes’ weights and the
experts’ weights should be determined, e.g. in [5] the weights
were determined by using all the schemes, then if there
are infinite number of candidate schemes, the method will
become ineffective. On the other hand, different attributes’
weights and experts’ weights will lead to different ranking
of the final scheme, which would result in an outcome
that makes it difficult to determine which ranking is the
best. So we propose an s-concession equilibrium solution to
MGDMPs to avoid the determination of attributes’ weights
and experts’ weights, and it provides an optimum solution to
the situation when there are infinite number of schemes for
MGDMPs.

To solve the infinite-number-of-candidate multi-de-
cision-maker decision-making problems, Meng, Hu and
Dang (2005) [27] proposed an s-concession equilibrium
solution with single attribute mathematical programming
model for the coexistence of competitions and cooperation
problems. Meng, Hu, Jiang and Zhou (2007) [28] gave an s-
concession equilibrium solution with single attribute inter-
actional programming model for the coexistence of competi-
tions and co-operations problems. Xu,Meng, and Shen (2015)
[29] introduced an s-concession equilibrium solution and
gave a cooperation model based on CVaR measure for a two-
stage supply chain with a single-attribute GDMP. Jiang, Meng
and Shen (2018) [30] proposed for the first time the target
concession value of s-concession equilibrium solution to the
single-attribute GDMPs. But, an s-concession equilibrium
solution toMGDMPswith the target concession value has not
yet seen in published literatures.

Jiang, Meng and Shen (2018) [30] introduced a con-
cept as to the solution to group decision-making problems
(GDMPs): 𝑠-concession equilibrium solution, which is more
adaptive to the situation where the number of candidates
is unlimited, and used an example to show how to solve
the product ordering and production operation decision-
making problem between the retailer and the manufacturer
using the 𝑠- optimal concession equilibrium solution under
the case where the number of alternatives is unlimited. The
concept is characterized by that, for each decision maker,
each objective attribute gives the corresponding concession
value 𝑠, and the 𝑠-optimal concession equilibrium solution
is the minimum concession given. The 𝑠-optimal concession
equilibrium solution provides a natural criterion for evalu-
ating the merits of the candidates. Obviously, it is different
from other existing methods with weighted aggregation
operators, because 𝑠-optimal concession equilibrium solution
is a method that provides a natural criterion for evaluating
the merits of the candidates and does not use weighted
aggregation operators. According to the definition of 𝑠∗-
optimal concession equilibrium solution, the 𝑠∗-optimal
concession equilibrium solution is obviously not dependent
on the evaluation function of one DM. On the other hand,
for each scheme, the equilibrium value is the same for each
decision maker’s goal. Therefore, the 𝑠-optimal concession
equilibrium solution has its individual rationality.

In this paper, based on the idea of concession equilibrium
to GDMPs (Jiang, 2018) [30], the optimal concession equi-
librium solution to MGDMPs without weighted aggregation
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operators is defined. Our innovation includes (1) a new 𝑠∗-
optimal concession equilibrium solution is proposed, where
𝑠∗ is a vector, while the concept – 𝑠-optimal concession
solution defined in [30] cannot solve (MGDMP); (2) the 𝑠∗-
optimal concession equilibrium solution is a robust solution
in all theweighted aggression sets; (3) a new triangular-fuzzy-
concession ranking method is proposed based on the 𝑠∗-
optimal concession equilibrium solution, and the rankings
in the numerical experiments show stability under different
concession values.

2. s∗-Optimal Concession Equilibrium
Solution to MGDMP

In this section, 𝑠∗-optimal concession equilibrium solution
to MGDMPs and its property are discussed. Let 𝜖𝑖 =(𝜖𝑖1, 𝜖𝑖2, . . . , 𝜖𝑖𝑚)𝑇 ∈ 𝑅𝑚 (𝑖 = 1, 2, . . . , 𝑟 ) be given, where 𝜖𝑖 is
called the target concession value of𝐷𝑀𝑖 (𝑖 = 1, 2, . . . , 𝑟). Let
𝜀 = (𝜖1, 𝜖2, . . . , 𝜖𝑟).
Definition 1. Let 𝑥∗ ∈ 𝑋, 𝑠 ∈ 𝑅𝑚, and 𝜖𝑖 ≥ 0 (𝑖 = 1, 2, . . . , 𝑟).
If there is

𝑓
𝑖 (𝑥∗) − 𝑠 − 𝜖𝑖 ≤ 𝑓𝑖 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟, (2)

i.e.,

𝑓𝑖𝑗 (𝑥∗) − 𝑠𝑗 − 𝜖𝑖𝑗 ≤ 𝑓𝑖𝑗 (𝑥) ,
∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑚, (3)

then 𝑥∗ is called 𝑠-concession equilibrium solution to
(MGDMPs) at the value 𝜀. The |𝑠| = ∑𝑚𝑗=1 𝑠𝑗 is called an
equilibrium value of (MGDMP) to 𝑥∗. 𝑠 is called an equi-
librium point of (MGDMP) to 𝑥∗. The set of all equilibrium
values |𝑠| of all 𝑠-concession equilibrium solutions 𝑥∗ ∈ 𝑋
to (MGDMP) is denoted as 𝑆. If 𝑥∗ is the 𝑠∗-concession
equilibrium solution to (MGDMP) and |𝑠∗| is the minimum
of the set 𝑆, then 𝑥∗ is called the 𝑠∗-optimal concession
equilibrium solution to (MGDMP) at the target concession
value 𝜀. |𝑠∗| is called the optimal equilibrium value, and
obviously the optimal equilibrium value is unique. 𝑠∗ is called
the optimal equilibrium point, and the equilibrium point 𝑠∗
of 𝑥∗ is not always unique.

This differs from the 𝑠∗-optimal concession equilibrium
solution to single attribute group decision-making problem
(Jiang, 2018) [30]. Furthermore, to solve the infinite-number-
of-candidate MGDMPs and avoid the determination of the
attributes’ weights and the experts’ weights, the s-concession
equilibrium solution and s∗-concession equilibrium solution
are introduced.

Obviously, we have the following property.

Property 2. Let 𝑥∗ be 𝑠∗-optimal concession equilibrium
solution to (MGDMP) at the value 𝜀.

(1) Let 𝑣 ∈ 𝑅𝑚. If
𝑓
𝑖 (𝑥∗) − 𝑣 − 𝜖𝑖 ≤ 𝑓𝑖 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟, (4)

then |𝑠∗| ≤ |𝑣|.

(2)Then𝑥∗ be 0-optimal concession equilibrium solution
to (MGDMP) at the value 𝜀(𝑠∗), where 𝜀(𝑠∗) = (𝑠∗ + 𝜖1, 𝑠∗ +
𝜖2, . . . , 𝑠∗ + 𝜖𝑟).

(3) If𝑋 has only a finite number of solutions, then the 𝑠∗-
optimal concession equilibrium solution to (MGDMP) exists.

Property 2 indicates that, with the given 𝜖𝑖, 𝑠∗ is the
minimum concession value among all the candidates, so its
corresponding 𝑠∗-optimal concession equilibrium is the best
solution in all equilibrium values.

When the different target concession values, i.e., different
𝜖, are given, different 𝑠∗-optimal concession equilibrium
solutions are obtained, as shown in the following example.

Example 3. Consider the following GDMP.
(MGDMP)

(P1) min 𝑓1 (𝑥, 𝑦) = ((𝑥 − 2)2 + 𝑦2, 𝑥2 + (𝑦 − 2)2)
(P2) min 𝑓2 (𝑥, 𝑦) = (𝑥2 + (𝑦 − 2)2 , (𝑥 − 2)2 + 𝑦2)

s.t. (𝑥, 𝑦) ∈ 𝑋 = 𝑅1 × 𝑅1.
(5)

If 𝜀1 = ((0, 0)𝑇, (0, 0)𝑇), we have
𝑓11 (1, 1) − 2 − 0 ≤ 𝑓11 (𝑥, 𝑦) ,
𝑓12 (1, 1) − 2 − 0 ≤ 𝑓12 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ 𝑅1 × 𝑅1,
𝑓21 (1, 1) − 2 − 0 ≤ 𝑓21 (𝑥, 𝑦) ,
𝑓22 (1, 1) − 2 − 0 ≤ 𝑓22 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ 𝑅1 × 𝑅1.

(6)

(𝑥, 𝑦) = (1, 1) is the (2, 2)𝑇-optimal concession equilibrium
solution to the problem at the concession value 𝜀1. This solu-
tion gives the minimum equilibrium value of each decision-
maker’s individual objective.

If 𝜀2 = ((8, 0)𝑇, (0, 8)𝑇), we have
𝑓11 (0, 2) − 0 − 8 ≤ 𝑓1 (𝑥, 𝑦) ,
𝑓12 (0, 2) − 0 − 0 ≤ 𝑓12 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ 𝑅1 × 𝑅1,
𝑓21 (0, 2) − 0 − 0 ≤ 𝑓1 (𝑥, 𝑦) ,
𝑓22 (0, 2) − 0 − 8 ≤ 𝑓22 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ 𝑅1 × 𝑅1.

(7)

(0, 2) is the (0, 0)𝑇-optimal concession equilibrium solu-
tion to the problem at the concession value 𝜀2.

From the above example, it is understood that when
𝜖 is given, an optimal concession equilibrium solution is
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obtained. And Lemma 4 gives the conclusion that under
certain conditions any feasible solution to (MGDMP) is the
concession equilibrium solution.

For each 𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚, we have the
following single objective optimization problem:

(𝑃𝑖𝑗) min 𝑓𝑖𝑗 (𝑥)
𝑠.𝑡. 𝑥 ∈ 𝑋, (8)

Let𝑓𝑖∗𝑗 be the optimal target value of (𝑃𝑖𝑗). Assumes that𝑓𝑖∗𝑗 >−∞, 𝑖 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑚. If some 𝑓𝑖∗𝑗 = −∞, there
is no optimal concession equilibrium solution to (MGDMP).

Lemma 4. Assume that there is an optimal solution to(𝑃𝑖𝑗) (𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚, ). �en for any given
𝑥 ∈ 𝑋, 𝑥 is an 𝑠-concession equilibrium solution to (MGDMP),
where 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑚)𝑇 and 𝑠𝑗 = max{𝑓𝑖𝑗(𝑥) − 𝑓𝑖∗𝑗 − 𝜖𝑖𝑗 | 𝑖 =1, 2, . . . , 𝑟}, 𝑗 = 1, 2, . . . , 𝑚.

Proof. For any 𝑥 ∈ 𝑋, we have

𝑓𝑖∗𝑗 ≤ 𝑓𝑖𝑗 (𝑥) , 𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚. (9)

So, we have

𝑓𝑖𝑗 (𝑥) − [𝑓𝑖𝑗 (𝑥) − 𝑓𝑖∗𝑗 − 𝜖𝑖𝑗] − 𝜖𝑖𝑗 ≤ 𝑓𝑖𝑗 (𝑥) ,
𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚. (10)

So,

𝑓
𝑖 (𝑥) − 𝑠 − 𝜖𝑖 ≤ 𝑓𝑖 (𝑥) , 𝑖 = 1, 2, . . . , 𝑟. (11)

Therefore, by Definition 1, the conclusion of the theorem is
true.

Define the following optimization problem:

(𝑆) min |𝑠| = 𝑠1 + 𝑠2 + ⋅ ⋅ ⋅ + 𝑠𝑚
s.t. 𝑓𝑖𝑗 (𝑥) − 𝑠𝑗 − 𝜖𝑖𝑗 ≤ 𝑓𝑖∗𝑗 ,

𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚,
𝑠 ∈ 𝑅𝑚, 𝑥 ∈ 𝑋.

(12)

Theorem 5. Assume that there is an optimal solution to(𝑃𝑖𝑗) (𝑖 = 1, 2, . . . , 𝑟). �en 𝑥∗ is 𝑠∗-optimal concession
equilibrium solution to (MGDMP) at the value 𝜀 if and only
if (𝑥∗, 𝑠∗) is an optimal solution to (S).

Proof. First, assume that if (𝑥∗, 𝑠∗) is an optimal solution to
(S), then for any 𝑥 ∈ 𝑋, we have

𝑓𝑖𝑗 (𝑥∗) − 𝑠∗𝑗 − 𝜖𝑖𝑗 ≤ 𝑓𝑖∗𝑗 ≤ 𝑓𝑖𝑗 (𝑥) ,
𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚. (13)

So, by Definition 1, we have that 𝑥∗ is 𝑠∗-concession equilib-
rium solution to (MGDMP) at the value 𝜀. Let 𝑥 be 𝑠-optimal

concession equilibrium solution to (MGDMP) at the value 𝜀.
By Property 2, we have |𝑠∗| ≥ |𝑠| and
𝑓
𝑖 (𝑥) − 𝑠 − 𝜖𝑖 ≤ 𝑓𝑖 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟. (14)

Therefore, (𝑥, 𝑠) is a feasible solution to (S). So, |𝑠| ≥ |𝑠∗|.
That is |𝑠| = |𝑠∗| and 𝑥∗ is 𝑠∗-optimal concession equilibrium
solution to (MGDMP) at the value 𝜀.

Now, assume that 𝑥∗ is an 𝑠∗-optimal concession equi-
librium solution to (MGDMP) at the value 𝜀. Then by
Definition 1 it is known that (𝑥∗, 𝑠∗) is a feasible solution
to (S). Let (𝑥, 𝑠) be an optimal solution to (S). By the above
proof, 𝑥 is an 𝑠-optimal concession equilibrium solution to
(MGDMP) at the value 𝜀. Therefore, |𝑠| = |𝑠∗|. So, 𝑥∗≡𝑠𝑥 and(𝑥∗, 𝑠∗) is an optimal solution to (S).

Theorem 5 points out that if 𝑥 is 𝑠-concession equilibrium
solution, then

𝑠𝑗 + 𝜖𝑖𝑗 ≥ 0, 𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚. (15)

Furthermore, Theorem 5 gives that if there exists 𝑠∗-
optimal concession equilibrium solution, the optimal solu-
tion for (𝑃𝑖𝑗)must exist. Then we have the following.

Theorem 6. Assume that 𝑋 is a compact set and 𝑓𝑖𝑗(𝑥) (𝑖 =1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚) is continuous on 𝑋. �en the 𝑠∗-
optimal concession equilibrium solution to (MGDMP) exists.

Proof. By the assumption, there is an optimal solution to each(𝑃𝑖𝑗). By Lemma 4, we have 𝑆 ̸= 0. We prove that 𝑆 is close.
Assume that a sequence {𝑠𝑘} ⊂ 𝑆 converges to 𝑠∗. For 𝑘 =1, 2, . . ., let 𝑥∗𝑘 ∈ 𝑋 be an 𝑠𝑘- concession equilibrium solution
to (MGDMP). Because 𝑋 is compact, the sequence {𝑥∗𝑘 }
has a convergent subsequence. Without loss of generality, let
𝑥∗𝑘 → 𝑥∗ ∈ 𝑋. By Definition 1, we have

𝑓
𝑖 (𝑥∗𝑘 ) − 𝑠𝑘 − 𝜖𝑖 ≤ 𝑓𝑖 (𝑥) ,∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟, 𝑘 = 1, 2, . . . . (16)

Let 𝑘 → +∞, and then we have

𝑓
𝑖 (𝑥∗) − 𝑠∗ − 𝜖𝑖 ≤ 𝑓𝑖 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟. (17)

So, 𝑥∗ is the 𝑠∗-concession equilibrium solution. Therefore 𝑆
is close. By Lemma 4, there is a minimum 𝑠∗ in 𝑆. Given a
sufficiently large 𝐴 > 0, define the problem:

(S)𝐴 min |𝑠| = 𝑠1 + 𝑠2 + ⋅ ⋅ ⋅ + 𝑠𝑚
s.t. 𝑓𝑖𝑗 (𝑥) − 𝑠𝑗 − 𝜖𝑖𝑗 ≤ 𝑓𝑖∗𝑗 ,

𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚,
𝐴 ≥ 𝑠𝑗 ≥ 𝑠∗𝑗 , 𝑥 ∈ 𝑋, 𝑗 = 1, 2, . . . , 𝑚.

(18)

It is obvious that the problem (S)𝐴 is equivalent to the
problem (S), and the feasible set of the problem (S)𝐴 is
compact too. Therefore, there exists the optimal solution(𝑥∗𝐴, 𝑠∗𝐴) to (S)𝐴, then (𝑥∗𝐴, 𝑠∗𝐴) is also the optimal solution to
the problem (S). ByTheorem 5, the conclusion is true.



Discrete Dynamics in Nature and Society 5

To solve (S), (𝑃𝑖𝑗)must be solved first, which is quite diffi-
cult.Therefore, we have the followingTheorem 7, where solv-
ing a single objective programming problem (𝑆) obtains the
𝑠∗-optimal concession equilibrium solution to (MGDMP).

(𝑆) min |𝑠| + 𝑟∑
𝑖=1

𝑚∑
𝑗=1

𝑓𝑖𝑗 (𝑥𝑖𝑗)
s.t. 𝑓𝑖𝑗 (𝑥) − 𝑠𝑗 − 𝜖𝑖𝑗 ≤ 𝑓𝑖𝑗 (𝑥𝑖𝑗) ,

𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚 ,
𝑠 ∈ 𝑅𝑚, 𝑥,𝑥𝑖𝑗
∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟 ; 𝑗 = 1, 2, . . . , 𝑚 ,

(19)

where 𝑠,𝑥,𝑥𝑖𝑗, 𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚, are variable of(𝑆). We have better results as follows.

Theorem 7. Suppose that 𝑥𝑖∗𝑗 is an optimal solution to (𝑃𝑖𝑗)(𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚). If [(𝑥, 𝑠), (𝑥11,. . . ,𝑥1𝑚), (𝑥21, . . . ,𝑥2𝑚), . . . , (𝑥𝑟1, . . . ,𝑥𝑟𝑚)] is an optimal solu-
tion to (𝑆), then 𝑥 is 𝑠∗-optimal concession equilibrium
solution to (MGDMP) at the value 𝜖, where 𝑠∗ = 𝑠 + �̂�,
�̂� = (𝑠1, 𝑠2, . . . , 𝑠𝑚)𝑇,
𝑠𝑗 = max {𝑓𝑖𝑗 (𝑥𝑖𝑗) − 𝑓𝑖𝑗 (𝑥𝑖∗𝑗 ) | 𝑖 = 1, 2, . . . , 𝑟} ,

𝑗 = 1, 2, . . . , 𝑚. (20)

Proof. Let 𝑥∗ be an 𝑠∗-optimal concession equilibrium solu-
tion to (MGDMP). By Theorem 5, we have that (𝑥∗,
𝑠∗) is an optimal solution to (S). It is clear that [(𝑥∗, 𝑠∗),(𝑥1∗1 , . . . ,𝑥1∗𝑚 ), (𝑥2∗1 , . . . ,𝑥2∗𝑚 ), . . . , (𝑥𝑟∗1 , . . . ,𝑥𝑟∗𝑚 )] is a feasible
solution to (𝑆). Therefore, we have

|𝑠| + 𝑟∑
𝑖=1

𝑚∑
𝑗=1

𝑓𝑖𝑗 (𝑥𝑖𝑗) ≤ 𝑠∗ + 𝑟∑
𝑖=1

𝑚∑
𝑗=1

𝑓𝑖 (𝑥𝑖∗𝑗 ) . (21)

By (20), (21), and 𝑓𝑖𝑗(𝑥𝑖∗𝑗 ) = 𝑓𝑖∗𝑗 , we have |𝑠∗| ≤ |𝑠∗|. On the
other hand, according to the theorem hypothesis, we have

𝑓𝑖𝑗 (𝑥) − 𝑠𝑗 − 𝜖𝑖𝑗 ≤ 𝑓𝑖𝑗 (𝑥𝑖𝑗) ,
𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚. (22)

So,

𝑓𝑖𝑗 (𝑥) − 𝑠𝑗 − 𝜖𝑖𝑗 ≤ 𝑓𝑖𝑗 (𝑥𝑖𝑗) − 𝑓𝑖𝑗 (𝑥𝑖∗𝑗 ) + 𝑓𝑖𝑗 (𝑥𝑖∗𝑗 ) ,
𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚. (23)

Here,

𝑓𝑖𝑗 (𝑥) − 𝜖𝑖𝑗 ≤ 𝑠∗𝑗 + 𝑓𝑖𝑗 (𝑥𝑖∗𝑗 ) ,
𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚. (24)

We have that (𝑥∗, 𝑠∗) is a feasible solution to (S). Therefore,|𝑠∗| ≥ |𝑠∗| and 𝑥∗ is 𝑠∗-optimal concession equilibrium
solution to (MGDMP) at the value 𝜀.

Based onTheorem 7, we have the following corollary.

Corollary 8. Let 𝑋 = 𝑅𝑛 and 𝑓𝑖𝑗(𝑥) (𝑖 = 1, 2, . . . , 𝑟, 𝑗 =1, 2, . . . , 𝑚) on 𝑅𝑛 be a continuous differentiable convex func-
tion. Suppose that 𝑥∗𝑖𝑗 is an optimal solution to (𝑃𝑖𝑗) (𝑖 =1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑚). �en 𝑥∗ is an 𝑠∗-optimal
concession equilibrium solution to (MGDMP) at the value 𝜀 if
and only if there is an incomplete zero of (𝜆1𝑗, 𝜆2𝑗, . . . , 𝜆𝑟𝑗) (𝑗 =1, 2, . . . , 𝑚) to satisfy the following KKT-condition:

𝜆1𝑗 + 𝜆2𝑗 + ⋅ ⋅ ⋅ + 𝜆𝑟𝑗 = 1, 𝑗 = 1, 2, . . . , 𝑚,
𝑟∑
𝑖=1

𝜆𝑖𝑗∇𝑓𝑖𝑗 (𝑥∗) = 0, 𝑗 = 1, 2, . . . , 𝑚,
𝜆𝑖𝑗 (𝑓𝑖𝑗 (𝑥∗) − 𝑠∗𝑗 − 𝜖𝑖𝑗 − 𝑓𝑖∗𝑗 ) = 0,

𝑖 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑚,
𝑓𝑖𝑗 (𝑥∗) − 𝑠∗𝑗 − 𝜖𝑖𝑗 ≤ 𝑓𝑖∗𝑗 ,

𝑖 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑚,
𝜆𝑖𝑗 ≥ 0,

𝑖 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑚.

(25)

As per Corollary 8, there is (𝜆1𝑗, 𝜆2𝑗, . . . , 𝜆𝑟𝑗) (𝑗 =1, 2, . . . , 𝑚) which can be seen as the group weighted aggre-
gation of (MGDMP). Next, in the Set (27) consisting of all the
aggregations, the 𝑠∗-optimal concession equilibrium solution
is a robust optimal solution, as shown in Theorem 9.

Let D𝑀𝑖’s evaluation be 𝑓𝑖𝑗(𝑥) − 𝜖𝑖𝑗 − 𝑓𝑖∗𝑗 for 𝑥. By using
weights 1 ≥ 𝜆𝑖𝑗 ≥ 0, 𝐷𝑀𝑖’s evaluation becomes 𝜆𝑖𝑗(𝑓𝑖𝑗(𝑥) −𝜖𝑖𝑗 − 𝑓𝑖∗𝑗 ) for 𝑥 and 𝑗 = 1, 2, . . . , 𝑚. With the linear weighting
method, the evaluation of all decision-makers for 𝑥 is defined
as

𝐹 (𝑥, 𝜆) fl 𝑟∑
𝑖=1

𝑚∑
𝑗=1

𝜆𝑖𝑗 (𝑓𝑖𝑗 (𝑥) − 𝜖𝑖𝑗 − 𝑓𝑖∗𝑗 ) , (26)

where 𝜆1𝑗 + 𝜆2𝑗 + ⋅ ⋅ ⋅ + 𝜆𝑟𝑗 = 1, 𝜆𝑖𝑗 ≥ 0, 𝑖 = 1, 2, . . . , 𝑟; 𝑗 =1, 2, . . . , 𝑚. Let group weight set

Λ = {𝜆 = [(𝜆11, 𝜆21, . . . , 𝜆𝑟1)𝑇 , (𝜆12, 𝜆22, . . . , 𝜆𝑟2)𝑇 , . . . ,
(𝜆1𝑚, 𝜆2𝑚, . . . , 𝜆𝑟𝑚)𝑇] | 𝑟∑

𝑖=1

𝜆𝑖𝑗 = 1, 𝜆𝑖𝑗 ≥ 0, 𝑖 = 1, 2, . . . ,
𝑟; 𝑗 = 1, 2, . . . , 𝑚} .

(27)

The worst evaluation score of the solution 𝑥 solves:
max𝜆∈Λ𝐹(𝑥,𝜆) for each 𝑥 ∈ 𝑋. Let 𝜆(𝑥) = argmax {𝐹(𝑥, 𝜆) |
𝜆 ∈ Λ}. Then, we are to find a minimum score from these
worst scores min𝑥∈𝑋𝐹(𝑥, 𝜆(𝑥)), i.e.,(𝑆) min

𝑥∈𝑋
max
𝜆∈Λ

𝐹 (𝑥,𝜆) . (28)
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We prove the following conclusion.

Theorem 9. Supposing that the optimal solution to (𝑃𝑖𝑗) (𝑖 =1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚) exists, then the problem (S) is
equivalent to the problem (𝑆).
Proof. For a fixed 𝑥, the problem max𝜆∈Λ𝐹(𝑥, 𝜆) is a linear
programming:

Λ (𝑥) max 𝐹 (𝑥, 𝜆) fl 𝑟∑
𝑖=1

𝑚∑
𝑗=1

𝜆𝑖𝑗 (𝑓𝑖𝑗 (𝑥) − 𝜖𝑖𝑗 − 𝑓𝑖∗𝑗 )
s.t. 𝜆1𝑗 + 𝜆2𝑗 + ⋅ ⋅ ⋅ + 𝜆𝑟𝑗 = 1,

𝑗 = 1, 2, . . . , 𝑚,
𝜆𝑖𝑗 ≥ 0,

𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚.

(29)

The dual problem of Λ(𝑥) is
𝑆 (𝑥) min |𝑠| = 𝑠1 + 𝑠2 + ⋅ ⋅ ⋅ + 𝑠𝑚

s.t. 𝑓𝑖𝑗 (𝑥) − 𝑠𝑗 − 𝜖𝑖𝑗 ≤ 𝑓𝑖∗𝑗 ,
𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚,

𝑠 ∈ 𝑅𝑚, 𝑥 ∈ 𝑋.
(30)

Based on the strong duality theorem, there exists the optimal
solution to the problem Λ(𝑥) and the problem 𝑆(𝑥), and the
optimal objective values are equal at their optimal solutions.
Let 𝜆∗ be an optimal solution to Λ(𝑥) and 𝑠∗ an optimal
solution to 𝑆(𝑥), then |𝑠∗| = 𝐹(𝑥, 𝜆∗) = max𝜆∈Λ𝐹(𝑥, 𝜆).
Therefore, the conclusion of theorem is true.

From the viewpoint of robustness, Theorem 9 means
the 𝑠∗-optimal concession equilibrium solution is the robust
solution for the decision-makers under the worst weights inΛ.

The evaluation function 𝑓𝑖𝑗(𝑥) (𝑖 = 1, 2, . . . , 𝑟; 𝑗 =1, 2, . . . , 𝑚) of all decision-makers should be consistent as far
as possible. 𝑓𝑖∗𝑗 (𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚) is the ideal
goal. Obviously, the closer the solution to the ideal goal, the
better. A deviation function is defined by

△(𝑥) = 1𝑟𝑚√ 𝑟∑
𝑖=1

𝑚∑
𝑗=1

(𝑓𝑖𝑗 (𝑥) − 𝑓𝑖∗𝑗 )2, 𝑥 ∈ 𝑋. (31)

According toTheorem 5, if 𝑥 is the 𝑠-concession equilibrium
solution, then we have

0 ≤ 𝑓𝑖𝑗 (𝑥) − 𝑓𝑖∗𝑗 ≤ 𝑠𝑗 + 𝜖𝑖𝑗,
𝑖 = 1, 2, . . . , 𝑟; 𝑗 = 1, 2, . . . , 𝑚. (32)

That is

0 ≤ 1𝑟𝑚√ 𝑟∑
𝑖=1

𝑚∑
𝑗=1

(𝑓𝑖𝑗 (𝑥) − 𝑓𝑖∗𝑗 )2

≤ 1𝑟𝑚√ 𝑟∑
𝑖=1

𝑚∑
𝑗=1

(𝑠𝑗 + 𝜖𝑖𝑗)2,
≤ 1𝑚 |𝑠| + 1𝑟𝑚

𝑟∑
𝑖=1

𝑚∑
𝑗=1

𝜖𝑖𝑗,
(33)

for 𝑥 ∈ 𝑋. Let |𝜀| = ∑𝑟𝑖=1∑𝑚𝑗=1 𝜖𝑖𝑗. |𝜀| is the sum of target
concession values of all 𝐷𝑀𝑖 (𝑖 = 1, 2, . . . , 𝑟). So, we have the
following conclusion.

Corollary 10. Assume that there is an optimal solution to(𝑃𝑖𝑗) (𝑖 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑚). If 𝑥∗ is 𝑠∗-optimal
concession equilibrium solution to (MGDMP) at the value 𝜀,
then min𝑥∈𝑋△(𝑥) ≤ △(𝑥∗) ≤ (1/𝑚)|𝑠∗| + (1/𝑟𝑚)|𝜀|.

Corollary 10 means that the optimal concession equilib-
rium solution 𝑥∗ has a minimal upper bound (1/𝑚)|𝑠∗| +(1/𝑟𝑚)|𝜀|. △(𝑥∗) can be used to evaluate the closeness
between the 𝑠∗-optimal concession equilibrium solution and
the ideal objective.

Example 11. Consider problem (MGDMP)
(MGDMP)

(P1) min 𝑓1 (𝑥) = (𝑥, −𝑥)
(P2) min 𝑓2 (𝑥) = (−𝑥, 𝑥)

s.t. 𝑥 ∈ 𝑋 = [−1, 1] .
(34)

We know that 𝑓1∗1 = 𝑓1∗2 = 𝑓2∗1 = 𝑓2∗1 = −1. When
𝜀 = [(0, 0)𝑇, (0, 0)𝑇], 0 is the (1, 1)𝑇-optimal concession
equilibrium solution to the problem at the concession value
𝜀. This solution gives the minimum equilibrium value of
each decision-maker’s individual objective.Define aweighted
function by

𝐹 (𝑥, 𝜆) = 𝜆1𝑓11 (𝑥) + (1 − 𝜆1) 𝑓21 (𝑥) + 𝜆2𝑓12 (𝑥)
+ (1 − 𝜆2) 𝑓22 (𝑥) = 2 (𝜆1 − 𝜆2) 𝑥. (35)

By Theorem 9, the optimal solution to min𝑥∈𝑋max𝜆1 ,𝜆2∈[0,1]𝐹(𝑥, 𝜆) is 𝑥∗ = 0. As a comparison, we are to use the
linear weighted method to solve this problem, a very famous
method (Kim and Han (1999)) [2] where weighted value𝜆1, 𝜆2 ∈ [0, 1]. When 𝜆1 > 𝜆2, an optimal solution to
min𝑥∈𝑋𝐹(𝑥, 𝜆) is 𝑥∗ = −1. When 𝜆1 < 𝜆2, an optimal
solution to min𝑥∈𝑋𝐹(𝑥, 𝜆) is 𝑥∗ = 1. But, when 𝜆1 = 𝜆2,
no optimal solution to min𝑥∈𝑋𝐹(𝑥, 𝜆) exists. On other hand,
the deviation function △(𝑥) is minimum at 𝑥∗ = 0, but
maximum at 𝑥∗ = 1 or 𝑥∗ = −1. It means that the linear
weighted method is invalid or bad in this example.Therefore,
no matter how the weight is obtained, the linear weighting
method may be invalid.
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3. Ranking and Fuzzy Target
Concession Value of MGDMP

Now, we define the ranking in the set 𝑋 of 𝑠-concession
equilibrium solution to (MGDMP) at the value 𝜀. Deviation
of equilibrium value 𝑠 of 𝑠-concession equilibrium solution
to (MGDMP) at the value 𝜀 is defined as

𝜎 (𝑠) = 1𝑚√ 𝑚∑
𝑗=1

(𝑠𝑗 − 1𝑚 |𝑠|)2. (36)

𝜎(𝑠) represents the difference among attribute values.

Definition 12. Let 𝑥1,𝑥2 ∈ 𝑋, and 𝜀 ≥ 0. Let 𝑥1 be an 𝑠1-
concession equilibrium solution to (MGDMP) at the target
concession value 𝜀 and 𝑥2 be an 𝑠2-concession equilibrium
solution to (MGDMP) at the target concession value 𝜖. If|𝑠1| < |𝑠2|, we denote 𝑥1≺𝑠𝑥2 to indicate that 𝑥1 is superior
to 𝑥2. If |𝑠1| = |𝑠2| and 𝜎(𝑠1) < 𝜎(𝑠2), we denote 𝑥1⪯𝑠𝑥2 to
indicate that 𝑥1 is better than 𝑥2. If |𝑠1| = |𝑠2| and 𝜎(𝑠1) =𝜎(𝑠2), we denote 𝑥1≡𝑠𝑥2 to indicate that 𝑥1 is equivalent to
𝑥2.

Obviously, the set 𝑋 is a serially ordered set about the
order ≺𝑠, ⪯𝑠 or ≡𝑠.
Theorem 13. Let 𝑥1,𝑥2 ∈ 𝑋, and 𝜀 ≥ 0. Let 𝑥1 be an
𝑠1-concession equilibrium solution to (MGDMP) at the target
concession value 𝜀 and 𝑥2 be an 𝑠2-concession equilibrium
solution to (MGDMP) at the target concession value 𝜀. If
𝑓𝑖(𝑥1) ≤ 𝑓𝑖(𝑥2), 𝑖 = 1, 2, . . . , 𝑟, �en 𝑥1≺𝑠𝑥2, 𝑥1⪯𝑠𝑥2, or
𝑥1≡𝑠𝑥2.
Proof. According to assumption, we have

𝑓
𝑖 (𝑥1) − 𝑠1 − 𝜖𝑖 ≤ 𝑓𝑖 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟, (37)

𝑓
𝑖 (𝑥1) − 𝑠2 − 𝜖𝑖 ≤ 𝑓𝑖 (𝑥2) − 𝑠2 − 𝜖𝑖 ≤ 𝑓𝑖 (𝑥) ,

∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟, (38)

By Definition 1, we have |𝑠1| ≤ |𝑠2|.
Theorem 13 shows that the concession equilibrium solu-

tion must be nondominated for all decision-makers.

Example 14. Consider a MGDMP. Three decision-makers
are to rank three candidate solutions through scoring, as
shown in Table 1. Let 𝜀1 = ((0, 0)𝑇, (0, 0)𝑇, (0, 0)𝑇) and 𝜀2 =((0, 0)𝑇, (1, 1)𝑇, (2, 2)𝑇).

Here, byDefinition 12, when 𝜀1 = ((0, 0)𝑇, (0, 0)𝑇, (0, 0)𝑇),
we have 𝑥1≡𝑠𝑥2≡𝑠𝑥3. But when 𝜀2 = ((0, 0)𝑇, (1, 1)𝑇, (2, 2)𝑇),
we have 𝑥1≺𝑠𝑥2≺𝑠𝑥3. Example 14 shows a fact that when the
decision-makers donot have the same target concession value
𝜀, the ranking order of 𝑠-concession equilibrium solutions is
not the same.

Theorem 15. Let 𝜀 ≥ 0, and let 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑚)𝑇 ≥ 0.
If 𝑥 is an 𝑠-concession equilibrium solution to (MGDMP) at

the target concession value 𝜀, then 𝑥 is an 𝑠 − 𝑠-concession
equilibrium solution to (MGDMP) at the target concession
value 𝜀, where 𝜖𝑖 = (𝑠1 + 𝜖𝑖1, 𝑠2 + 𝜖𝑖2, . . . , 𝑠𝑚 + 𝜖𝑖𝑚)𝑇 ∈ 𝑅𝑚
(𝑖 = 1, 2, . . . , 𝑟) and 𝜀 = (𝜖1, 𝜖2, . . . , 𝜖𝑟). In other word, if the
same target concession value 𝜀 for each DM is increased, then
the ranking orders of 𝑋 do not change.

Theorem 16. Let 𝑥∗ ∈ 𝑋, 𝜀1, 𝜀1 ≥ 0. Let 𝑥∗ be an 𝑠1-
concession equilibrium solution to (MGDMP) at the target
concession value 𝜀1 and an 𝑠2-concession equilibrium solution
to (MGDMP) at the target concession value 𝜀2. If 𝜀1 ≤ 𝜀2, then|𝑠1| ≥ |𝑠2|.
Proof. According to assumption, we have

𝑓
𝑖 (𝑥∗) − 𝑠1 − 𝜖𝑖1 ≤ 𝑓𝑖 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟. (39)

Then,

𝑓
𝑖 (𝑥∗) − 𝑠1 − 𝜖𝑖2 ≤ 𝑓𝑖 (𝑥∗) − 𝑠1 + (𝜖𝑖2 − 𝜖𝑖1) − 𝜖𝑖2

≤ 𝑓𝑖 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟. (40)

By Property 2 (1), we have |𝑠1| ≥ |𝑠2|.
Theorem 16 means that the bigger the target concession

values for all decision-makers, the smaller the equilibrium
values. But, it is very difficult to take the target concession
value for each decision-maker. The decision-maker can give
the approximate range of the target concession value, using
fuzzy number. Now, the decision-makers give fuzzy number
of the target concession value 𝜖 which is defined as follows:

𝜖𝑖𝐿 = (𝜖𝑖𝐿1, 𝜖𝑖𝐿2, . . . , 𝜖𝑖𝐿𝑚)𝑇 ∈ 𝑅𝑚, 𝑖 = 1, 2, . . . , 𝑟,
𝜖𝑖𝑀 = (𝜖𝑖𝑀1, 𝜖𝑖𝑀2, . . . , 𝜖𝑖𝑀𝑚)𝑇 ∈ 𝑅𝑚, 𝑖 = 1, 2, . . . , 𝑟,
𝜖𝑖𝑈 = (𝜖𝑖𝑈1, 𝜖𝑖𝑈2, . . . , 𝜖𝑖𝑈𝑚)𝑇 ∈ 𝑅𝑚, 𝑖 = 1, 2, . . . , 𝑟,

(41)

where (𝜖𝑖𝐿, 𝜖𝑖𝑀, 𝜖𝑖𝑈) is called a triangular fuzzy target conces-
sion value of 𝐷𝑀𝑖 (𝑖 = 1, 2, . . . , 𝑟). Let 𝜀𝐿 = (𝜖1𝐿, 𝜖2𝐿, . . . , 𝜖𝑟𝐿),
𝜀𝑀 = (𝜖1𝑀, 𝜖2𝑀, . . . , 𝜖𝑟𝑀), and 𝜀𝑈 = (𝜖1𝑈, 𝜖2𝑈, . . . , 𝜖𝑟𝑈).
Definition 17. Given 𝑥∗ ∈ 𝑋, 𝜀𝐿, 𝜀𝑀, 𝜀𝑈. If there is

𝑓
𝑖 (𝑥∗𝐿) − 𝑠𝐿 − 𝜖𝑖𝐿 ≤ 𝑓𝑖 (𝑥) ,∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟,

𝑎𝑛𝑑 𝑓𝑖 (𝑥∗𝑀) − 𝑠𝑀 − 𝜖𝑖𝑀 ≤ 𝑓𝑖 (𝑥) ,
∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟,

𝑎𝑛𝑑 𝑓𝑖 (𝑥∗𝑈) − 𝑠𝑈 − 𝜖𝑖𝑈 ≤ 𝑓𝑖 (𝑥) ,
∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑟,

(42)

then 𝑥∗𝐿 is called 𝑠𝐿-concession equilibrium solution to
(MGDMP) at the target concession value 𝜀𝐿, 𝑥

∗
𝑀 is called

𝑠𝑀-concession equilibrium solution to (MGDMP) at the
target concession value 𝜀𝑀, and 𝑥

∗
𝑈 is called 𝑠𝑈-concession

equilibrium solution to (MGDMP) at the target concession
value 𝜀𝑈.
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Table 1: The score of three decisions and the equilibrium value under different target concession values.

Solution score of DM1 score of DM2 score of DM3 𝜀1 𝜀2𝑋 𝑓1(𝑥) 𝑓2(𝑥) 𝑓3(𝑥) 𝑠 𝑠

𝑥1 (1,1) (2,2) (3,3) (2, 2)𝑇 (0, 0)𝑇
𝑥2 (2,2) (3,3) (1,1) (2, 2)𝑇 (1, 1)𝑇
𝑥3 (3,3) (1,1) (2,2) (2, 2)𝑇 (2, 2)𝑇

Table 2: The scores of 9 candidates and the equilibrium value under triangular fuzzy target concession values.

Solution M1 DM2 DM3 DM4 DM5 𝜀𝐿 𝜀𝑀 𝜀𝑈𝑋 𝑓1(𝑥) 𝑓2(𝑥) 𝑓3(𝑥) 𝑓4(𝑥) 𝑓5(𝑥) 𝑠𝐿 𝑠𝑀 s𝑈 △(𝑥)
𝑥1 (1,5) (2,2) (3,3) (3,4) (5,7) (3, 5)𝑇 (1, 2)𝑇 (−1, 1)𝑇 1.2288
𝑥2 (2,3) (3,3) (4,2) (4,3) (3,6) (3, 4)𝑇 (2, 1)𝑇 (−1, 0)𝑇 1.1000
𝑥3 (5,5) (4,2) (3,2) (2,3) (2,2) (4, 4)𝑇 (3, 2)𝑇 (1, 1)𝑇 1.0198
𝑥4 (4,1) (2,4) (5,3) (6,4) (6,3) (5, 2)𝑇 (4, 0)𝑇 (1, −1)𝑇 1.2961
𝑥5 (5,2) (5,5) (3,7) (4,2) (4,2) (4, 5)𝑇 (3, 2)𝑇 (1, 1)𝑇 1.3304
𝑥6 (3,7) (6,3) (2,5) (1,7) (3,6) (4, 6)𝑇 (2, 4)𝑇 (1, 3)𝑇 1.5067
𝑥7 (6,6) (2,3) (3,3) (3,5) (2,5) (5, 5)𝑇 (4, 3)𝑇 (2, 2)𝑇 1.2884
𝑥8 (7,5) (3,3) (4,2) (7,5) (5,3) (6, 4)𝑇 (5, 2)𝑇 (3, 1)𝑇 1.4832
𝑥9 (3,4) (4,2) (6,4) (6,4) (4,4) (5, 3)𝑇 (4, 1)𝑇 (1, 0)𝑇 1.3454

By Theorem 16, if 𝜀𝐿 ≤ 𝜀𝑀 ≤ 𝜀𝑈, |𝑠𝐿| ≥ |𝑠𝑀| ≥|𝑠𝑈|. Therefore, 𝑠𝐿-optimal concession equilibrium solution,
𝑠𝑀-optimal concession equilibrium solution, and 𝑠𝑈-optimal
concession equilibrium solution to (MGDMP)maynot be the
same 𝑥. We have an example as follows.

Example 18. A company is about to produce a new mobile
phone. It needs to give consumers a chance to choose
their favorite colors and shapes. So 9 colors and shapes
are provided as candidates of the new mobile phone. Five
decision-makers were randomly selected to score the nine
candidates. The smaller the score, the more satisfied the
candidate is. The favoritism to colors and shapes of the new
mobile phone is described with the score band 0 ∼ 7:0 ∼ 3 mean like the new mobile phone with 0 meaning
very much, 1 like, 2 general, and 3 a little, respectively; 4
means indifferent to the new mobile phone; 5 ∼ 7 means
dislike the new mobile phone with 5 a little, 6 dislike, and
7 very much. Hence, (0,0) means like the colors and shapes
of the new mobile phone very much. (2,3) means generally
like the colors and like a little shapes of the new mobile
phone. Then, the triangular fuzzy numbers of target con-
cession value: 𝜀𝐿 = [(0, 0)𝑇, (0, 0)𝑇, (0, 0)𝑇, (0, 0)𝑇, (0, 0)𝑇],
𝜀𝑀 = [(1, 2)𝑇, (2, 2)𝑇, (2, 3)𝑇, (1, 2)𝑇, (2, 3)𝑇], and 𝜀𝑈 =[(3, 3)𝑇, (3, 3)𝑇, (4, 4)𝑇, (4, 3)𝑇, (4, 4)𝑇] describes the degree of
preference for color and shape, respectively. Let 𝑓𝑖(𝑥) =(𝑓𝑖1(𝑥), 𝑓𝑖2(𝑥)), 𝑖 = 1, 2, 3, 4, 5, be multiattribute function of 5
decision makers. 𝑓𝑖1(𝑥) represents color, and 𝑓𝑖2(𝑥) indicates
shape in Table 2.

We get the optimal objective value 𝑓𝑖∗𝑗 : [(1, 1),(2, 2), (2, 2), (1, 2), (2, 2)]. By Lemma 4, we obtain three
concession equilibrium value (𝑠𝐿, 𝑠𝑀, 𝑠𝑈) for 𝑠𝐿-concession
equilibrium solution, 𝑠𝑀- concession equilibrium solution,

and 𝑠𝑈-concession equilibrium solution to (MGDMP)
respectively, as shown in Table 2.

From Table 2, we obtain three orders of the 9 candidates
as follows:
𝑥
2⪯𝑠𝐿𝑥4≺𝑠𝐿𝑥3⪯𝑠𝐿𝑥1≡𝑠𝐿𝑥9≺𝑠𝐿𝑥5≺𝑠𝐿𝑥7⪯𝑠𝐿𝑥6≡𝑠𝐿𝑥8,
𝑥
1≡𝑠𝑀𝑥2≺𝑠𝑀𝑥4≺𝑠𝑀𝑥3≡𝑠𝑀𝑥5⪯𝑠𝑀𝑥9≺𝑠𝑀𝑥6≺𝑠𝑀𝑥7⪯𝑠𝑀𝑥8,
𝑥
2≺𝑠𝑈𝑥1≡𝑠𝑈𝑥4≺𝑠𝑈𝑥9≺𝑠𝑈𝑥3≡𝑠𝑈𝑥5≺𝑠𝑈𝑥7⪯𝑠𝑈𝑥6≡𝑠𝑈𝑥8.

(43)

Under the triangular fuzzy numbers of target concession
value, the above three ranking orders of the 9 candidates
are different. The optimal concession equilibrium solutions
to (MGDMP) are different too. The given target concession
value can affect the optimal concession equilibrium solution
to (MGDMP). Obviously, the consistency given by this
example is very poor. When all the candidates have similar
consistency, the orders obtained by 𝑠-optimal concession
equilibrium solution will have better fairness. Of course,
it is not difficult to see that if a decision-maker cannot
fairly evaluate a program, it directly affects the order of the
program.

We choose the approach toMGDMP based on determin-
ing the weights of experts by using projection method in [5]
to rank Example 18. In Table 3 the first line in the first column
shows the weights of attributes determined by the experts,
the other four lines in the first column show the weights
of attributes determined randomly, and the second column
shows the final ranking of the nine schemes. The ranking
is determined via the values of projections of the approach
to MGDMP based on determining the weights of experts by
using projection method; i.e., the smaller the projection the
better the alternative in [5]. From Table 3, it is found that the
ranking results rely on the weights of attributes determined
by the experts, and different weights lead to different ranking.
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Table 3: Approach to MGDMP based on determining the weights of experts by using projection method [5].

Weight vector of attributes of five experts Rank all alternatives
(0.50,0.50)(0.50,0.50)(0.50,0.50)(0.50,0.50)(0.50,0.50) 𝑥4 ≺ 𝑥8 ≺ 𝑥9 ≺ 𝑥3 ≺ 𝑥5 ≺ 𝑥7 ≺ 𝑥1 ≺ 𝑥2 ≺ 𝑥6
(0.97,0.03)(0.96,0.04)(0.49,0.51)(0.80,0.20)(0.14,0.86) 𝑥4 ≺ 𝑥2 ≺ 𝑥9 ≺ 𝑥8 ≺ 𝑥6 ≺ 𝑥5 ≺ 𝑥7 ≺ 𝑥3 ≺ 𝑥1
(0.42,0.58)(0.92,0.08)(0.79,0.21)(0.96,0.04)(0.66,0.34) 𝑥8 ≺ 𝑥4 ≺ 𝑥6 ≺ 𝑥1 ≺ 𝑥9 ≺ 𝑥2 ≺ 𝑥5 ≺ 𝑥3 ≺ 𝑥7
(0.04,0.96)(0.85,0.15)(0.93,0.07)(0.68,0.32)(0.76,0.24) 𝑥1 ≺ 𝑥6 ≺ 𝑥4 ≺ 𝑥8 ≺ 𝑥9 ≺ 𝑥7 ≺ 𝑥3 ≺ 𝑥5 ≺ 𝑥2
(0.74,0.26)(0.39,0.61)(0.66,0.34)(0.17,0.83)(0.71,0.29) 𝑥2 ≺ 𝑥7 ≺ 𝑥6 ≺ 𝑥3 ≺ 𝑥4 ≺ 𝑥5 ≺ 𝑥9 ≺ 𝑥8 ≺ 𝑥1

In particular in the third line, 𝑥8 is ranked as No. 1, while
fromTable 2 the value of△(𝑥8) is 1.48 so 𝑥8 should be ranked
aroundNo. 8, which is an obvious deviation from the experts’.
However, the difference in our ranking is not so big. Using
approach to MGDMP based on determining the weights of
experts by using projection method in [5], which relies on
the weights determined by the experts, might disturb the
final ranking of all the schemes and sometime even brings
contradictory rankings. However, our proposal avoids the
determination of attributes’ weights and experts’ weights, as
the value (𝑓𝑖1(𝑥), 𝑓𝑖2(𝑥)) has contained the preference of the
attributes and the experts.

The merit of our proposal is that there is no need to
determine the attributes’ weights and experts’ weights and it
is easy to determine the triangular fuzzy numbers of target
concession value as it is given through attributes’ value.
Another merit of our proposal is that we may find the
optimum solution from the infinite number of candidates,
as some methods used to solve MGDMPs do not apply to
the situations where there are infinite candidates as shown in
[5].

4. Conclusion

The paper defines a new 𝑠∗- optimal concession equilibrium
solution and proves that when there exist optimal solutions
to all the subproblems there exists the 𝑠∗- optimal concession
equilibrium solution and that it is equivalent to solving a
single objective programming problem. Besides, the paper
proves that the 𝑠∗- optimal concession equilibrium solution
is equivalent to the optimal solution with the worst weight
using the linear weighted objective method. Finally, we prove
that all candidate schemes can be ranked by the conces-
sion equilibrium solution. By defining the triangular fuzzy
number of target concession value, the ranking order of the
schemes or the optimal concession equilibrium solution can
be obtained in the range of objective concession ambiguity.
The numerical experiments show that the 𝑠∗- optimal con-
cession equilibrium solution has stable ranking as compared
to that by the weighted aggression method and can balance
the preferences of different decision-makers about different
attributes.
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