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In this paper, the stochastic stability of internal HIVmodels driven by Gaussian white noise and Gaussian colored noise is analyzed.
First, the stability of deterministic models is investigated. By analyzing the characteristic values of endemic equilibrium, we could
obtain that internal HIVmodels reach a steady state under the influence of RTI and PI drugs.Thenwe discuss the stochastic stability
of internal HIV models driven by Gaussian white noise and Gaussian colored noise, based on probability density functions. The
functionalmethods are carried out to derive the approximate Fokker-Planck equation of stochastic internalHIV systems and further
obtain the marginal probability density functions. Finally, numerical results show that the noise intensities have a great influence
on uninfected cell, infected cell, and virus particles, for predicting the stability of stochastic dynamic systems subjected to Gaussian
white noise and Gaussian colored noise.

1. Introduction

Governments and scientists all over the world have been
concerning about the epidemic of HIV, with its high speed of
spread around the world. As we all know that HIV has caused
millions of deaths, and there are some millions of people
living with HIV alone [1]. In June 2001, at a special session
of the General Assembly on AIDS, world leaders made a
commitment to ensure that resources for the global response
to HIV/AIDS are substantial, sustained, and geared towards
achieving results. As yet, there is no cure for HIV/AIDS.
Together with the people of all sections of society, the
medical world is working at utmost strain go study on the
pathogenesis and properties of epidemic diseases [2, 3].

Mathematical models play a very important role in
describing the Immunological response to infection with
HIV, and making predictions about their behavior. Early
models of HIV infection [4–6] were studied analytically
and numerically by defining ordinary differential equations
which are deterministic models. There are many authors to
investigate how to control and predict HIV virus, based on
deterministic HIV models [7–10].

In recent years, some authors [11–13] have added stochas-
tic terms to incorporate variability introduced by a fluctuating
environment or others. And Renshaw pointed out that the
most natural phenomena do not follow strictly deterministic
laws but rather oscillate randomly about some averages
so that the deterministic equilibrium is not an absolutely
fixed state [14]. In fact, stochasticity plays a vital role in
the structure and function of biological systems. Nowadays,
stochastic internal HIV systems have been concerned with
the study of Gaussian white noise [15–17]. However, there are
few studies on internal HIV systems subjected to combined
Gaussian white noise and Gaussian colored noise. What is
more, Gaussian distributions are not appropriate in some
practical cases. Many experimental evidences, particularly
in biological virus systems, indicate that most of the noises
are not only Gaussian white noise, and there may be
Gaussian colored noise or Non-Gaussian noise or others
[18]. In this paper, we mainly discuss internal HIV systems
subjected to Gaussian white noise and Gaussian colored
noise.

The discussions of stochastic systems play a key role
especially for those analyses on the basis of characteristics of
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Lyapunov exponents, stationary densities, and characteristic
function equations [19, 20]. Up to now, the authors [15–
17] have proposed many theories and methods to study
stochastic HIV systems, and the most important one is about
stationary densities which have become an important way
to examine basic statistical properties of stochastic systems,
such as the stability, chaos, and bifurcation of stochastic
systems. FPK method is an effect means to obtain stationary
densities of stochastic dynamic systems and is often used
in prediction of response process. For instance, Cetto, et al.
[21] showed that a closed formula for the effective diffusion
coefficient might be used to derive Fokker-Planck equations
of the different approximate expressions. Ditlevsen, et al.
[22] raised doubt about the validity of the spectral Fokker-
Planck equation in its standard formulation and solved
the equation with respect to stationary solutions in the
particular case where the noise was Cauchy noise and the
drift function was polynomial. Until now, stochastic stability
of stochasticHIVmodels excited byGaussianwhite noise and
Gaussian colored noise based on FPK equation has not been
considered.

In this paper, the characteristic values of epidemic
equilibrium are calculated to consider the stability of HIV
deterministic systems.Andwemainly derive the approximate
Fokker-Planck equation of internal HIV stochastic dynamic
systems and get the general expression of their stationary
densities. Considering variety of stochastic noise intensities,
we analyze the changes of uninfected cell, infected cell,
and virus particles, make predictions about the stability of
stochastic dynamic systems subjected toGaussianwhite noise
and Gaussian colored noise, and discuss the fact that when
noises are both Gaussian noises, these two cases agree very
well [23].

The paper is organized as follows: in Section 2, we briefly
review some basic facts about the stability HIV deterministic
models which have involved the concentration of uninfected
target cell, infected cell, and virus particles, with the help of
the characteristic values of epidemic equilibrium; Section 3
is devoted to derive the approximate Fokker-Planck equation
of the HIV system with Gaussian white noise and Gaussian
colored noise and further obtain the general expression of
their stationary densities; in Section 4, numerical simulations
results for the different stochastic noise intensities are carried
out to predict about the behavior of the uninfected target cell,
infected cell, and virus particles; in Section 5, we will present
the conclusions and future directions to close this paper.

2. The Stability Analysis of HIV
Deterministic Models

In the early stage of HIV infection, after reverse transcriptase
inhibitor (RTI) and protease inhibitor (PI) drugs are given,
virus particles are classified as either infections, not influ-
enced, or as non-infection. On the basis of standard internal
viral dynamics models [15, 16, 24–26], we will consider
the following three-dimensional deterministic models which
have involved the concentration of uninfected target cell𝑍1(𝑡), infected cell 𝑍2(𝑡), and virus particles 𝑍3(𝑡).

̇𝑍1 (𝑡) = 𝜆 − 𝛿𝑍1 (𝑡) − (1 − 𝛾) 𝛽𝑍1 (𝑡) 𝑍3 (𝑡)
̇𝑍2 (𝑡) = (1 − 𝛾) 𝛽𝑍1 (𝑡) 𝑍3 (𝑡) − 𝑎𝑍2 (𝑡)
̇𝑍3 (𝑡) = (1 − 𝜂)𝑁𝑎𝑍2 (𝑡) − 𝜇𝑍3 (𝑡)

− (1 − 𝛾) 𝛽𝑍1 (𝑡) 𝑍3 (𝑡) .
(1)

The initial conditions are 𝑍1(0) = 𝑍10; 𝑍2(0) =𝑍20; 𝑍3(0) = 𝑍30. Here 𝑍1(𝑡), 𝑍2(𝑡) and 𝑍3(𝑡) ∈ 𝑅+ and
all parameters are in 𝑅+. (1 − 𝛾) ((0 < 𝛾 < 1)) presents
the reverse transcriptase inhibitor drug effect and (1 − 𝜂)
((0 < 𝜂 < 1)) is the protease inhibitor drug effect. The
constant 𝜆 is the total rate of production of healthy cells per
unit time, 𝛿 is the per capita death rate of healthy cells, 𝛽
is the transmission coefficient between uninfected cells and
infective virus particles, 𝑎 is the per capital death rate of
infected cells, 𝑁 is the average number of infective virus
particles produced by an infected cell in the absence of
HAART during its entire infectious lifetime, and 𝜇 presents
the per capita death rate of infective virus particles.

The Jacobian matrix for model system (1) is given as

𝐽

= [[[
[

−𝛿 − (1 − 𝛾) 𝛽𝑍3 (𝑡) 0 − (1 − 𝛾) 𝛽𝑍1 (𝑡)(1 − 𝛾) 𝛽𝑍3 (𝑡) −𝑎 (1 − 𝛾) 𝛽𝑍1 (𝑡)− (1 − 𝛾) 𝛽𝑍3 (𝑡) (1 − 𝜂)𝑁𝑎 −𝜇 − (1 − 𝛾) 𝛽𝑍1 (𝑡)
]]]
]
. (2)

The deterministic modes have been analyzed by Tuckwel
et al. [25]. They show that if 𝑅0 = (1 − 𝛾)𝛽𝑁(1 − 𝜂)/(𝛿𝜇 +𝛽𝜆(1−𝛾)) ≤ 1, then the disease free equilibrium is the unique
equilibrium.And if𝑅0 = (1−𝛾)𝛽𝑁(1−𝜂)/(𝛿𝜇+𝛽𝜆(1−𝛾)) > 1,
as well as the disease free equilibrium, then there is a unique
equilibrium 𝑃0 given by

𝑃0 = (𝑍∗1 , 𝑍∗2 , 𝑍∗3 ) (3)

in which

𝑍∗1 = 𝜇𝛽 (1 − 𝛾) [𝑁 (1 − 𝜂) − 1]
𝑍∗2 = 𝛽𝜆 (1 − 𝛾)𝑁 (1 − 𝜂) − 𝛽𝜆 (1 − 𝛾) − 𝛿𝜇𝛼𝛽 (1 − 𝛾) [𝑁 (1 − 𝜂) − 1]
𝑍∗3 = 𝛽𝜆 (1 − 𝛾)𝑁 (1 − 𝜂) − 𝛽𝜆 (1 − 𝛾) − 𝛿𝜇𝛽𝜇 (1 − 𝛾)

(4)

Take parameters 𝛿 = 0.1𝑑𝑎𝑦−1, 𝑎 = 0.5𝑑𝑎𝑦−1, 𝜇 =5𝑑𝑎𝑦−1, 𝛾 = 0.5, 𝜂 = 0.5 𝜎1 = 0.5 and 𝜎2 = 0.5, 𝛽 =1 × 10−8𝑑𝑎𝑦−1𝑑𝑚3, 𝜆 = 107𝑑𝑎𝑦−1𝑑𝑚3, 𝑁 = 100 per cell.
The characteristic values of Jacobian matrix for (1) which is
in equilibrium 𝑃0 are 𝜆1 = −0.3589+0.4210𝑖, 𝜆2 = −0.3589−0.4210𝑖, 𝜆3 = −5.6355. From that, we can see that one of
the characteristic values is real number and less than zero,
and others are conjugate complex whose real parts are less
than zero.Therefore, based on Lyapunov stability’s law, inter-
nal viral dynamics models are asymptotically stable, which
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implies that the system trajectories are ultimately confided to
a fixed point. In other words, the HIV deterministic systems
reach a steady state under the influence of RTI and PI drugs.

When there is randomness in parameters such as the
disease death rate, it is a standard technique to introduce
environmental noise into the parameters in this way [14].
Stochastic effects are considered by Gaussian white noise,
which is only ideal noise and may not exist in the real
word. Therefore, both Gaussian white noise and Gaussian
colored noise are investigated to reach on upon uninfected
and infected CD4 cells, even CD4 cells and virus particles.

3. Stationary Probability Densities of Internal
HIV Models with Gaussian White Noise and
Gaussian Colored Noise

The Fokker-Planck equations have played an important role
in the investigation of unusual statistic properties of dynamic
systems, such as biology systems. In this paper, their statistic
characteristics are predicted, by deriving the approximate
expressions of stationary probability densities for uninfected
target cell, infected cell, and virus particles.

The models with Gaussian white noise and Gaussian
colored noise in the paper seek to describe the dynamics of
HIV-1 rival load during primary infection.

̇𝑍1 (𝑡) = 𝜆 − 𝛿𝑍1 (𝑡) − (1 − 𝛾) 𝛽𝑍1 (𝑡) 𝑍3 (𝑡)
− 𝜎1𝑍1 (𝑡) 𝜉1 (𝑡)

̇𝑍2 (𝑡) = (1 − 𝛾) 𝛽𝑍1 (𝑡) 𝑍3 (𝑡) − 𝑎𝑍2 (𝑡)
− 𝜎1𝑍2 (𝑡) 𝜉1 (𝑡)

̇𝑍3 (𝑡) = (1 − 𝜂)𝑁𝑎𝑍2 (𝑡) − 𝜇𝑍3 (𝑡)
− (1 − 𝛾) 𝛽𝑍1 (𝑡) 𝑍3 (𝑡) − 𝜎2𝑍3 (𝑡) 𝜉2 (𝑡) .

(5)

Where 𝜉1(𝑡) and 𝜉2(𝑡) are dependent, Gaussian white
noise andGaussian colored noises with the intensity of noises𝜎1 and 𝜎2, respectively, the following statistical properties:

⟨𝜉1 (𝑡)⟩ = ⟨𝜉2 (𝑡)⟩ = 0,
⟨𝜉1 (𝑡) 𝜉1 (𝑡)⟩ = 𝜎1𝜏1 exp[−

𝑡 − 𝑡𝜏1 ] ,

⟨𝜉2 (𝑡) 𝜉2 (𝑡)⟩ = 𝜎2𝜏2 exp[−
𝑡 − 𝑡𝜏2 ] ,

⟨𝜉1 (𝑡) 𝜉2 (𝑡)⟩ = ⟨𝜉2 (𝑡) 𝜉1 (𝑡)⟩ = 0,

(6)

in which 𝜏1 and 𝜏2 are the self-correlation time of the noises.

Let 𝑘𝑖𝑗 be 𝑖𝑗𝑡ℎ order intensity coefficient; then

𝑘11 = 𝜎1𝜏1 ,
𝑘22 = 𝜎2𝜏2 ,
𝑘12 = 𝑘21 = 0.

(7)

In order to derive the approximate Fokker-Planck equa-
tion of the HIV driven by Gaussian white noise and Gaussian
colored noise, some signs are defined:

𝑍 (𝑡) = (𝑍1 (𝑡) , 𝑍2 (𝑡) , 𝑍3 (𝑡)) ,
𝐹 (𝑍 (𝑡) , 𝑡) = (𝐹1 (𝑍 (𝑡) , 𝑡) , 𝐹2 (𝑍 (𝑡) , 𝑡) , 𝐹3 (𝑍 (𝑡) , 𝑡))
𝑊 (𝑡) = (𝜉1 (𝑡) , 𝜉1 (𝑡) , 𝜉2 (𝑡))𝑇
𝐺 (𝑍 (𝑡) , 𝑡)

= [[
[
𝐺1 (𝑍 (𝑡) , 𝑡) 0 0

0 𝐺2 (𝑍 (𝑡) , 𝑡) 0
0 0 𝐺3 (𝑍 (𝑡) , 𝑡)

]]
]

(8)

in which

𝐹1 (𝑍 (𝑡) , 𝑡) = 𝜆 − 𝛿𝑍1 (𝑡) − (1 − 𝛾) 𝛽𝑍1 (𝑡) 𝑍3 (𝑡)
𝐹2 (𝑍 (𝑡) , 𝑡) = (1 − 𝛾) 𝛽𝑍1 (𝑡) 𝑍3 (𝑡) − 𝑎𝑍2 (𝑡)
𝐹3 (𝑍 (𝑡) , 𝑡) = (1 − 𝜂)𝑁𝑎𝑍2 (𝑡) − 𝜇𝑍3 (𝑡)

− (1 − 𝛾) 𝛽𝑍1 (𝑡) 𝑍3 (𝑡) ,
𝐺1 (𝑍 (𝑡) , 𝑡) = −𝜎1𝑍1 (𝑡)
𝐺2 (𝑍 (𝑡) , 𝑡) = −𝜎1𝑍2 (𝑡)
𝐺3 (𝑍 (𝑡) , 𝑡) = −𝜎2𝑍3 (𝑡) .

(9)

Hence we can write (5) as

�̇� (𝑡) = 𝐹 (𝑍 (𝑡) , 𝑡) + 𝐺 (𝑍 (𝑡) , 𝑡)𝑊 (𝑡) ,
(𝑡 ∈ 𝑇; 𝑍 (𝑡0) = 𝑍0) (10)

Based on above definitions, time-dependent joint proba-
bility density function of 𝑍(𝑡) satisfies the FPK equation.

𝜕 [𝑃 (𝑍, 𝑡 | 𝑍0, 𝑡0)]𝜕𝑡 = 𝐿𝑍 [𝑃 (𝑍, 𝑡 | 𝑍0, 𝑡0)] , (11)
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where 𝐿𝑍[𝑢] is a partial differential operator, defined as

𝐿𝑍 [𝑢] = − 3∑
𝑖=1

𝜕 [𝑓𝑖 (𝑍, 𝑡) 𝑢]𝜕𝑍𝑖 + 12
3∑
𝑖=1

3∑
𝑗=1

𝜕2 [𝑏𝑖𝑗 (𝑍, 𝑡) 𝑢]𝜕𝑍𝑖𝜕𝑍𝑗 . (12)

Consider Wong-Zakai’s modification terms, drift coeffi-
cient and diffusion coefficient are provided as

𝑓𝑖 (𝑍, 𝑡) = 𝐹𝑖 (𝑍, 𝑡)
+ 𝜋 3∑
𝑗=1

3∑
𝑙=1

3∑
𝑠=1

𝑘𝑙𝑠𝐺𝑗𝑙 (𝑍, 𝑡) 𝜕𝜕𝑍𝑗𝐺𝑖𝑠 (𝑍, 𝑡)

𝑏𝑖𝑗 (𝑍, 𝑡) = 2𝜋 3∑
𝑙=1

3∑
𝑠=1

𝑘𝑙𝑠𝐺𝑖𝑙 (𝑍, 𝑡) 𝐺𝑗𝑠 (𝑍, 𝑡) ,
(13)

where

𝑓1 (𝑍, 𝑡) = 𝐹1 (𝑍, 𝑡) − 𝜋𝜎1𝑘11𝐺11 (𝑍, 𝑡)
𝑓2 (𝑍, 𝑡) = 𝐹2 (𝑍, 𝑡) − 𝜋𝜎1𝑘22𝐺22 (𝑍, 𝑡)
𝑓3 (𝑍, 𝑡) = 𝐹3 (𝑍, 𝑡) − 𝜋𝜎2𝑘33𝐺33 (𝑍, 𝑡) ,
𝑏11 (𝑍, 𝑡) = 2𝜋𝑘11𝐺11 (𝑍, 𝑡) 𝐺11 (𝑍, 𝑡)
𝑏12 (𝑍, 𝑡) = 2𝜋𝑘12𝐺11 (𝑍, 𝑡) 𝐺22 (𝑍, 𝑡)
𝑏13 (𝑍, 𝑡) = 2𝜋𝑘13𝐺11 (𝑍, 𝑡) 𝐺33 (𝑍, 𝑡) ,
𝑏21 (𝑍, 𝑡) = 2𝜋𝑘21𝐺22 (𝑍, 𝑡) 𝐺11 (𝑍, 𝑡)
𝑏22 (𝑍, 𝑡) = 2𝜋𝑘22𝐺22 (𝑍, 𝑡) 𝐺22 (𝑍, 𝑡)
𝑏23 (𝑍, 𝑡) = 2𝜋𝑘23𝐺22 (𝑍, 𝑡) 𝐺33 (𝑍, 𝑡) ,
𝑏31 (𝑍, 𝑡) = 2𝜋𝑘31𝐺22 (𝑍, 𝑡) 𝐺11 (𝑍, 𝑡)
𝑏32 (𝑍, 𝑡) = 2𝜋𝑘32𝐺33 (𝑍, 𝑡) 𝐺22 (𝑍, 𝑡)
𝑏33 (𝑍, 𝑡) = 2𝜋𝑘33𝐺33 (𝑍, 𝑡) 𝐺33 (𝑍, 𝑡) .

(14)

Furthermore, initial condition, boundary condition, and
normalization condition of 𝑃(𝑍, 𝑡|𝑍0, 𝑡0) can be expressed as
follows, respectively.

lim
𝑡→𝑡0

𝑃 (𝑍, 𝑡 | 𝑍0, 𝑡0) = 𝛿 (𝑍 − 𝑍0)
𝑃 (𝑍, 𝑡 | 𝑍0, 𝑡0)𝑍𝑖→±∞ = 0, (𝑖 = 1, 2, 3)
∫+∞
−∞
𝑃 (𝑍, 𝑡 | 𝑍0, 𝑡0) 𝑑𝑍 = 1.

(15)

For convenience, we define

𝑃 (𝑍, 𝑡) = ∫
Ω0

𝑃 (𝑍, 𝑡 | 𝑍0, 𝑡0) 𝑃 (𝑍0, 𝑡0) 𝑑𝑍0, (16)

where Ω0 is a defined domain, determined by initial vector𝑍0.
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Stochastic solution

10 20 30 40 50 60 70 80 90 1000
Time (days)

0

2

4

6

8

10

12

14

：
1

x 105

Figure 1: The approximate stationary solutions of 𝑍1 obtained for
equations (1) and (5) with 𝜎1 = 0.5 and 𝜎2 = 0.5.

When 𝑡 → ∞, 𝑃(𝑍, 𝑡) is independent of time and
satisfies reduced FPK equation.

𝐿𝑍 [𝑃 (𝑍, 𝑡)] = 0 ⇒
− 3∑
𝑖=1

𝜕 [𝑓𝑖 (𝑍, 𝑡) 𝑃 (𝑍, 𝑡)]𝜕𝑍𝑖
+ 12
3∑
𝑖=1

3∑
𝑗=1

𝜕2 [𝑏𝑖𝑗 (𝑍, 𝑡) 𝑃 (𝑍, 𝑡)]𝜕𝑍𝑖𝜕𝑍𝑗 = 0.
(17)

By utilizing (17), the marginal probability density func-
tion of 𝑍𝑖(𝑖 = 1, 2, 3) can be determined as

𝑃 (𝑍𝑖, 𝑡) = ∫+∞
−∞
𝑃 (𝑍, 𝑡) 𝑑𝑍𝑖, (18)

where 𝑍𝑖 = [𝑍1, ..., 𝑍𝑖−1, 𝑍𝑖+1, ..., 𝑍𝑛], 𝑛 = 3.
4. Numerical Simulations

In order to illustrate some of the effects of Gaussian white
noise and Gaussian colored noise, we numerically solve the
deterministic system of differential equations and stochastic
system of stochastic differential equations. The parameter
values for Figures 1–3 are 𝛿 = 0.1𝑑𝑎𝑦−1, 𝑎 = 0.5𝑑𝑎𝑦−1,𝜇 = 5𝑑𝑎𝑦−1, 𝛾 = 0.5, 𝜂 = 0.5 𝜎1 = 0.5 and 𝜎2 = 0.5,𝛽 = 1 × 10−8𝑑𝑎𝑦−1𝑑𝑚3, 𝜆 = 106𝑑𝑎𝑦−1𝑑𝑚3, 𝑁 = 100 per
cell. When 𝜉1(𝑡) and 𝜉2(𝑡) are both Gaussian white noises, the
results are consistent with findings in [23].

Figures 1–3 demonstrate the influence of Gaussian white
noise and Gaussian colored noise onto the approximate
stationary solutions. It is seen from Figure 1 that when the
time increases, the number of uninfected target cells𝑍1(𝑡) for
noiseless conditions increases rapidly and reaches a set point
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Figure 2: The approximate stationary solutions of 𝑍2 obtained for equations (1) and (5) with 𝜎1 = 0.5 and 𝜎2 = 0.5.
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Figure 3: The approximate stationary solutions of 𝑍3 obtained for equations (1) and (5) with 𝜎1 = 0.5 and 𝜎2 = 0.5.

level. However, for uninfected target cells 𝑍1(𝑡) with noise,
the number firstly increases rapidly and then changes in an
appropriate range. And compared with the numerical results,
we can find that the range is bigger and noise influenced is
more intense. Figures 2-3 show that noises have great effect
on infected cell 𝑍2(𝑡) and virus particles 𝑍3(𝑡), respectively.
Infected cells and virus particles with noises in number are
fewer than ones without noise, which means that Gaussian
white noise andGaussian colored noise are helpful to improve
human’s immune system.

When the parameters 𝛿 = 0.1𝑑𝑎𝑦−1, 𝛽 = 1 ×10−8𝑑𝑎𝑦−1𝑑𝑚3, 𝜆 = 106𝑑𝑎𝑦−1𝑑𝑚3, 𝑁 = 100 per cell, 𝑎 =0.5𝑑𝑎𝑦−1, 𝜇 = 5𝑑𝑎𝑦−1, 𝛾 = 0.5, 𝜂 = 0.5 are fixed, the system
factors are considered: one is the intensity of Gaussian white

noise 𝜎1 and the other is the intensity of Gaussian colored
noise 𝜎2.

Figures 4–6 show that when 𝜎1 and 𝜎2 take different
values, respectively, noises have a great influence on the
stationary marginal probability density functions. It is shown
from Figure 5 that the peak of the stationary marginal
probability density 𝑃(𝑍1) appears between 0.95 × 106 and1.05 × 106 and remains unchanged with 𝜎1 and 𝜎2 changed,
which means that the noise-induced phase transitions do
not occur. It is also clear that the decreases in stochastic
noise intensity 𝜎1 can lead to higher peaks of the stationary
probability density 𝑃(𝑍1). That is, litter intensity values 𝜎1
lead to larger probability that system will stay close to the
equilibrium state. It can be seen from Figures 5-6 that
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Figure 4: The stationary marginal probability density of uninfected target cells 𝑍1(𝑡). (a) 𝜎1 = 0.1 is fixed with 𝜎2 = 0.1 and 𝜎2 = 0.6. (b)𝜎2 = 0.1 is fixed with 𝜎1 = 0.1 and 𝜎1 = 0.15.
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Figure 5: The stationary marginal probability density of infected target cells 𝑍2(𝑡). (a) 𝜎1 = 0.08 is fixed with 𝜎2 = 0.5 and 𝜎2 = 0.8. (b)𝜎2 = 0.5 is fixed with 𝜎1 = 0.1 and 𝜎1 = 0.01.

the probabilities of infected cells and virus particles are
decreasing rapidly and reach level no matter whether the
parameters 𝜎1 and 𝜎2 are changed, which means that the
infected cells and virus particles are approximate steady state.

5. Conclusions

The internal HIV models subjected to Gaussian white noise
and Gaussian colored noise are mainly studied in this

article. It is found that the intensities of noises influence
greatly not only uninfected target cells, infected cell, and
virus particles, but also their stationary marginal proba-
bility density functions. And compared with the internal
HIV models with Gaussian white noises, systems driven
by Gaussian white noise and Gaussian colored noise are
more stable and more conform to reality. In our future
work, we will need deep-going study on how to control
infected cells and virus particles in short time to HIV
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Figure 6: The stationary marginal probability density of virus particles 𝑍3(𝑡). (a) 𝜎1 = 0.1 is fixed with 𝜎2 = 0.1 and 𝜎2 = 0.01. (b) 𝜎2 = 0.01
is fixed with 𝜎1 = 0.1 and 𝜎1 = 0.5.

systems driven byGaussian white noise andGaussian colored
noise.
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