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This article aims to investigate the Value at Risk of basis for stock index futures hedging in China. Since the RS-GARCHmodel can
effectively describe the state transition of variance in VaR and the two-stateMarkov process can significantly reduce the dimension,
this paper constructs the parameter and semiparametric RS-GARCHmodels based on two-stateMarkov process. Furthermore, the
logarithm likelihood function method and the kernel estimation with invariable bandwidth method are used for VaR estimation
and empirical analysis. It is found that the three fitting errors (MSE, MAD, and QLIKE) of conditional variance calculated by
semiparametricmodel are significantly smaller than that of the parametricmodel.The results of Kupiec backtesting onVaRobtained
by the two models show that the failure days of the former are less than or equal to that of the latter, so it can be inferred that the
semiparametric RS-GARCHmodel constructed in this paper ismore effective in estimating theValue at Risk of the basis for Chinese
stock index futures. In addition, the mean value and standard deviation of VaR obtained by the semiparametric RS-GARCHmodel
are smaller than that of the parametric method, which can prove that the former model is more conservative in risk estimation.

1. Introduction

As the economic globalization and financial innovation are
intensifying the income fluctuation of financial markets,
Value at Risk (Morgan, 1996) [1] has become one of the
important tools to invest and operate for financial institutions
and to conduct market supervision by regulators. At the same
time, with the launch of stock index futures of CSI 300, SSE
50, and CSI 500 in China, hedging has increasingly become a
hot issue for practitioners and regulators. The basic principle
of hedging is to utilize the high correlation between the
spot market and the futures market, establishing opposite
positions in the two markets, and use one market’s profit to
offset the losses in the other market, thereby achieving the
purpose of assets hedge. However, in this process, the risk
caused by the basis volatility is the key factor for the hedging
effect (Working, 1953) [2], which can bemeasured by the VaR
method.

The traditional theory holds that hedging can reduce the
risk because the basis will not change greatly during this pro-
cess, but, in the actual transaction, the nonsynchronization

of the volatility in the futures market and the spot market
will also cause basis volatility and generate risks. Hence,many
foreign scholars have explored this issue. Working (1953) [2]
first defined the concept of basis, which is the spot price
minus the futures price, and he believed that the best hedging
is to keep the basis remain unchanged. Fraser & Mckaig
(2000) [3] conducted a research by using data of Financial
Times Stock Index Futures, the basis of U.S. Treasury futures,
the difference between three-month Treasury yields in the
United States and the United Kingdom. It is found that
macroeconomic factors and the investors’ expectations to the
market will significantly cause basis volatility. Gulley &Tilton
(2014) [4] found that when the basis is positive, the demand
of investors in futures market will also affect spot and futures
prices, but the basis volatility is smaller. Zheng & Huang
(2013) [5] constructed a macroeconomic factor model for the
basis of commodity futures, and the empirical results showed
that factors such as market interest rate, equity risk premium,
and futures price change will have significant impacts on the
basis, and the impact in the bull market is stronger than
the bear market. Fama & French (2015) [6] found that the
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interest rate change, storage costs, and opportunity costs
have different effects on the basis volatility for commodity
futures. Broll, Welzel & Wong (2015) [7] pointed out that if
the random price is negatively correlated with the expected
value of the basis risk, then partial hedging is optimal; if there
is a positive correlation, then excessive hedging is optimal,
and the optimal position will be uncertain. Zhuang et al.
(2016) [8] explored the basis risk for the hedging in the steel
futures market and analyzed the impact of macroeconomic
factors and micromarket factors on the basis risk empirically,
and it was found that the VaR of basis provides a foundation
for hedging the risks with parametric, semiparametric, and
nonparametric GARCH methods.

Structural state transition is common in the immature
financial market. The implementation of major economic
policies and the change of financial supervision system
may induce the economic state transition. Therefore, it is
necessary to apply the volatility model with state transition
to estimate and predict the volatility of China financial
market and improve the fitting and estimating accuracy of
volatility, while the Regime-Switch GARCH (RS-GARCH)
model can better estimate the structural transition (Hamilton
& Susmel, 1994; Francq & Zakoan, 2005) [9, 10]. Although
the GARCH model has prominent effect in measuring the
risk of financial market (Engle, 1982; Bollerslev, 1986) [11, 12],
it cannot describe the state transition of financial sequences
(Hamilton & Susmel, 1994; Francq & Zakoan, 2005) [9,
10]. Many scholars have introduced state transition GARCH
model (RS-GARCH) for research. Lamoureux & Lastrapes
(1990) [13] found that, due to state changes of return series,
the GARCH model will overestimate the volatility. Hamilton
& Susmel (1994) [9] and Gray (1996) [14] combined the
Markov state transition process with the GARCH model and
developed the maximum likelihood estimation method for
parameter estimation. Sajjad, Coakley & Nankervis (2008)
[15] examined whether the Bayesian MS-GARCH models
with two regimes improve the forecasting volatility of VaR
model by comparing with their single-regime counterpart.
The empirical results showed that Bayesian two-regime MS-
GJR-GARCHmodel with a GED distribution has the best fit-
ting effect to the data based on DIC. Elenjical et al. (2016) [16]
assessed the forecasting performance of popular GARCH-
based volatility models in the context of VaR estimation
and conducted a cross-regime analysis between time periods
whereby market conditions experience a shift. Yang & Zhang
(2013) [17] applied RS-GARCH and RS-APGARCH models
to estimate and forecast the volatility of return series for
Shanghai Composite Index and Shenzhen Component Index
with Markov regime switching. Peng & Chen (2015) [18]
combined the Markov state transition process with the DCC-
GARCH model and found that the introduction of Markov
state transition process and the range rate of return can
effectively improve the estimation accuracy of the hedge ratio.

Due to the short history of stock index futures in China,
there are relatively few literatures on the basis risk. In view of
this, this paper takes the CSI 300, SSE 50, and CSI 500 stock
index futures as the research object, analyzes the formation
process of the basis for stock index futures hedging, and
further proposes the method to measure the VaR of the basis

for long and short hedges. Considering that the RS-GARCH
model can effectively solve the structural transition problem
of variance in VaR estimation and the Markov process can
describe the characteristics of state transitionwith periodicity
for financial variables, this paper intends to calculate the
conditional variance of the basis based on Markov process
and parametric RS-GARCHmodel.

Although the multivariate nonparametric regression
model can effectively avoid the incorrect setting of the
variable distribution in the parametric model, the former also
has certain limitations. When there are more explanatory
variables, the situation of “dimensional disaster” is prone to
occur, such as the sharp increase of variance, the rapid decline
of convergence rate of kernel estimation, and local linear
estimation. However, the semiparametric model can effec-
tively solve these problems and flexibly deal with the problem
of unknown probability density function of variables and
disobedient parameter distribution of samples. Furthermore,
this paper develops a semiparametric RS-GARCH model
based on two-state Markov process to obtain the conditional
variance of the basis and uses the log-likelihood function
along with the kernel estimation with invariable bandwidth
approach to solve the model. Finally, an empirical study is
carried out on the VaR of the basis for long and short hedges
in three stock index futures.

This paper is organized as follows. Section 1 puts forward
the issues concerned in this paper with literature review.
Section 2 constructs the parametric and semiparametric
RS-GARCH models based on two-state Markov process
respectively, and the solution methods of the two models
are given. Section 3 analyzes the empirical findings and
Section 4 concludes. The innovations of this paper are as
follows: (1) It constructs the parametric and semiparametric
RS-GARCH models based on two-state Markov process,
proposes the measurement method of VaR for long and
short hedges, and adopts both the log-likelihood function
and kernel estimation with invariable bandwidth approach
for model solution; (2) it selects the CSI 300, SSE 50, and
CSI 500 stock index futures in China for empirical analysis,
and the result shows that the fitting errors (MSE, MAD, and
QLIKE) of conditional variance obtained by semiparametric
RS-GARCH model are significantly lower than that of the
parametric model. Through the Kupiec backtesting on VaR,
it is further found that the semiparametric model established
in this paper is better in estimating the VaR of the basis.

2. Methodology

This section first analyzes the basis of hedging for stock
index futures and then proposes the method of measuring
VaR for long and short hedges. Next, the parametric and
semiparametric RS-GARCH models are constructed based
on two-state Markov process, respectively, and the solution
methods of the two models are presented.

2.1. Analysis of the Basis for Stock Index Futures Hedging.
The basis is the spread between the spot and the futures
price during the hedging process, which plays an important
role in the price discovery and information transmission of
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the futures market. The most perfect hedge is that the basis
remains changeless. However, in the real market, the price
fluctuations of spot and futures are not synchronized, and the
optimal hedge is to ensure the minimization of the basis risk.
For the hedge with a hedge ratio of 1, the basis is defined as
Eq. (1).

𝐵 = 𝑆 − 𝐹 (1)

where𝐵 is the basis and 𝑆 and 𝐹 denote the spot price and the
futures price, respectively. In general, hedge can be divided
into short and long hedges. The former refers to buying spot
while selling futures at the time of opening a position, and the
latter refers to selling spot and buying futures when opening
a position. The return of short hedge is

𝑆 − 𝑆0 + 𝐹0 − 𝐹 = 𝐵 − 𝐵0 (2)

The return of long hedge is

𝑆0 − 𝑆 + 𝐹 − 𝐹0 = 𝐵0 − 𝐵 (3)

In Eq. (2) and Eq. (3),𝐹0 and 𝑆0 denote the price of futures
and spot when opening a position, respectively. For short
hedgers, the increase of the basis when closing a position
means that the hedge is successful and profitable, while the
long hedge is just the opposite.

2.2. The VaR Model for the Basis in Stock
Index Futures Hedging

2.2.1. The VaR Model for Long and Short Hedges. Risk man-
agement has received much attention from practitioners and
regulators in the last few years, with Value at Risk (VaR)
emerging as one of the most popular tools. Morgan (1996) [1]
proposed the parametric method for VaR, and the zero-value
of VaR can be expressed as Eq. (4).

𝑉𝑎𝑅 = 𝑊0 − 𝑊∗ = −𝑊0𝑅∗ = −𝑊0 (𝜇𝑅 − 𝛼𝜎𝑅) (4)

where𝑊∗ is the final value of the asset at a certain confidence
level, 𝑅∗ is the minimum yield, 𝜇𝑅 and 𝜎𝑅 denote the mean
value and standard deviation of the yield, and 𝛼 is the
quantile. For a long hedge, when the basis becomes larger,
the return may be negative, so the VaR of the basis can be
expressed as Eq. (5) (Jorion, 2010) [19].

𝑉𝑎𝑅𝐿 = 𝐵∗ − 𝐵0 = (𝜇 + 𝛼𝜎) − 𝐵0 (5)

For a short hedge, when the basis becomes smaller, the
return may be negative, so the VaR of the basis can be
expressed as Eq. (6).

𝑉𝑎𝑅𝑆 = 𝐵0 − 𝐵∗ = 𝐵0 − (𝜇 − 𝛼𝜎) (6)

In Eq. (5) and Eq. (6), 𝐵∗ is the basis of the quantile
at a certain confidence level, and 𝜇 and 𝜎 denote the mean
value and standard deviation, respectively. It can be seen that
how to obtain the standard deviation in Eq. (5) and Eq. (6)
is the key step to get VaR. However, for the financial time
series, the standard deviation changes with time and has
the phenomenon of structural transition. Hence, this paper
will develop the parametric and semiparametric RS-GARCH
models for investigation.

2.2.2. The Kupiec Backtesting of VaR. The backtesting of VaR
is the coverage degree of the model results to the actual loss,
and one feasible method is the failure rate test introduced
by Kupiec (1995) [20]. Assuming that the estimation of VaR
is time-independent, if the actual loss exceeds the VaR, this
situation is recorded as failure; otherwise, it is recorded as
success.Therefore, the binomial results of failure observation
represent a series of independent Bernoulli experiment, and
the expected probability of failure is 𝑝∗ = 1−𝛼. In addition, it
is assumed that the total number of backtesting days is𝑇, and
the number of failure days is𝑁; then the failure probability is𝑃 = 𝑁/𝑇. The null hypothesis is 𝑝 = 𝑝∗, and the statistic of
the likelihood ratio test for null hypothesis can be expressed
as Eq. (7):

𝐿𝑅 = −2 ln [(1 − 𝑝∗)𝑇−𝑁 𝑝∗𝑁]

+ 2 ln [(1 − 𝑁
𝑇 )𝑇−𝑁 (𝑁

𝑇 )𝑁]
(7)

where LR obeys the 𝜒2-distribution when the degree of
freedom is 1.

2.3. The Estimation of Conditional Variance Based on Two-
State Markov Process and Parametric RS-GARCHModel

2.3.1. Analysis of State Transition for Conditional Variance
Based on Two-State Markov Process. For Markov process
(1907), the future change of the variable only depends on
its current state, not on its past situation. According to this
characteristic, the problem of the state transition path for
variance in RS-GARCHmodel can be solved. Assuming thatℎ𝑡 is the conditional variance of the basis at time t, we can
obtain

ℎ𝑡 (𝑏𝑡) = 𝐸 (𝑏2𝑡 ) − (𝐸 (𝑏𝑡))2

= 𝑝𝑡 (𝜇21,𝑡 + ℎ1,𝑡) + (1 − 𝑝𝑡) (𝜇22,𝑡 + ℎ2,𝑡)
− (𝑝𝑡𝜇1,𝑡 + (1 − 𝑝𝑡) 𝜇2,𝑡)2

= 𝐹 (𝑝𝑡, 𝜇1,𝑡, 𝜇2,𝑡, ℎ1,𝑡, ℎ2,𝑡)

(8)

Without using Markov process, the variance change is
shown in the left diagram of Figure 1, where ℎ0 denotes the
conditional variance when 𝑡 = 0, and ℎ𝑡=1|𝑠1=2 indicates the
conditional variance when 𝑡 = 1 with State 2, 𝑠1 = 1 is the
State 1 when 𝑡 = 1, and so on, ℎ𝑡=2|𝑠1=2󳨀→𝑠2=1 indicates the
conditional variance that the State 2 when 𝑡 = 1 converts to
the State 1 when 𝑡 = 2. The right diagram in Figure 1 shows
the path changes of variance by two-state Markov process. It
can be seen that the variance change is converted from the
original 2𝑡 paths to only two paths (𝑡 = 1, 2 . . . , 𝑁), which
avoids the geometrical growth of the paths and reduces the
computational dimension of the model.

In this section, we use two-state Markov process to
analyze the probability of the state transition.Thefirst column
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ℎt=0

ℎt=1|s1=1

ℎt=1|s1=2

ℎt=2|s1=1→s2=1

ℎt=2|s1=1→s2=2

ℎt=2|s1=2→s2=1

ℎt=2|s1=2→s2=2

ℎt=0

ℎt=1|s1=1

ℎt=1|s1=2

ℎt=1

ℎt=2|s2=1

ℎt=2|s2=2

ℎt=2

Figure 1: The path change of conditional variance.

Table 1: Two-state Markov process.

𝑡 𝑡 + 1
State 1 State 2

State 1 P 1-P
State 2 1-Q Q

and the first row in Table 1 give the state of variance at time
t and t+1, respectively. If the probability that the variance
remains at State 1 from time t to time t+1 is P, then the
probability of converting to State 2 at time t+1 is 1-P. Similarly,
the probability of the variance remaining at State 2 from time
t to time t+1 isQ, and the probability of transforming to State
1 at time t+1 is 1-Q.

After multiple transitions, Markov process will tend to
be stable with the steady-state probability. Assuming that the
steady-state probability is 𝜋1 and 𝜋2 in State 1 and State 2,
respectively, then we can obtain Eq. (9) (Markov, 1907):

𝜋1 = 𝜋1 × 𝑃 + 𝜋2 × (1 − 𝑄)
𝜋2 = 𝜋1 × (1 − 𝑃) + 𝜋2 × 𝑄 (9)

From Eq. (9), 𝜋1 and 𝜋2 can be formulated as

𝜋1 = 1 − 𝜋2, 𝜋2 = 1 − 𝑃
(1 − 𝑄) × (1 − 𝑃) − 𝑃 × 𝑄 + 1 (10)

Let 𝑏̃𝑡 denote the basis of the time series from time 1 to
time t, and let 𝑠𝑡 = 1 and 𝑠𝑡 = 2 represent State 1 and State 2
at time t, respectively. Since the transition of state is affected
by 𝑏̃𝑡, we have
𝑝 (𝑠𝑡 = 1 | 𝑏̃𝑡−1)
= 2∑
𝑎=1

𝑝 (𝑠𝑡−1 = 1 | 𝑠𝑡−1 = 𝑎, 𝑏̃𝑡−1) × 𝑝 (𝑠𝑡−1 = 𝑎 | 𝑏̃𝑡−1)
(11)

Further, there is

𝑝 (𝑠𝑡 = 1 | 𝑏̃𝑡−1) = 𝑃 × 𝑝 (𝑠𝑡−1 = 1 | 𝑏̃𝑡−1) + (1 − 𝑄)
× (1 − 𝑝 (𝑠𝑡−1 = 1 | 𝑏̃𝑡−1))

(12)

With Figure 1, we can get 𝑝(𝑠𝑡−1 = 1 | 𝑏̃𝑡−1) = 𝑝(𝑠𝑡−1 = 1 |𝑏𝑡−1) = 𝑝(𝑠𝑡−1 = 1) at time t-1. By substituting it into Eq. (12),
we can develop Eq. (13) according to Bayesian formula:

𝑝 (𝑠𝑡−1 = 1 | 𝑏̃𝑡−1) = 𝑝 (𝑠𝑡−1 = 1 | 𝑏𝑡−1, 𝑏̃𝑡−2)

= 𝑓 (𝑏𝑡−1 | 𝑠𝑡−1 = 1, 𝑏̃𝑡−2) 𝑝 (𝑠𝑡−1 = 1 | 𝑏̃𝑡−2)
∑2𝑎=1 𝑓 (𝑏𝑡−1 | 𝑠𝑡−1 = 𝑎, 𝑏̃𝑡−2) 𝑝 (𝑠𝑡−1 = 𝑎 | 𝑏̃𝑡−2)

(13)

Hence, the probability of State 1 at time t is

𝑝𝑡 = (1 − 𝑄) [ 𝑓2,𝑡−1 (1 − 𝑝𝑡−1)𝑓1,𝑡−1𝑝𝑡−1 + 𝑓2,𝑡−1 (1 − 𝑝𝑡−1)]

+ 𝑃 [ 𝑓1,𝑡−1𝑝𝑡−1𝑓1,𝑡−1𝑝𝑡−1 + 𝑓2,𝑡−1 (1 − 𝑝𝑡−1)]
(14)

where 𝑓1,𝑡−1 and 𝑓2,𝑡−1 are the probability densities of State 1
and State 2 at time t-1, respectively.

2.3.2. The Parametric RS-GARCH Model Based on Two-
State Markov Process. According to the study of Hamilton
& Susmel (1994) [9], we estimate the conditional variance of
basis sequencewith two-stateMarkov process and parametric
RS-GARCH model and obtain Eq. (15):

𝑏𝑡 = {{{
𝜇1,𝑡 + 𝜎1,𝑡𝜐𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑡
𝜇2,𝑡 + 𝜎2,𝑡𝜐𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑡

𝜐𝑡 ∼ 𝑖.𝑖.𝑑 𝑁 (0, 1)
(15)

In Eq. (15), at time t, 𝑏𝑡 is the basis; 𝜇𝑖,𝑡 and 𝜎i,𝑡 represent
the conditional mean and standard deviation, where 𝑖 = 1, 2
indicates State 1 and State 2;𝑝𝑡 and 1−𝑝𝑡 are the probability of
the variance transforming to State 1 and State 2, respectively;𝜐𝑡 is a random variable. According to Eq. (15), the equations
of the mean value and conditional variance are

𝜇1,𝑡 = 𝑥1 + 𝑥2𝑏𝑡−1
𝜇2,𝑡 = 𝑥3 + 𝑥4𝑏𝑡−1 (16)

ℎ1,𝑡 = 𝑥5 + 𝑥6𝜀2𝑡−1 + 𝑥7ℎ𝑡−1
ℎ2,𝑡 = 𝑥8 + 𝑥9𝜀2𝑡−1 + 𝑥10ℎ𝑡−1

(17)

In Eq. (16) and Eq. (17), 𝑥𝑖 is the parameter to be
estimated, and ℎ1,𝑡 and ℎ2,𝑡 are the conditional variance of
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State 1 and State 2 at time t, where 𝜀𝑡−1 is the random error
at time t-1. Moreover,

𝜀𝑡 = 𝑏𝑡 − [𝑝𝑡𝜇1,𝑡 + (1 − 𝑝𝑡) 𝜇2,𝑡] (18)

and the variance of the basis bt can be written as Eq. (19):

ℎ𝑡 (𝑏𝑡) = 𝐸 (𝑏2𝑡 ) − (𝐸 (𝑏𝑡))2
= 𝑝𝑡 (𝜇21,𝑡 + ℎ1,𝑡) + (1 − 𝑝𝑡) (𝜇22,𝑡 + ℎ2,𝑡)

− (𝑝𝑡𝜇1,𝑡 + (1 − 𝑝𝑡) 𝜇2,𝑡)2
(19)

Assuming that the probability densities 𝑓1,𝑡 and 𝑓2,𝑡 obey
the normal distribution, we have

𝑓1,𝑡 = 1
√2𝜋ℎ1,𝑡

𝑒−(𝑏𝑡−𝜇1,𝑡)2/2ℎ1,𝑡

𝑓2,𝑡 = 1
√2𝜋ℎ2,𝑡

𝑒−(𝑏𝑡−𝜇2,𝑡)2/2ℎ2,𝑡
(20)

Let 𝛾𝑡 denote the daily volatility at time t, that is, the
percentage of the increase or decrease of the price at time t
compared with the time t-1, and 𝛾 is the mean value of 𝛾𝑡.

Furthermore, we derive the parameters in Eq. (16) and Eq.
(17) with the following steps:

Step 1. Use the basis sequence bt in the sample period to
obtain the daily volatility 𝛾𝑡 and the mean value 𝛾. When𝛾𝑡 > 𝛾, let the state at time t be 𝑠𝑡 = 1; otherwise, 𝑠𝑡 = 2.
Hence, the homogeneous Markov chain is derived.

Step 2. Let 𝑡 = 1.
Step 3. According to equations (16)-(20) and the basis
sequence in the sample period, we get the estimated value of
the parameters: 𝜇1,𝑡, 𝜇2,𝑡, ℎ̂1,𝑡, ℎ̂2,𝑡, ℎ̂𝑡, 𝜀𝑡, 𝑓1,𝑡, 𝑓2,𝑡 and 𝑝𝑡.
Step 4. Substitute the estimated value in Step 3 into the log
likelihood function

𝐿 (𝑥) = − 𝑁∑
𝑡=1

ln (𝑓1,𝑡 (x) 𝑝𝑡 + 𝑓2,𝑡 (x) (1 − 𝑝𝑡)) (21)

Step 5. Use the “fminunc” function in Matlab; when 𝐿(𝑥)
reaches the minimum value at time t, the estimated value of
the parameter vector x = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥10) can be obtained.

Step 6. Substitute the estimated value of x = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥10)
in Step 5 into equations (16)-(20), and recalculate the esti-
mated value of the parameters: 𝜇1,𝑡, 𝜇2,𝑡, ℎ̂1,𝑡, ℎ̂2,𝑡, ℎ̂𝑡, 𝜀𝑡, 𝑓1,𝑡,𝑓2,𝑡 and 𝑝𝑡.
Step 7. Let 𝑡 = 𝑡 + 1.
Step 8. Substitute the estimated value in Step 6 into the log
likelihood function in Step 4; repeat Steps 5–8.

Step 9. When 𝑡 = 𝑁, stop the loop, and get the final estimated
value x̂ = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥10) of the parameter vector x =(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥10).
Step 10. According to the estimated value of the parameters
at time 𝑡 = 1, 2, ..., 𝑁, the conditional variance sequence can
be obtained from Eq. (19), and the sequence of Value at Risk
(VaR) of the basis can be further confirmed by Eq. (5) and Eq.
(6).

2.3.3. The Semiparametric RS-GARCH Model Based on Two-
State Markov Process. The relationship of the economic
variables is unknown in reality, and there are specification
errors of the traditional econometricmodel in practical appli-
cations, which cannot satisfy the needs of application research
in economy and management. The nonparametric regression
model assumes that the relationship of economic variables
is unknown, so the model is more realistic, compared with
linear and nonlinear regression models. The nonparamet-
ric regression model has the following characteristics: the
form of regression function can be arbitrary, without any
constraints, and the distribution of explanatory as well as
explained variables is rarely limited. Hence, the model has
greater adaptability. Although the nonparametric regression
model has a better fitting effect than the classical regression
model, in reality, there are several influencing factors for
economic phenomena, and when the number of explanatory
variables increases, the convergence rate of kernel estimation
and local linear estimation of the multivariate nonparametric
regression model will slow down. Since the semiparametric
model has the characteristics of parametric and nonparamet-
ric models, it can improve the convergence rate of model
estimation. On the basis of the previous research, this section
will construct a semiparametric RS-GARCH model and
propose the estimation method.

(1) The Semiparametric RS-GARCH Model Based on Two-
StateMarkov Process.The conditional variancewith two states
in Eq. (17) is rewritten as the nonparametric form, while the
other equations in Eq. (16) to Eq. (20) are unchanged; then
the semiparametric RS-GARCHmodel is obtained:

ℎ1,𝑡 = 𝑚̂1 (𝜀𝑡−1, ℎ𝑡−1)
ℎ2,𝑡 = 𝑚̂2 (𝜀𝑡−1, ℎ𝑡−1) (22)

Here, Eq. (22) is the nonparametric form of condi-
tional variance equation, where 𝑚̂1() and 𝑚̂2() are unknown
functions. In this paper, the kernel estimation with invari-
able bandwidth approach in multivariate parametric regres-
sion model is used to estimate the semiparametric RS-
GARCH model (Ye, 2003) [21]. Let Y be the explained
variable, which is a random variable; X is the d-dimensional
explanatory variable vector, and the elements of the vector
can be either deterministic or random. Given the samples(𝑋1, 𝑌1), . . . , (𝑋𝑁, 𝑌𝑁) and assuming that [𝑌𝑡] is independent
and identically distributed, then a multivariate nonparamet-
ric regression model can be established:

𝑌𝑡 = 𝑚 (𝑋𝑡) + 𝑢𝑡, 𝑡 = 1, . . . , 𝑁 (23)
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Figure 2:The basis sequence of CSI 300 stock index futures.

where𝑚() is an unknown function; 𝑢𝑡 is a random error term,
which reflects the influence of other factors on the explained
variable as well as the specification error of the model. The
estimation of 𝑚() can be expressed as

𝑚̂ (𝑥,𝐻) = ∑𝑁𝑡=1𝐾𝐻 (𝑋𝑡 − 𝑥)𝑌𝑡
∑𝑁𝑡=1𝐾𝐻 (𝑋𝑡 − 𝑥) (24)

In Eq. (24), H is the bandwidth, 𝐾𝐻(𝑢) = 𝐻−𝑑𝐾(𝑢/𝐻),
and𝐾() is the d-dimensional density function, where𝐾(𝑢) ≥0 and ∫𝐾(𝑢)𝑑𝑢 = 1. According to Ye (2003) [21], this paper
uses the following kernel function:

𝐾 (𝑢) = 𝑑 (𝑑 + 2)
2𝑠𝑑 (1 − 𝑢21 − ⋅ ⋅ ⋅ − 𝑢2𝑑) (25)

where 𝑠𝑑 = 2𝜋𝑑/2/Γ(𝑑/2). Substitute ℎ1,𝑡 and ℎ2,𝑡 in Eq. (22)
into 𝑌𝑡 in Eq. (23), respectively. X is the two-dimensional
vector as the form of (𝜀𝑡−1, ℎ𝑡−1) in Eq. (22). Furthermore,
we can use Eq. (23)-Eq. (25) to finish the nonparametric
estimation of conditional variance.

(2) The Kernel Estimation with Invariable Bandwidth of
Semiparametric RS-GARCH Model. The specific steps for
estimating the semiparametric RS-GARCH model by using
the method of kernel estimation with invariable bandwidth
are as follows.

Step 1. Follow Step 1 to Step 9 in Section 2.3.2; we can obtain
the estimated value x̂ = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥10) of the vector x =(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥10).
Step 2. Substitute x̂ = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥10) into Eq. (16) and Eq.
(17), and get the parameter estimated value 𝜇1,𝑡, 𝜇2,𝑡, 𝜀𝑡−1, ℎ̂𝑡−1,ℎ̂1,𝑡, and ℎ̂2,𝑡.

Step 3. Take 𝜀𝑡−1, ℎ̂𝑡−1, ℎ̂1,𝑡, and ℎ̂2,𝑡 into Eq. (23)-Eq. (25), pro-
gramming with Matlab (the code is shown in the Appendix)
for the kernel estimation with invariable bandwidth, and
further have the new parameter estimated value ℎ̂1,𝑡 and ℎ̂2,𝑡.
Step 4. Substitute ℎ̂1,𝑡, ℎ̂2,𝑡 in Step 3 and 𝜇1,𝑡, 𝜇2,𝑡, 𝜀𝑡−1, ℎ̂𝑡−1 in
Step 2 into Eq. (19); the conditional variance of the basis 𝑏𝑡 can
be obtained from the semiparametric RS-GARCH model.

3. Empirical Analysis

3.1. Data Selection. At present, China Financial Futures
Exchange (CFFEX) has launched three kinds of stock index
futures contracts: CSI 300, SSE 50, and CSI 500, which are
taken as the research samples in this paper. Furthermore,
due to the limited trading time of futures contracts (seasonal
contracts have a relatively long trading time), investors
usually choose continuous dominant contract according to
the volume of trading. This paper selects the futures contract
with the largest daily trading volume as the continuous
dominant contract, so that the continuity of the sample can
be maintained. The sample range of the CSI 300 stock index
futures contract is from April 16, 2010, to May 31, 2018, with
a total of 1975 samples, while SSE 50 and CSI 500 are from
April 16, 2015, to May 31, 2018, totaling 764 trading days.

3.2. The Descriptive Statistical Analysis. Assume that the
closing price of the index is 𝑆𝑡 on day t, the closing price of
the dominant index contract is 𝐹𝑡, and the basis on day t is𝐵𝑡 = 100(ln 𝑆𝑡 − ln𝐹𝑡). Further, we obtain the basis sequence
diagrams of CSI 300, SSE 50, andCSI 500, as shown in Figures
2–4. It can be seen that, in Figure 2, before June 2015, the
CSI 300 stock index futures contract was basically in the
“reverse” market (the basis is less than zero), while it was in
the “normal”market (the basis is greater than zero) after June.
In Figures 3 and 4, the SSE 50 and CSI 500 stock index futures
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Figure 3: The basis sequence of SSE 50 stock index futures.
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Figure 4: The basis sequence of CSI 500 stock index futures.

contracts were basically in a “normal” market situation after
June 2015. This is probably because the stock index futures
trading was affected byChinese stockmarket crash in 2015. In
addition, the basis sequences have an obvious cluster effect in
Figures 2–4; that is, a large (small) fluctuation is accompanied
by a large (small) fluctuation. Particularly, in the early stage
of futures listing and before June 2015, the basis sequences
showed strong volatility agglomeration. In addition, the trend
of basis sequences for stock index futures has a strong
consistency, which showed a tendency of increasing first and
then decreasing in 2015. For the convenience of the following
study, this paper divides the volatility of basis into two states,
high and low volatility, respectively. Specifically, the mean
values 𝛾 of the daily volatility 𝛾𝑡 for the basis sequence 𝑏𝑡 of

three futures are obtained separately, where 𝛾𝑡 refers to the
percentage of the increase or decrease of the price at time t
compared with the time t-1. When 𝛾𝑡 > 𝛾 on day 𝑡, we record
the state as high volatility; otherwise we set it as low volatility.

Table 2 shows the descriptive statistical results of the basis
for the three futures. It can be seen that the mean value of
the basis is greater than zero, and the standard deviation
is between 0.9 and 2. The JB statistic is larger and the P-
value is zero, indicating that the basis sequences disobey the
normal distribution. Moreover, the skewness is greater than
zero, and the kurtosis is larger, which suggests that the basis
sequences have the characteristics of leptokurtosis and fat-tail
with right skew. In Table 3, the ADF statistic is lower than
the critical value at each significance level, and the P-value is
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Table 2: The descriptive statistics of basis sequences for stock index futures.

Stock index futures Mean value Standard deviation Skewness Kurtosis JB statistics P-value
CSI 300 0.205 1.061 2.717 22.22 32816.660 0.000
SSE 50 0.471 0.964 3.135 22.03 12778.254 0.000
CSI 500 1.414 1.727 2.439 12.849 3845.504 0.000

Table 3: The ADF and ARCH-LM test of basis sequences for stock index futures.

Stock index futures ADF test ARCH-LM test
t-Statistic Prob Obs∗R-squared Prob

CSI 300 -7.866 0.000 110.228 0.000
SSE 50 -6.299 0.000 64.925 0.000
CSI 500 -8.503 0.000 50.588 0.000

Table 4: The state transition statistics of basis sequences for stock index futures.

CSI 300 State 1 State 2 SSE 50 State 1 State 2 CSI 500 State 1 State 2
State 1 801 times 307 times State 1 136 times 70 times State 1 174 times 63 times
State 2 306 times 200 times State 2 69 times 127 times State 2 63 times 102 times

Table 5: The steady-state probability and state transition probability of basis sequences for stock index futures.

Stock index futures Probability
𝜋1 𝜋2 P Q

CSI 300 0.766 0.234 0.827 0.435
SSE 50 0.835 0.165 0.907 0.532
CSI 500 0.765 0.235 0.788 0.307

zero, illustrating that the original hypothesis is rejected and
the sequences have no unit root. Therefore, we can deduce
that the three basis sequences are stationary. Table 3 also
gives the ARCH-LM test results of the basis sequences, and
the P-value is zero, which means that there are significant
heteroscedasticity effects in basis sequences, so the GARCH
model can be used tomeasure the variance of basis sequences.

3.3. The Estimation of Parametric and Semiparametric RS-
GARCH Models Based on Two-State Markov Process. In
this section, we divide the basis sequences into two states
and establish a two-state Markov chain. Table 4 shows the
transition times between various states of basis sequences
during the sample period.

Calculating the number of four state transitions in
Table 4, we divide each transition time by the total transition
times to obtain transition probability P and Q. Further, the
steady-state probability 𝜋1 and 𝜋2 can be derived according
to Eq. (9). The results are shown in Table 5. It can be seen
that 𝜋1 are all greater than 𝜋2, which indicates that the basis
is likely to be at a low volatility state. In addition, as the study
in Section 2.3.1, P are all greater than Q for the three basis
sequences in Table 5; it indicates that the basis at the low
volatility state remains unchangeable with the characteristic
of stronger continuity. This is also in line with the fact that the
bull market in Chinese securities market has a short duration
with high volatility and the bear market lasts for a long time

with small price fluctuation. In addition, the steady-state
probability and state transition probability shown in Table 5
will be taken as the initial parameter values for solving the
RS-GARCH model later.

Further, combined with the estimation methods of Steps
1–10 in Section 2.3.2, we program with Matlab to derive
the parameters of RS-GARCH model (detailed code in
Appendix), and the results are shown in Table 6.

In Table 6, 𝑥6, 𝑥7, 𝑥9, 𝑥10 are all greater than zero, 𝑥6 +𝑥7 < 1, 𝑥9 + 𝑥10 < 1, which ensures the stationarity of
the conditional variance (Bollerslev, 1986) [12]. 𝑥9 and 𝑥10
represent the high volatility state; 𝑥6 and 𝑥7 indicate the low
volatility state. 𝑥9+𝑥10 > 𝑥6+𝑥7 shows that the high volatility
state is more susceptible to the previous state than the low
volatility state (Bollerslev, 1986) [12]. According to Table 6, we
estimate the conditional variance of the basis by using Steps
1–4 of the semiparametric RS-GARCHmodel in Section 2.3.3
(2). Due to space limitations, we only give the descriptive
statistical results in Table 7. It can be seen that the conditional
variance of SSE 50 is smaller, while that of CSI 300 is larger.

Furthermore, we adopt three error measure methods,
which are mean square error (MSE), mean absolute error
(MAD), and error of Gaussian quasi-maximum likelihood
loss function (QLIKE), to assess the fitting effect of models.
And we introduce the GARCHmodel for comparison, where𝐺𝐴𝑅𝐶𝐻 = 𝑐(1) + 𝑐(2)𝑅𝐸𝑆𝐼𝐷𝐸(−1)2 + 𝑐(3)𝐺𝐴𝑅𝐶𝐻(−1).
It is found that 𝑐(2) and 𝑐(3) are significant, and 𝑐(2) +
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Table 6: The estimation of parameters of RS-GARCH model.

The parameters of RS-GARCH model CSI 300 stock SSE 50 stock CSI 500 stock
index futures index futures index futures

𝑥1 0.049 ∗ ∗∗ 0.047 ∗ ∗∗ 0.052 ∗ ∗∗
(10.005) (4.003) (2.996)

𝑥2 0.393 ∗ ∗∗ 0.807 ∗ ∗∗ 0.871 ∗ ∗∗
(40.065) (23.966) (29.950)

𝑥3 0.060 ∗ ∗∗ 0.074 ∗ ∗∗ 0.111 ∗ ∗∗
(18.909) (6.739) (4.756)

𝑥4 0.901 ∗ ∗∗ 0.920 ∗ ∗∗ 0.973 ∗ ∗∗
(28.0127) (12.074) (15.209)

𝑥5 −0.019 ∗ ∗∗ −0.006∗ −0.044 ∗ ∗∗
(−23.698) (−1.4339) (−4.986)

𝑥6 0.396 ∗ ∗∗ 0.391 ∗ ∗∗ 0.352 ∗ ∗∗
(61.672) (9.330) (3.960)

𝑥7 0.067 ∗ ∗∗ 0.173 ∗ ∗∗ 0.168 ∗ ∗∗
(76.465) (4.115) (4.089)

𝑥8 9.999 ∗ ∗∗ 1.986 ∗ ∗∗ 1.971 ∗ ∗∗
(36.156) (8.311) (12.821)

𝑥9 0.400 ∗ ∗∗ 0.493 ∗ ∗∗ 0.508 ∗ ∗∗
(28.824) (12.645) (16.241)

𝑥10 0.299 ∗ ∗∗ 0.295 ∗ ∗∗ 0.299 ∗ ∗∗
(19.059) (12.343) (13.307)

Note: ∗, ∗∗, and ∗ ∗ ∗mean that the parameters are significant at significance levels of 10%, 5%, and 1%, respectively, and it is t-statistic in parentheses.

Table 7: The estimation of conditional variance for parametric and semiparametric RS-GARCH models.

Stock index futures Model Mean value Standard deviation Maximum Minimum

SSE 50 Parametric RS-GARCH 0.556 0.841 9.970 0.235
Semi-parametric RS-GARCH 0.522 0.668 7.353 0.279

CSI 500 Parametric RS-GARCH 1.023 1.715 28.663 0.488
Semi-parametric RS-GARCH 0.9705 1.001 18.758 0.729

CSI 300 Parametric RS-GARCH 2.461 1.419 26.839 0.934
Semi-parametric RS-GARCH 2.409 1.225 27.455 0.933

Table 8: The parameter estimation results of GARCH model.

Stock index futures GARCH parameters
𝑐(1) 𝑐(2) 𝑐(3)

SSE 50 0.062(0.000) 0.404(0.000) 0.556(0.000)
CSI 500 0.687(0.018) 0.600(0.000) 0.347(0.000)
CSI 300 0.303(0.000) 0.542(0.000) 0.388(0.000)

𝑐(3) < 1 indicates that the conditional variance sequences are
stationary and predictable, so GARCH (1,1) can be used for
regression (Bollerslev, 1986) [11]. The parameter estimation
results are shown in Table 8. Where MSE = (1/𝑛)∑𝑛𝑡=1(𝜎t −𝜎̂t)2, MAD = (1/𝑛)∑𝑛𝑡=1 |𝜎t − 𝜎̂t|, QLIKE = (1/𝑛)∑𝑛𝑡=1(ln 𝜎̂2t +
𝜎2t /𝜎2t ), 𝜎2t is the square value of the difference between the
basis on day t and the mean value of basis from day 1 to day
t, and 𝜎2t is the estimated value of the conditional variance by
using the method in Section 2.3.2.

In addition, we use the parametric and semiparametric
RS-GARCH models to estimate the conditional variance of

basis sequences for the three futures, calculate the fitting
error, and use the GARCH model for comparison, which are
shown in Figures 5–7. In the figures, the ordinate is the result
of the fitting error, and the abscissa is the fitting errormethod.
For the convenience of observation, the errors of different
models are connected by different curves, and the three
curves are the fitting errors of GARCHmodel and parametric
and semiparametric RS-GARCH, respectively. It can be seen
that the semiparametric model has the best fitting effect,
followed by the parametric model, while GARCH model has
the worst fitting effect. For the three futures, the fitting errors
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(MSE,MAD, andQLIKE) of the semiparametric RS-GARCH
model are lower than the parametric method. Further, we
select the transaction data from June 1, 2018, to September 28,
2018, as out-of-sample data and compare the fitting effect of
the two RS-GARCH models (Figures 8–10); the results show
that the semiparametric model is still better. In summary,
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Figure 8: The model fitting error results out of sample period (SSE
50).
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Figure 9: The model fitting error results out of sample period (CSI
500).

it can be found that the semiparametric RS-GARCH model
constructed in this paper improves the estimation accuracy
of conditional variance of the basis, so this model can better
estimate the daily volatility of stock index futures in China.

3.4. Estimation and Test of VaR of the Basis for Stock Futures
Hedging. According to the conditional variance of basis
sequences obtained in Section 3.2, we use Eq. (5) and Eq. (6)
in Section 2.2 to obtain the VaR sequences for long and short
hedges on day t. Table 9 gives the descriptive statistical results
of VaR sequences for stock index futures in China. It can be
seen that VaR calculated by the semiparametric method is
smaller than that of the parametric method, which indicates
that the semiparametric method is more conservative in
risk estimation. Moreover, as can be seen from Table 9,
the standard deviation of VaR calculated by semiparametric
method is smaller than that of parametric model as a whole,
which also shows that the result by adopting semiparametric
method is more stable.
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Table 9: The estimation results of VaR of the basis for stock index futures.

Stock index futures Long/Short Model Confidence level Mean value Standard deviation Maximum Minimum

SSE 50

𝑉𝑎𝑅𝐿
RS-GARCH

95% 1.537 1.179 10.908 0.039
97.5% 1.747 1.265 11.759 0.243
99% 1.991 1.368 12.748 0.479

Semi-parametric RS-GARCH
95% 1.533 1.107 11.825 0.082
97.5% 1.742 1.177 12.680 0.091
99% 1.985 1.262 13.673 0.332

𝑉𝑎𝑅𝑆
RS-GARCH

95% 0.654 0.735 5.303 0.003
97.5% 0.863 0.766 6.017 0.021
99% 1.107 0.817 6.846 0.023

Semi-parametric RS-GARCH
95% 0.651 0.729 5.760 0.008
97.5% 0.860 0.747 6.525 0.012
99% 1.103 0.780 7.413 0.015

CSI 500

𝑉𝑎𝑅𝐿
RS-GARCH

95% 2.889 2.012 18.163 0.075
97.5% 3.451 2.117 19.850 0.248
99% 3.535 2.244 21.809 0.662

Semi-parametric RS-GARCH
95% 2.830 1.791 15.028 0.121
97.5% 3.188 1.846 15.684 0.405
99% 3.117 1.913 16.446 0.066

𝑉𝑎𝑅𝑆
RS-GARCH

95% 0.225 1.397 7.901 0.005
97.5% 0.523 1.404 9.015 0.009
99% 0.871 1.415 10.310 0.024

Semi-parametric RS-GARCH
95% 0.166 1.343 5.117 0.004
97.5% 0.453 1.345 5.653 0.005
99% 0.787 1.365 6.564 0.032

CSI 300

𝑉𝑎𝑅𝐿
RS-GARCH

95% 2.693 0.949 15.107 1.803
97.5% 3.179 1.031 16.739 2.314
99% 3.742 1.129 18.635 2.668

Semi-parametric RS-GARCH
95% 2.677 0.902 15.536 1.509
97.5% 3.159 0.973 17.187 2.150
99% 3.720 1.0576 19.105 2.667

𝑉𝑎𝑅𝑆
RS-GARCH

95% 2.374 0.503 13.633 1.169
97.5% 2.859 0.540 15.210 1.474
99% 3.423 0.599 17.041 1.828

Semi-parametric RS-GARCH
95% 2.358 0.4596 7.375 0.293
97.5% 2.840 0.4783 8.306 1.431
99% 3.401 0.5153 9.387 1.827

Note: 𝑉𝑎𝑅𝐿 denotes the VaR of the basis for the long hedge, and 𝑉𝑎𝑅𝑆 is the VaR of the basis for the short hedge.
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Figure 10: Themodel fitting error results out of sample period (CSI
300).

Furthermore, we adopt the Kupiec backtesting method
to estimate the VaR of the basis for the three stock index
futures, and the results are shown in Table 10. It can be
found that, in the acceptance domain, the lower the number
of failures, the better the prediction effect of the model.
However, if the failure rate is excessively low, it means
that the model is too conservative and investors may miss
investment opportunities. In Table 10, the acceptance domain
of LR statistic is (0.00016,6.635) at the significance level
of 1%, (0.001,5.024) at the significance level of 2.5%, and
(0.004,3.841) at the significance level of 5%. It can be seen
that, at 95% confidence level, a few LR statistics fall into the
rejection domain, indicating that both the parametric and
semiparametric RS-GARCHmodels can reasonably estimate
the VaR of the basis. Further, Table 10 shows that the higher
the confidence level, the fewer the times of failing the test.
At three different confidence levels, the failure times of the
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Table 10: The Kupiec backtesting of VaR of the basis for stock index futures.

Stock index futures Long/Short Model Confidence level Failure days Failure rate LR statistics

SSE 50

𝑉𝑎𝑅𝐿
RS-GARCH

95% 22 2.88% 8.480∗
97.5% 14 1.83% 1.537
99% 9 1.18% 0.231

semi-parametric RS-GARCH
95% 20 2.62% 10.969∗
97.5% 13 1.70% 2.246
99% 5 0.65% 1.050

𝑉𝑎𝑅𝑆
RS-GARCH

95% 13 1.70% 23.24∗
97.5% 9 1.18% 6.792∗
99% 7 0.92% 0.056

semi-parametric RS-GARCH
95% 12 1.57 % 25.544∗
97.5% 6 0.79% 12.533∗
99% 3 0.39% 3.6997

CSI 500

𝑉𝑎𝑅𝐿
RS-GARCH

95% 38 4.97% 0.001
97.5% 27 3.53% 2.976
99% 15 1.96% 5.591

semi-parametric RS-GARCH
95% 36 4.71% 0.136
97.5% 26 3.40% 2.301
99% 15 1.96% 5.591

𝑉𝑎𝑅𝑆
RS-GARCH

95% 18 2.36% 13.868∗
97.5% 12 1.57% 3.112
99% 7 0.92% 0.055

semi-parametric RS-GARCH
95% 14 1.83% 21.093∗
97.5% 8 1.05% 8.441∗
99% 5 0.65% 1.049

CSI 300

𝑉𝑎𝑅𝐿
RS-GARCH

95% 89 4.51% 1.0466
97.5% 44 2.23% 0.622
99% 24 1.22% 0.865

semi-parametric RS-GARCH
95% 85 4.30% 2.111
97.5% 42 2.13% 1.1891
99% 22 1.11% 0.249

𝑉𝑎𝑅𝑆
RS-GARCH

95% 77 3.9% 5.434∗
97.5% 36 1.82% 4.096
99% 11 0.56% 4.633

semi-parametric RS-GARCH
95% 74 3.75% 7.123∗
97.5% 35 1.77% 4.770
99% 11 0.56% 4.633

Note: ∗ indicates that the LR statistic falls within the rejection domain.

semiparametric RS-GARCH model are less than or equal
to that of the parametric RS-GARCH model, which shows
that the former model can effectively improve the estimation
accuracy of VaR of the basis for stock index futures in China.
In addition, at 95% confidence level, some LR statistics are
larger, falling into the rejection domain, and the failure rate
is far lower than 5%, which indicates that the model at this
confidence level overestimates the risk to a certain extent.
Moreover, we find that the VaR of the basis for Chinese stock
index futures can better characterize the leptokurtosis and
fat-tail of the basis sequences. Therefore, it is recommended
to use the confidence level of 97.5% and 99% for VaR

estimation. It can be further deduced that the semiparametric
RS-GARCHmodel can effectively improve the measurement
accuracy of the basis risk for Chinese stock index futures.

4. Conclusion

This paper aims to investigate the VaR measurement of
the basis for CSI 300, SSE 50, and CSI 500 stock index
futures in China. Since the RS-GARCHmodel can effectively
deal with the structural transition of variance and the two-
state Markov process can transform the original 2N state
transition paths into two paths, thus effectively reducing the
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computational dimension and complexity, this paper firstly
constructs a parametric RS-GARCH model based on two-
stateMarkov process to obtain the conditional variance of the
basis. If there aremore explanatory variables, the convergence
rate of kernel estimation and local linear estimation will
decrease sharply when using the multivariate nonparametric
regression method. In view of this, this paper constructs
the semiparametric RS-GARCH model based on two-state
Markov process to estimate the conditional variance of the
basis and adopts the log-likelihood function and kernel
estimation with invariable bandwidth method for model
solution. On this basis, this paper calculates the VaR of long
and short hedges for Chinese stock index futures and carries
out the Kupiec backtesting.

Through empirical research, the conclusions are as fol-
lows.

First, the basis volatility of hedging has obvious agglom-
eration for stock index futures inChina, especially in the early
stage of futures listing and before June 2015, while the basis is
basically in the “normal” market after June 2015 (the basis is
greater than zero).

Second, this paper divides the basis of stock index futures
hedging into two states of high and low volatility and
establishes a two-state Markov process, which finds that the
duration of the basis sequence in a low volatility state is longer
than that of the high volatility state in China.

Third, the parametric and semiparametric RS-GARCH
models based on two-state Markov process can better
describe the characteristics of leptokurtosis and fat-tail in
Chinese stock index futures market; comparing the three
fitting errors (MSE,MAD, and QLIKE) of the twomodels, we
can find that the semiparametric RS-GARCHmodel is better.

Fourth, the mean value and standard deviation of VaR
calculated by semiparametric RS-GARCHmodel are smaller
than that of the parametric model, which indicates that the
former is more conservative in risk estimation.

Fifth, the Kupiec backtesting shows that the number of
failure days of VaR based on semiparametric RS-GARCH
model is less than or equal to that of the parametric model,
which demonstrates that the semiparametric RS-GARCH
model is better, and it can avoid the incorrect setting of the
model, thus making the estimation result of VaR closer to the
actual loss value.

Appendix

%%%%%%rs-garch parametric estimation %%%%
function x= test1 (b,P,Q)
h1(1)=18969.3325;
h2(1)=20765.5881;
u1(1)=173.8939;
u2(1)=105.0945;
p(1)=0.5896;
h(1)=p(1) ∗ (u1(1)∧2 + h1(1)) + (1-p(1)) ∗ (u2(1)∧2 +
h2(1)) - (p(1) ∗ u1(1) + (1-p(1)) ∗ u2(1))∧2;
e(1)=b(1) - (p(1) ∗ u1(1) + (1-p(1)) ∗ u2(1));

f1(1)=exp((-(b(1) - u1(1))∧2)/(2∗h1(1)))/sqrt(2∗pi∗
h1(1));
f2(1)=exp((-(b(1) - u2(1))∧2)/(2∗h2(1)))/sqrt(2∗pi∗
h2(1));
s = @(x) 0;
for i=2:length(b)

p(i)=(1-Q)∗ f2(i-1)∗ (1-p(i-1))/(f1(i-1)∗ p(i-1) +
f2(i-1) ∗ (1-p(i-1))) + P ∗ f1(i-1) ∗ p(i-1)/(f1(i-1)∗ p(i-1) + f2(i-1) ∗ (1-p(i-1)));
h1i=@(x) x(1) + x(2) ∗ e(i-1)∧2 + x(3) ∗ h(i-1);
h2i=@(x) x(4) + x(5) ∗ e(i-1)∧2 + x(6) ∗ h(i-1);
u1i=@(x) x(7) + x(8) ∗ b(i-1);
u2i=@(x) x(9) + x(10) ∗ b(i-1);
f1i=@(x) exp ((-(b(i) - u1i(x))∧2)/(2∗h1i(x)))/
sqrt(2∗pi∗h1i(x));
f2i=@(x) exp ((-(b(i) - u2i(x))∧2)/(2∗h2i(x)))/
sqrt(2∗pi∗h2i(x));
s=@(x) s(x) + log(f1i(x)∗ p(i) + f2i(x)∗ (1-p(i)));
fun= @(x) -s(x);
x0 = [28.3240 0.1874 0.1023 168.5506 0.2418
1.2899 -4.4329 0.9775 47.9077 0.6006];
options = optimset(‘MaxFunEvals’,4000);
x = fminunc (fun,x0,options);
h1(i)=x(1) + x(2) ∗ e(i-1)∧2 + x(3) ∗ h(i-1);
h2(i)=x(4) + x(5) ∗ e(i-1)∧2 + x(6) ∗ h(i-1);
u1(i)=x(7) + x(8) ∗ b(i-1);
u2(i)=x(9) + x(10) ∗ b(i-1);
h(i)=p(i) ∗ (u1(i)∧2 + h1(i)) + (1-p(i))∗(u2(i)∧2
+ h2(i))-(p(i) ∗ u1(i) + (1-p(i)) ∗ u2(i))∧2;
e(i)=b(i) - (p(i) ∗ u1(i) + (1-p(i)) ∗ u2(i));
f1(i)=exp((-(b(i) - u1(i))∧2)/(2∗h1(i)))/sqrt(2∗
pi∗h1(i));
f2(i)=exp((-(b(i) - u2(i))∧2)/(2∗h2(i)))/sqrt(2∗
pi∗h2(i));

end
%%%%%%%%%%%%%%%%%%%%%%%%
function [h1,h2,h,e,u1]= testrs (b,P,Q,x)
h1(1)=1.536164415241;
h2(1)=1.336363744144;
u1(1)=0.940125;
u2(1)=0.589625;
p(1)=0.5088;
h(1)=p(1) ∗ (u1(1)∧2 + h1(1)) + (1-p(1)) ∗ (u2(1)∧2 +
h2(1)) - (p(1) ∗ u1(1) + (1-p(1)) ∗ u2(1))∧2;
e(1)=b(1) - (p(1) ∗ u1(1) + (1-p(1)) ∗ u2(1));
f1(1)=exp((-(b(1) - u1(1))∧2)/(2∗h1(1)))/sqrt(2∗pi∗
h1(1));
f2(1)=exp((-(b(1) - u2(1))∧2)/(2∗h2(1)))/sqrt(2∗pi∗
h2(1));
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for i=2:length(b)

p(i)=(1-Q)∗ f2(i-1)∗ (1-p(i-1))/(f1(i-1)∗ p(i-1) +
f2(i-1) ∗ (1-p(i-1))) + P ∗ f1(i-1) ∗ p(i-1)/(f1(i-1)∗ p(i-1) + f2(i-1) ∗ (1-p(i-1)));
h1(i)=x(1) + x(2) ∗ e(i-1)∧2 + x(3) ∗ h(i-1);
h2(i)=x(4) + x(5) ∗ e(i-1)∧2 + x(6) ∗ h(i-1);
u1(i)=x(7) + x(8) ∗ b(i-1);
u2(i)=x(9) + x(10) ∗ b(i-1);
f1(i)=exp((-(b(i) - u1(i))∧2)/(2∗h1(i)))/sqrt(2∗
pi∗h1(i));
f2(i)=exp((-(b(i) - u2(i))∧2)/(2∗h2(i)))/sqrt(2∗
pi∗h2(i));
e(i)=b(i) - (p(i) ∗ u1(i) + (1-p(i)) ∗ u2(i));
h(i)=p(i) ∗ (u1(i)∧2 + h1(i)) + (1-p(i))∗(u2(i)∧2
+ h2(i))-(p(i) ∗ u1(i) + (1-p(i)) ∗ u2(i))∧2;

end
h1
h2
h
e
%%%%%%%%%%条 件 方 差 非 参 数 估
计%%%%%%%%%%%
function m = feicanshuguji(y,x,h)
n = length(y);
m = zeros(n,1);
p = ones(n,1);
for i =1:n

w = zeros(n);
for j =1:n

e = ((x(j,1) - x(i,1))/h)∧2 +((x(j,2)-x(i,2))/
h)∧2;
w(i,j) = (2/pi)∗(1-e)∗(e<1);

end
m(i) = (p’∗w∗y)/(p’∗w∗p);

end
%%%%%%%%%%%%%半参数RS-GARCH计算条
件方差%%%%%%%%%%%%%
function [h,e]= testrss (b,P,Q,x,h1,h2)
h1(1)=1.536164415241;
h2(1)=1.336363744144;
u1(1)=0.940125;
u2(1)=0.589625;
p(1)=0.5088;
h(1)=p(1) ∗ (u1(1)∧2 + h1(1)) + (1-p(1)) ∗ (u2(1)∧2 +
h2(1)) - (p(1) ∗ u1(1) + (1-p(1)) ∗ u2(1))∧2;
e(1)=b(1) - (p(1) ∗ u1(1) + (1-p(1)) ∗ u2(1));

f1(1)=exp((-(b(1) - u1(1))∧2)/(2∗h1(1)))/sqrt(2∗pi∗
h1(1));
f2(1)=exp((-(b(1) - u2(1))∧2)/(2∗h2(1)))/sqrt(2∗pi∗
h2(1));
for i=2:length(b)

p(i)=(1-Q)∗ f2(i-1)∗ (1-p(i-1))/(f1(i-1)∗ p(i-1) +
f2(i-1) ∗ (1-p(i-1))) + P ∗ f1(i-1) ∗ p(i-1)/(f1(i-1)∗ p(i-1) + f2(i-1) ∗ (1-p(i-1)));
u1(i)=x(7) + x(8) ∗ b(i-1);
u2(i)=x(9) + x(10) ∗ b(i-1);
f1(i)=exp((-(b(i) - u1(i))∧2)/(2∗h1(i)))/sqrt(2∗
pi∗h1(i));
f2(i)=exp((-(b(i) - u2(i))∧2)/(2∗h2(i)))/sqrt(2∗
pi∗h2(i));
e(i)=b(i) - (p(i) ∗ u1(i) + (1-p(i)) ∗ u2(i));
h(i)=p(i) ∗ (u1(i)∧2 + h1(i)) + (1-p(i))∗(u2(i)∧2
+ h2(i))-(p(i) ∗ u1(i) + (1-p(i)) ∗ u2(i))∧2;

end
h
e
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