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�is paper explores a designer-optimal reimbursement scheme in all-pay auctions with winner’s reimbursement. Assuming the 
reimbursement is a linear function of the cost of e�ort, we obtain analytical solutions for the contestants’ symmetrical equilibrium 
e�ort and the contest organizer’s expected revenue. We show that if the e�ort cost function is concave, the optimal reimbursement 
scheme is to return the full cost to the winner. On the contrary, if the e�ort cost function is convex, the optimal reimbursement 
scheme is not to compensate the winner. Moreover, we �nd that the organizer’s expected revenue may increase or decrease as the 
number of contestants increases when the winner is fully reimbursed.

1. Introduction

It is well known that the all-pay auction (contest) is commonly 
used to model applications, such as political campaigns, rent 
seeking, R&D competitions, job promotions, etc. One of the 
possible solutions of eliciting higher expected revenue involves 
reimbursement of the contestants’ e�orts. Several studies con-
tribute to the research of contestants’ reimbursement in all-pay 
auctions.

Cohen and Sela [1] �rst consider the winner’s reimburse-
ment in Tullock contest with two asymmetric players. �ey 
show that the expected revenue is higher when the winner’s 
cost of e�ort is reimbursed than no reimbursement. Matros 
and Armanios [2] extend the work of Cohen and Sela [1]. �ey 
consider Tullock contest with symmetric players and �nd that 
the winner’s reimbursement causes an increase in the expected 
revenue, while all losing players’ reimbursement leads to a 
decrease in the expected revenue. Later, this model is gener-
alized by Matros [3] and Yates [4]. Matros [3] focuses on the 
winner’s reimbursement in Tullock contest with asymmetric 
players. He describes all equilibria and discusses their prop-
erties. Yates [4] analyzes the unique equilibrium of a class of 
two-player contests, including Tullock contests, where all the 
other players’ costs are reimbursed except for the winner. 
Minchuk and Sela [5] investigate the all-pay auction with 

insurance, which is a form of loser reimbursement for an addi-
tional fee. More types of reimbursement in contest are studied 
by Kaplan et al. [6], Baye et al. [7], Chowdhury and Sheremeta 
[8], etc.

�is paper focuses on all-pay auctions where the winner’s 
reimbursement is a linear function of the cost of e�ort. Closely 
related to our paper, Minchuk [9] analyzes the all-pay auctions 
where the winner gets a full refund of his e�ort. He shows that 
if the cost of e�ort is concave, then the expected revenue of 
the contest organizer is higher when the winner is fully reim-
bursed opposed to receiving no reimbursement. However, the 
result is reversed if the cost of e�ort is convex. �is study only 
considers the case if the winner is fully compensated or not 
compensated at all. It is unclear how much reimbursement 
would be optimal for the organizer to pay the winner. By intro-
ducing a linear compensation function in all-pay auctions, we 
demonstrate that a full reimbursement for the winner maxi-
mizes the organizer’s expected revenue if the cost of e�ort is 
concave. On the contrary, no reimbursement for the winner 
maximizes the organizer’s expected revenue if the cost of e�ort 
is convex. �e linear compensation function is also employed 
by Matros and Armanios [2] and Baye et al. [10]. Matros and 
Armanios [2] analyze the Tullock contest where the winner 
and the losers are all compensated and the reimbursement is 
a linear function of e�ort. Baye et al. [10] characterize 
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symmetric litigation environments with a simple auction-the-
oretic framework to compare di�erent litigation systems.

�e remainder of the paper is organized as follows. Section 
2 introduces our model of the all-pay auctions with winner’s 
reimbursement. Section 3 characterizes the equilibrium e�ort 
and expected revenue and shows the e�ect of reimbursement 
and the number of participants on both of them. Section 4 
concludes the paper.

2. Model

Consider the all-pay auctions where there are � ≥ 2 risk-neu-
tral contestants competing for a single prize. Each contestant 
i’s value of winning �� is independently and identically distrib-
uted on [0, 1] according to a continuously di�erentiable dis-
tribution function �(�) with a positive and continuous density 
function �(�), which is assumed to be commonly known. Let 
all the contestants share the cost of the e�ort �, �(�), satisfying �(0) = 0 and �� > 0 (�is form of cost function in all-pay auc-
tions is considered in many studies. For example, Moldovanu 
and Sela [11, 12].). Denote the reverse function of �(�) by � = �−1. �e contestant with the highest e�ort wins the prize. 
If contestant � with the value vi and e�ort �� wins the prize, he 
also gets reimbursement which is a linear function of the cost 
of e�ort, ��(��), where 0 ≤ � ≤ 1 is a constant; if he loses, he 
pays his cost of e�ort �(��). It is reasonable to assume that each 
contestant’s e�ort equals zero if his value of winning is zero.

If there is a symmetric monotonically increasing equilib-
rium e�ort function ��(��) : [0, 1] → [0, 1], then ��(0) = 0
and the expected function of contestant � with the value �� and 
the e�ort ��(��) is

where �(��) ≡ �{��(��) > ��(��), � ̸= �} = �{�� < ��, � ̸= �} = 
�−1(��)
is the probability that contestant � with the value �� has the 
highest e�ort among all � contestants.

3. Main Results

3.1. �e E�ect of Reimbursement. �e following proposition 
�rst gives expressions of the equilibrium e�ort of each 
contestant and the expected revenue of contest organizer.

Proposition 1. In an all-pay auction with winner’s 
reimbursement,

(i)  the equilibrium e�ort of contestant � is

(ii) the contest organizer’s expected revenue is given by

(1)
�(��) = (�� − (1 − �)�(��(��)))�(��) − �(��(��))(1 − �(��)),
for � = 1, 2, . . . , �,

(2)

��(��) = �( 1
1 − ��(��)∫

��

0
���(�)��), 
�� 
 = 1, 2, ..., �.

(3)
�� =�∫

1

0
(�( 1
1 − ��(�)∫

�

0
���(�)��)

−�(�)�( �
1 − ��(�)∫

�

0
���(�)��))�(�)��.

Proof.   (i) Suppose that the symmetrical equilibrium 
e�ort function ��(�) exists and strictly increases with 
v. With all other contestants using ��(�), as per (1) the 
expected function of contestant � with the value �� and the 
e�ort ��(�) is given by

where �(�) = ��−1(�) is the probability that contestant i with 
the value t wins. In equilibrium, the derivative of  �(�) at  � = �� 
equals zero, i.e.,

Rearranging yields

Solving the �rst order nonhomogeneous di�erential equation 
and noting that �(��(0)) = 0, we have 

Noting that � = �−1 and rearranging yields (2).
Now, Eq. (2) is merely a necessary condition for � = �� to 

maximize �(�). Next, we claim that it is also a su¦cient con-
dition. Using (4) we have

As per (7), we get

Substituting (9) and (10) into (8) and simplifying, we obtain

which implies that ��(�) > 0 if � < �� and ��(�) < 0 if � > �� 
�us, �(�) is maximized at � = ��.

Finally, we need to prove that ��(��) is strictly increasing. 
In fact, since �(��) = ��−1(��) ∈ [0, 1] is strictly increasing  
and 0 ≤ � ≤ 1, 1/(1 − � �(��)) is increasing. Clearly, ∫��0 ���(�)�� 
is strictly increasing. �us, the right hand side of (7) is strictly 
increasing in ��. Hence, �(��(��1)) < �(��(��2)) if ��1 < ��2. 
Since � is strictly increasing, we have ��(��1) < ��(��2) if ��1 < ��2.

(ii) �e contest organizer’s expected revenue is

(4)�(�) = (�� − (1 − �))�(��(�))�(�) − �(��(�))(1 − �(�)),

(5)
��(��)(�� − (1 − �)�(��(��))) − (1 − �)�(��)(�(��(��)))�−(�(��(��)))�(1 − �(��)) + �(��(��))��(��) = 0.

(6)(1 − ��(��))(�(��(��)))� − ���(��)�(��(��)) = ����(��).

(7)�(��(��)) = 1
1 − ��(��)∫

��

0
���(�)��.

(8)��(�) = (�� + ��(��(�)))��(�) − (1 − ��(�))(�(��(�)))�.

(9)�(��(�)) = 1
1 − ��(�)∫

�

0
���(�)��.

(10)(�(��(�)))� = ��
�(�)

(1 − ��(�))2∫
�

0
���(�)�� + ���(�)1 − ��(�) .

(11)��(�) = (�� − �)��(�),

(12)�� = �∫
1

0
��(�)�(�)�� − ∫

1

0
�(��(��(�)))���(�),



3Discrete Dynamics in Nature and Society

where the �rst part is the expected revenue from all e�orts of 
the contestants, while the second part is the expected reim-
bursement cost. Substituting (2) into the above equation and 
rearranging yields (3). 

�e equilibrium e�ort and the expected revenue in the 
standard all-pay auction without reimbursement (see, for 
example Minchuk and Sela, [5]) are, respectively, given by

or equivalently,

It is easy to see that when � = 0, ��(��) and �� degenerate to ����(��) and ����, respectively. Namely, �0(��) = ����(��), and �0 = ����.
�e equilibrium e�ort and the expected revenue in the 

all-pay auction with winner’s full reimbursement are (Minchuk 
[9] considers the all-pay auction with winner’s reimbursement, 
in which the winner receives a full refund of his e�ort in addi-
tion to the contest prize), respectively, given by

or equivalently,

It is clear that when � = 1, ��(��), and �� become �����(��) and 
�����, namely, �1(��) = �����(��), and �1 = �����.

�e following proposition explores the e�ect of reimburse-
ment on the equilibrium e�ort of each participant.

Proposition 2. In an all-pay auction with winner’s reimburse-
ment, the equilibrium e�ort of each contestant increases mono-
tonically in parameter k.

Proof. Since �(��) ≥ 0, 1/(1 − ��(��)) increases in parameter 
�. Noting ∫��0 ���(�)�� ≥ 0 and �� > 0, hence ��(��) increases in 
parameter �.
Corollary 1. In an all-pay auction with winner’s reimbursement, 
we have

(13)����(��) = �(∫
��

0
���(�)��),

(14)���� = �∫
1

0
�(��(�) − ∫�

0
�(�)��)�(�)��,

(15)���� = �∫
1

0
�(∫�
0
���(�)��)�(�)��.

(16)�����(��) = �( 11 − �(��)∫
��

0
���(�)��),

(17)

����� = �∫1
0
�( ��(�)1 − �(�) −

∫�0�(�)��1 − �(�) )�(�)��
− ∫1
0
�( ��(�)1 − �(�) −

∫�0�(�)��1 − �(�) )���(�),

(18)����� = �∫
1

0
(1 − �(�))�( 11 − �(�)∫

�

0
���(�)��)�(�)��.

Proposition 2  and Corollary 1  imply that the winner’s reim-
bursement causes an increase in the equilibrium e�ort. �e 
higher the reimbursement the winner receives, the more e�ort 
each contestant exerts. In particular, full reimbursement ena-
bles each contestant to exert their best e�ort, namely, � = 1. 
�is �nding is consistent with the result that winner’s reim-
bursement parameter increases an equilibrium e�ort in 
Tullock contest, see Matros and Armanios [2]. Intuitively, if 
the winner gets reimbursed, this increases the actual prize, 
and as a result, this increases the competition in the contest 
and therefore all the contestants exert higher e�ort.

�e following proposition shows the e�ect of reimburse-
ment on the organizer’s expected revenue.

Proposition 3. In an all-pay auction with winner’s 
reimbursement,

(i) if the e�ort cost function �(⋅) is concave, then the organiz-
er’s expected revenue increase monotonically in parameter �;
(ii) if the e�ort cost function �(⋅) is convex, then the organiz-
er’s expected revenue decrease monotonically in parameter �.

Proof.  (i) If the e�ort cost function �(⋅) is concave, it follows 
from �� > 0 and � = �−1 that �(⋅) is convex, which implies that �� > 0 and ��� ≥ 0. Let

Di�erentiating both sides with respect to � yields

since �(�)/(1 − ��(�))2 ≥ 0, ∫�0���(�)�� ≥ 0, ��� ≥ 0 and 
1/(1 − ��(�)) ≥ �/(1 − ��(�)). Noting that �� = �∫10ℎ(�, �)��, 
we have ���/�� ≥ 0. �e proof is completed.

(ii) If the e�ort cost function �(⋅) is convex, noting that �� > 0 and � = �−1, then �(⋅) is concave, which implies  
that �� > 0 and ��� ≤ 0. �e remaining proof is similar to 
that of part (i). 

Corollary  2. In an all-pay auction with winner’s reimbursement,

(i)  if the e�ort cost function �(⋅) is concave, then

(ii)  if the e�ort cost function �(⋅) is convex, then

(19)����(��) = �0(��) ≤ ��(��) ≤ �1(��) = �����(��).

(20)ℎ(�, �) = �( 1
1 − ��(�)∫

�

0
���(�)��)

− �(�)�( �
1 − ��(�)∫

�

0
���(�)��).

(21)

�
��ℎ(�, �) = �(�)

(1−��(�))2��( 11−��(�)∫�0���(�)��)∫�0���(�)��− �(�)(1−��(�))2��( �1−��(�)∫�0���(�)��)∫�0���(�)��= �(�)
(1−��(�))2∫�0���(�)��(��( 11−��(�)∫�0���(�)��)−��( �1−��(�)∫�0���(�)��)) ≥ 0,

(22)���� = �0 ≤ �� ≤ �1 = �����.
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potential bidders under properly set mechanisms. Speci�cally, 
they �nd the functional relationship between the two varia-
bles to be single-peaked, which is consistent with the situa-
tion shown in Example 1. Remarkably, this result is 
inconsistent with the standard result in the contest literature 
stating that the expected revenue increases as the number of 
players increases.

4. Conclusion

In this study, we focus on the all-pay auction where the win-
ner, in addition to the contest prize, is also reimbursed and 
the reimbursement is a linear function of the cost of e�ort. 
We �nd that no matter the e�ort cost function is concave or 
convex, the more reimbursement the winner receives, the 
more e�ort each contestant exerts. In particular, full reim-
bursement enables each contestant to exert their best e�ort. 
If the e�ort cost function is concave, the winner’s reimburse-
ment leads to a higher expected revenue than a regular all-
pay auction. �e more reimbursement the winner receives, 
the more expected revenue the contest organizer gains. �us, 
full reimbursement is the most pro�table for the contest 
organizer. However, if the cost function is convex, the win-
ner’s reimbursement causes a decrease in the expected rev-
enue. �e more reimbursement the winner receives, the less 
expected revenue the contest organizer gains. In this case, 
having no reimbursement is the most pro�table for the con-
test organizer. In addition, we numerically show that the 
organizer’s expected revenue may increase or decrease as the 
number of participants increases when the winner is fully 
reimbursed. Questions that will remain for future research 
are, the e�ect of the number of contestants on the equilib-
rium e�ort, the expected revenue when there is no reim-
bursement for the winner, and the equilibrium e�ort when 
the winner is fully reimbursed.
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Proposition 3  and Corollary 2  imply that the winner’s reim-
bursement leads to a higher expected revenue if the e�ort cost 
function �(⋅) is concave. �e more reimbursement the winner 
receives, the higher the expected revenue the contest organizer 
gains. In particular, full reimbursement maximizes the 
expected revenue of the organizer, which implies that a 
designer-optimal reimbursement scheme is to return the full 
cost of the winner, namely, � = 1. However, the result is 
reversed if the e�ort cost function is convex. In this case, the 
winner’s reimbursement leads to a lower expected revenue and 
then no reimbursement to maximize the expected revenue of 
the organizer. �erefore, a designer-optimal reimbursement 
scheme is not to return the cost of the winner, namely, � = 0. 
�ese results are consistent with those in contest with insur-
ance, but without an insurance fee, see Minchuk and Sela [5].

3.2. �e E�ect of the Number of Participants. �is section we 
consider the two designer-optimal reimbursement schemes: 
the winner is fully reimbursed (i.e., � = 1) and the winner 
receives no reimbursement (i.e., � = 0). It is not clear whether 
the equilibrium e�ort and expected revenue increases or 
decreases as the number of contestants increases when � = 0, 
and if the equilibrium e�ort increases or decreases as the 
number of contestants increases when � = 1. However,  
the organizer’s expected revenue may increase or decrease 
as the number of contestants increases when � = 1 (see the 
following example).

Example 1. Suppose � = 1, �(�) = �2/3 and �(�) is uniform 
on [0, 1]. �en, �(�) = �, �(�) = 1, �(�) = ��−1(�) = ��−1, ��(�) = (� − 1)��−2, and �(�) = �−1(�) = �3/2. As per (2) we 
have

Substituting �1(�) into (3) and rearranging yields

�e number of participants and the organizer’s expected rev-
enue are listed in Table 1 (�e contest organizer’s expected 
revenue is obtained by using the MATLAB so¬ware). 

As Table 1 shows, the organizer’s expected revenue 
increases as the number of participants increases from two 
to seven. However, the expected revenue decreases as the 
number of participants increases from seven to eight.  
Fu et al. [13] also �nd that the expected overall bid of the 
contest is not monotone in the number of shortlisted 

(23)����� = �1 ≤ �� ≤ �0 = ����.

(24)�1(�) = (� − 1�
��
1 − ��−1)

3/2.

(25)�1 = �∫
1

0
(� − 1�

��
1 − ��−1)

3/2(1 − ��−1)��.

Table 1 

�e number of participants 2 3 4 5 6 7 8
Organizer’s expected revenue 0.0432 0.0663 0.0767 0.0812 0.0829 0.0830 0.0823
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