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The paper studies the initial-boundary value problem of a porous medium equation with exponent variable. How to deal with
nonlinear term with the exponent variable is the main dedication of this paper. The existence of the weak solution is proved by the
monotone convergent method. Moreover, according to the different boundary value conditions, the stability of weak solutions is

studied. In some special cases, the stability of weak solutions can be proved without any boundary value condition.

1. Introduction

Let p be the density, let V be the velocity, and let p be
the pressure of the ideal barotropic gas through a porous
medium. The motion is governed by the mass conservation
law

pr +div(pV) =0, 1
the Darcy law
V =-k(x)Vp, )
and the equation of stage

p=P(p), A3)

where k(x) is a given matrix. One of the most common cases
is P(s) = ps” with y, « = const. Then we obtain a semilinear
parabolic equation on the density

He o T+a
P = 1+ad1V(k(X)Vp+ ) (4)

If we additionally assume that p may explicitly depend on x
and has the form p = up”™, then equation for p becomes

p = pdiv (k (x) pvp'™), 5)

and can be written as
p; = pdiv (k (x)y (x) py(x)Vp) + plog pk (x) Vy) . (6)

If k(x) = a(x)I, where a(x) is a function and I is the unit
matrix, then (4) becomes

(04 o . o
P = 1”+ —div (a(x) Vp"™®) = pardiv (a (x) p*Vp), (7)

and (6) has the form
p, = pdiv (a (x)y (x) p"Vp + plog pa (x) I - Vy) . (8
In this paper, we generalized (8) to the following type:

N abl um(x)+1
u, = div (a (x) ul™™ Vu) + ;—( ox, ), ©)
(x,1) eQr=Qx(0,T),

and consider the initial-boundary value problem, where
m(x) > 0is a C'(Q) function, b,(s) € C'(R), Q ¢ RY is a
bounded domain with a smooth boundary 0.

Ifa(x) = 1,4 = 0, m(x) = m — 1 is a constant, (9) is
equivalent to the so-called porous medium equation

u, = Au™. (10)
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In this case, there exists an abundant literature; one can refer
to the survey books [1-6] and the references therein.

If a(x) > 0, in one way, (9) can be regarded as a special
case of reaction-diffusion equation

u, = div (a (u, x, £) Var) + div (17(7)) , (1)

there are also many papers devoted to its well-posedness
problem. The most striking part of this equation is that if there
is an interior point of the set

{xeQ:a(,xt) =0}, (12)

then the uniqueness of weak solution can be proved only
under the entropy condition; one can refer to [7-15]. More-
over, if a(-,x,t) is degenerate on the boundary, how to
impose a suitable boundary value condition to study the well-
posedness of weak solutions to (11) has attracted extensive
attentions and has been widely studied for a long time. In the
other word, though the initial value

u(x,0)=uy(x), xe€Q, 13)

is always imposed, the Dirchilet boundary condition

u(x,t) =0, (x,t)eSy=00x(0,T), (14)
may not be imposed or be imposed in a weaker sense than the
traditional trace. One can refer to [7-12] for the details.

In another way, the evolutionary equations with variable
exponents, especially the so-called electrorheological fluids
equations with the form

up = div (|Vul?72 V) + f (x,t,u, Vi), (15)

have been brought to the forefront by many scholars since the
beginning of this century; one can refer to [16-23] and the
references therein. But we noticed that, compared with (15),
the papers devoted to the equations with the type

up = div ([ul"™ Vu) + f (x,t,u, Vi), (16)

seem much fewer. The existence, uniqueness, and localiza-
tion properties of solutions to (16) have been studied by
Antontsev-Ahmarev in [24]. The free boundary problem and
the numerical study were researched in [25] by Duque et al.
Different from these papers [16-20, 24, 25], we enable the
diffusion a(x) in (9) to be degenerate on the boundary. In
detail, we suppose that

a(x)>0, xe
(17)
a(x)=0, xe€oQ,
b(s)isa C'(R function, and
0<uyel”(Q)),
(18)

Va(x)vul' € L*(Q).
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Definition 1. If a nonnegative function u(x, t) satisfies
uel®(Qrp),
Va () [ul™ |Vul € L (0, T; L* (),

and for any function ¢ € C'(Qp), ¢l,. = 0, ¢l = 0, there
holds

(19)

0
” (——q)u +a (x) [u™™ Vquo) dxdt
Qr ot

N
+ Z JJ.QT b, (um(x)ﬂ) 0, (5, ) dxct (20)

:J uyp (x,0) dx,
Q

then we say u(x, t) is weak solution of (9) with the initial value
(13) in the sense

tleo J;) |ue (6, ) — 1y (x)| dx = 0. (21)

If u(x,t) satisfies (14) in the sense of the trace in addition,
then we say it is a weak solution of the initial-boundary value
problem of (9).

Theorem 2. Ifm(x) > Oisa Ccl(Q) function, by(s) € CY(R),
b(0)=0,i=1,2,...,N, uy(x) > 0 satisfies (18), then (9) with
initial value (13) has a nonnegative solution.

Based on the usual Dirichlet boundary value condition,
we have the following.

Theorem 3. If m(x) > Oisa o (9) function, b(s) € CY(R),
i=12,...,N,

J a ' (x)dx < oo, (22)
Q

then the initial-boundary value problems (9), (13) and (14) have
a uniqueness solution.

In some cases, we can establish the stability of the weak
solutions without any boundary value condition.

Theorem 4. If a(x) satisfies (17) and (22)
[Va| =0, xe€0Q, (23)

u(x, t) is a solution of (9) with the initial value (13) but without
the boundary value condition, u(x, t) satisfies

J a(x)[1+mx)+ Dlogu)’ |VmPdx <c,  (24)
Q
then u(x,t) is the unique solution.

At last, we assume that
|6:(s1) = b (s))| < c|sy =55, i=1,2,...,N. (25)

and probe the stability of weak solutions based on a partial
boundary value condition.
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Theorem 5. Let u,v be two solutions of (9) with the initial
values uy(x), vy(x), respectively, and with a partial boundary
value condition

u(x,t)=v(,t)=0, (xt) €2 x(0,T). (26)

It is supposed that, for everyi € {1,2,..., N}, either bi'(s) >0
or bi'(s) < 0, a(x) satisfies (17) and

1 1/2
3 (J a(x)|Val* dx) <c, (27)
a\Q,
u and v satisfy
J a(x)[1+(m(x)+ 1)logu]2 |Vm|? dx < oo,
’ (28)
J a(x)[1+(m(x)+ l)logv]2 |Vm|* dx < co.
Q

Then
J lu(x,t) = v (x,t)|dx < CJ |t (%) — vy (x)] dx.  (29)
Q Q

Here, szi'(s) >0, 1 <i<N, then
N
X = {anQ:Zciaxi <0]>. (30)
i=1
However, szl.'(s) >0, 1 >i< N, then
N
X = {anQ:Zciaxi >0]>. (31)
i=1

To show that the partial boundary value condition (26)
with the expression (30) or (31) is reasonable, let us review
the equation

N
u, — div (a (x) Vu) — be (x) Dju+ ¢ (x,t)u
i=1 (32)
=f(x1).

According to Fichera-Oleinik theory [26-29], the boundary
value condition matching up with (32) is

u(x,t)=0, (x,t)eXx][0,T), (33)
with that

T ={x€aQ:b (x)n (x) <0}, (34)
where 77 = {n;} is the inner normal vector of Q. Since

(9) is nonlinear, Fichera-Oleinik theory is invalid; whether
the partial boundary X, in (26) can be expressed similar to
(34) has become an interesting problem. Theorem 5 partially
answers this question. One can see that if a(x) = d(x) =
dist(x,0Q) is the distance function from the boundary,

a, = dx,» = n;, the expression (30) or (31) is similar to (34). In
fact, instead of (9), if we consider the equation

N
u, — div (d () |u™™ Vu) - Zb, (x) Dju = 0, (35)
in1

by a similar method as the proof of Theorem 5, we can
show that the partial boundary value condition matching up
with (35) has the same expression as (34). Thus, the partial
boundary value condition (26) with the expression (30) or
(31) is reasonable.

At the end of the Introduction section, we would like to
suggest that if m(x) = m is a constant, then condition (24)
in Theorem 4 and condition (28) in Theorem 5 are naturally
true. Actually, when m(x) = misa constant, a(x) = d*(x); (9)
has been studied by the author in [29]. But, one can see that,
the results (Theorems 4 and 5) are much better and clearer
than the results in [29].

2. The Proof of Theorem 2

Proof of Theorem 2. We suppose that u, € C;°(Q2) and 0 <
uy < M, and consider the following regularized problem:

Uy, = div<(a(x) + %) (|un|m(x) + %) Vu)

N ab, (u:ln(x)+l)
+ 87, (.x, t) 5 (x: t) € QT’
£ X;
i=1 (36)

u,(6f) = 5 (ut) €2Qx(0,1),
n

1
u, (x,0) = ug, (x) =uy (x) + -, x€Q.
n

According to the standard parabolic equation theory,
there is a weak solution

u, € L (Qg),
37
(a+ %)1/2 (" ¢ %)1/2 Vu e 2 (Qr), )
and
1 <u,(xt) < ||u0||Loo(Q) + l, (x,t) € Qg (38)
n n
Moreover, by comparison theorem, we clearly have
U, (1) <u, (x,t), (39)
which yields
u(x,t) = nli_r)nooun (x, 1), (40)
and
lu(x, )| < M+ 1. (41)

In what follows, we are able to prove that the limit function u
is a weak solution of (9) with the initial value (13).
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Multiplying both sides of the first equation in (36) by ¢ = 1\
(x)+1 (x)+1 . . i logn | dxdt
w0 — (1/n)™ ", and integrating it over Q;, we have
1 mx) 1
—— s—” (a@+ ) (™ + > ) om )+ 1)
” Upy (M:,n(x)ﬂ - <—> >dxdt Qr
Qr n 5 1
~u:l”(x) |Vun| dxdt + JJ (a (x) + —)
. 1 mx) 1 Q n
:” d1v[(a(x)+—>(|un| +—>Vu] r
& " " m(x) 1 1 m(x) 2
~(|un| +—>~{—(m(x)+1)un |V, |
. <um(x)+1 _ 1 )dxdt n 2
n nm(x)+1 (42) 1 - )
+ = [m ) + D] |vm ()] }
N ob. (um(x)ﬂ) 2
t\"n m(x)+1
" Z JJ 0x (I/ln ) 1 m(x)+1
i=179Qr i Nogu,u™ ! — (—) log n| dxdt
1 m(x)+1
~(5) ) xdr ! IN( e ]
n - - ” (a@+ =) (Ju™ + = ) om0+ 1)
2 Qr n n
Let us analyse every term in (42): ) urrln(x) |Vun|2 dxdt + % ” (a (x)
m(x)+1 1 i 1 i) 1-1
” unt<u;"(x)+1—(l> )dxdt +—)<|un| ( )+—)[(m(x)+1)un( )]
Q n n n
— J ; [um(x)+2 (x’ t) . |Vm (x)|2 . log unu?(x)ﬂ
om (x) +2 n (43)
m(x)+1 m(x)+1
—u;"(x)+2(x,0)]dx—J <l> —(l> logn dxdt < -+
a\n n 2
< [u, (x,8) — u, (x,0)] dx. . ” <a () + l) <|un|m(x) . l) (m(0) + 1)
1 1 o n n
J-J div [(a (%) + —> (lun|m(x) + —> Vun] (u;”(")“ )
Qr n n . u:l”(x) |V, |” dxdt + c.
44
- )t (44)
n™x + 1
_ J’J [(a (x) + 1) <|un|m(x) + 1) Vun] Here, we have used (41) and the fact
o n n
Y (um(’C)Jrl B )dxdt lim (a (x) + l) (lunlm(x) + l)
n nm(x) +1 n—aoo n n
m(x)]7!
=- ” [(a (x) + l) (|un|m(x) + l) Vun] . [(m (x) + 1) ™ )] |V (x)|*
Qr n n (45)
1 m(x)+1
m(x)+1 m(x) Nogu, u™ O (= logn| = a(x)
- |logu,u Vm (x) + (m(x) + Du, Vu, 8 Unly ” g

_ (l>m(x)ﬂ lognVm (x)] dxdt H(m (o) + 1) Vm () u" P Jlogu] < co.
n

1 mx) 1 In addition, by the fact
= J, (a0 L)l + ) eme
Qr n n
ob. m(x)+1
" |\, P dxdt - ” (a (x) + l) “ i (”ﬂ )um(x)ﬂdxdt
Qr n Qr axi "

. <|un|m(x) + %) Vu, Vi (x) - [log u, ™ =- JJ b, (u:l"(x)“) aiunm(x)ﬂdxdt
Qr X

i
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_ “ [ d J";”(X)H b (s)ds + b ( —m(x)- 1) using the assumption that 4;(0) = 0, we have
ax (1/n)m@)+1
N ob, (um(x+1)) 1 m(x)+1
Z “ " ymet (—) dxdt
= o, 0x; " n

m(x)+1
( ) lognm,. (x)]dxdt

N (01 1 m(x)+1
Rt
b —m(x ; JJQT ( ) n
o (47)
N
N logrm, (vdxde =Y [[ b (u)
(—) lognm, (x) dxdt, i=177CQr
n
m(x)+1
(46) . (l) lognm, (x)dxdt,
» ;
accordingly
N ab "‘(x )+1 m(x)+1
iy 3 2 (o (1 Y] - 9
-1/2
and so ' ” v, [(a (x) + l) (|un|m(x) + 1)”:,n(x)]
( ( )+1) Qr n n
N ob. (u™* 1 m(x)+1
_tAm 7 m(x)+1_<_) )d dt 1> m(x) 1> m()]
u, X , z 2 x
;”QT ox; ( n (49) v [(a (%) + n (lu"l " n dxdt,
<. (53)
li v 1 mx) 1 m(x) 172
Then by (41), (42), (43), (44), and (49), we have A ), (a2 (™ + 5 )i
“ (a (x) + l) <|un|m(x) + l) U qun|2 dxdt : un} ydxdt = - lim ” {[(a (x) + %)
n n n—0o00 .
Q (50) ° (54)
<c " 12
=¢ : <|un| ™) 4 l) u;"(x)] un} Vydxdt
n
Thereisa { € L*(Q) and
ere is a an
g =- J'J- a (x) " Vydxdt.
Qr

1/2
[(a (x) + l) <|u |m(x l) u;"(x)] Vu, — _C), (51)
" " Denoting that A, = [(a(x) + l/n)(lun|m(x) + l/n)unm(x)], then

1 1
VA, =V [(a (x) + —) <|un|m(x) + —) unm(x)]
n n
1 1
=Va <|un|m(x) + —> w4 (a (%) + —)
n n

m(x) l m(x)] _ < m(x) l)
N e 1) ] V(o™ + 5 )] = v (ju, "+
“ [(a(x)+—><|un| +—>un ]
Qr n n

g+ (a0 + ) (20 2 ) (e
n n
Vu,ydxdt = JJ

\Y [(a (x) + —) mls
Qr { n -logu,Vm + " (x) Vu) =Va <|un| )

1/2
mx) | 1 1
. (lun| + ;) uT(X)] “n} ydxdt - 3 n l)u;n(x) i (a (x) + l) <2unm(x) i l) ")
n n n

weakly in L? (Qr). We now prove that

_C) = a ()" |u™™ vu. (52)

For any Yy € C;°(Q)), we have



-logu,Vm + (a (x) + l) <2u;"(x) + l)
n n

m(x)—1

‘U m(x)Vu=1I, +1, + I.

SRR

v [(a (x) + %) <|un|m(x) + %) m(x) ] dxdt

1 _ 1
= ” yu, A NPVA dxdt = —=
Qr 2

: ” yu, A (1) + I, + 1) dxdt
Qr

- lim 1“ yu,A, 1/213dxdt = hm %

n—007

2™ 4+ 1/n

m(x) +1/n

. ”QT yu,A, 12 Vum (x)
=- UQT m(x) w—(:)dxdt.

1 _ 1
- lim - “ l//unAnl/ZIdedt =-lim -
Qr n—0o0 7

n—0o00 7

' ”QT [(a(x) + %) (lun|m(x) N %) u;n(x)]fl/z
(

“yu, (a (x) + l) 2 4 l) ")
n n
logu, Vmdxdt = — ” ya (x)"? "

-loguVmdxdt.

1 - 1
- lim - JJ wunAnl/ZIIdxdt =-lim -
Qr n—0o0

n—0o0

. ”Q [(a(x) + %) (|un|m(x) . %) u;n(x)]—l/z

T

-yu,Va <|u " 4 %) u™dxdt = -~
. ”Q ya (x)"? u" Y Vadxdt.
Let n — oo in (53). We obtain that
J.JQT (m (x) + 1) {wdxdt
= - ” ya ()" ™™ log uVmydxdt

1 “ ya (x)" 2 " Vaydxdt
2 Vo

HQT Vit [(‘1 (x) + %) (lun|’”<x) N %) unm(x)]—l/z

(55)

(56)

(57)

(58)

(59)
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=‘”QT V(a ()" u") ydxdt

+ “ a (x)"* m (x) " Vuydxdt,
Qr
(60)

which implies

” {ydxdt = ” a ()2 u"Vuydxdt,  (61)
Qr

T

Since b, € C'(R), by (40), we have
hm b ( m(x) +1) _ bi (um(x)ﬂ) ) (62)

Letting n — oo in (42), by (51), (52), and (62), we know
u(x, t) satisfies (20). At the same time, the initial value (13)
can be proved in a similar way as that when m(x) = m — 1
is a constant; one can refer to [5] for the details. Thus, u is a
solution of (9) with the initial value (13). If u, only satisfies
(18), by considering the problem of (36) with the initial value
u,, which is the mollified function of u,, then we can get the
conclusion by a process of limitation. Certainly, the solution
u(x, t) generally is not continuous at ¢ = 0, but satisfies (19)
and (20). Theorem 2 is proved. O

3. The Stability Based on the Dirichlet
Boundary Value Condition

Lemma 6. IffQ a(x)"'dx < ¢, then IQ [V dx < c.
Proof. Since | a(x)um(x)IVuIIILz(QT) <c
JJ. a (x) u¥™ |Vu)? dxdt < c, (63)
Qr
which yields

” a(x) 'Vum(x)” |2 dxdt
Qr
m(x)+1 2
<2 ” a(x) |u log uVm| dxdt (64)
Qr

+2 ” a(x) |(m (x)+1) um(x)Vu|2 dxdt < c.
Qr

Then

J 'vum(x)+1| dx
Q

_ J |Vum(x)+l' dx
{x€Q:al2|Vum)+ <1}
(65)

+ J |Vum(x)+l' dx
{xeQual2|Vym)+1 |51}

< J a(x) P dx + J a(x) |Vum(x)+1'2 dx <c.
Q Q
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Thus 4™**! can be defined by the trace on the boundary
in the traditional way. By the definition of the trace, we also
know that u can be defined by the trace on the boundary in
the traditional way. The lemma is proved.

For every fixed t € [0,T), we define the Banach space
V.(Q) by

Vo (Q) = {u () s u(xt)
e (W, (Q), Vu(x )’ e L' ()},  (66)

leelly, ) = lullq + IVullya s

and denote by Vt'(Q) its dual space. In addition, we denote
the Banach space W(Qy) by

W(Qq) ={u:[0,T] — V,(Q) u € L*(Qr), IVul’
GLI(QT),M=OOHF=BQ}, (67)

4wy = IVullrq, + v, »

and denote by W’(QT) its dual space. According to [18], we
know that

N
w=w,+ ZDiwi’ wy € L2(Qr), w; € L*(Qr),

weW (Q) &= i=1

V¢ € W(Qy), L w, P >= ”Q <w0¢> + iwiDigb> dxdt.

The norm in W'(Q;) is defined by
IVllw ap)

= sup {<< v, > € W(Qr), [$lwe, < 1}'

Lemma 7. If u(x,t) is a weak solution of (9) with the initial
value (13), then u, € W'(Qy).

69)

Proof. For any v € W(Q;) and IVllwq,) = 1, there holds

(up, vy = - ” a (x) u"Vuvvdxdt
Qr

. (70)
- Z JJ. v b (um(x)“) dxdt.
e
By Young’s inequality, it follows from (70) that
() <c| [ G 1vuf dxa
Qr
(71)
+ “ (|v|2 + |Vv|2)dxdt + 1] <c,
Qr
we have
luclwan = e (72)
Wi(Qr) O

Lemma 8. Suppose that u € W(Qy) and u, € W'(QT). For
any continuous function h(s), let H(s) = f; h(s)ds. For a.e.
t,t, € (0,T), there holds

Jtz J;) h (u) u,dxdt
" (73)
_ HQ (H W) (x,1,) - H () (x.1,)) dx] .

This lemma can be found in [18].

(68)

Theorem 9. Let I a ' (x)dx < oo and let u and v be two

solutions of (9) witﬁ the initial values uy(x), v, (x), respectively,

and with the same homogeneous boundary value conditions
u(x,t)=v(,t)=0, (xt)€o0Qx(0,T). (74)

Then

J |u(x,t) —v(x,t)| < CJ |u0 (%) = v, (x)| dx. (75)
Q Q

Proof. For any given positive integer n, let g,,(s) = IOS h,(T)dT,
h,,(s) = 2n(1 — n|s|),. Then h,(s) € C(R), and we have

h,(s) 20,
|sh, ()] < 1, (76)
9. ()] < 1,
and

Jim g, (s) = sgns,

(77)
nli_r)noosg; (s) =0.
By the definition of weak solutions, we have
” u,p (x,t) dxdt
Qr
+ “ ﬂVum(me(pdxdt
o m(x)+1
(78)

- “ ﬂum(’c)“ log uVmVedxdt
Q m(x)+1

N
b (u™™) g, dxdt = 0.
+;ijT,(u )y dx



Since J a(x)"'dx < ¢c,u = v = 0 on the boundary, we

m(x)+1 _ m(x )+1

can choose g,,(u ) as the test function. Then

o(u—-v)
m(x)+1 m(x )+1 2 Y dxdt
JQT Gn (u ) ot

+ JJ a (.X') m(x)+1 _ va(x)+1'2
Q m(x) + 1
“Gn (um x)+1 S x)+1) dxdt
JJQT mt(zﬁf)x-)l— 1 u” G logu _ Vm(x)+1 log u)
. g’ (um(x)+l S x)+1) va( m(x)+1 79)
m x)+l)d_xdt
+ Z JJ [b ( m(x) +1) b,' (Vm(x)+1)]
. (MWI(X)+1 _ Vm(x)+1)
. g; ((um(x)+1 _ym x)+1)) dxdt

_ gy |2 g' (um(x)+1

n

”QT % a0

— ") dxdt > 0.

(80)

and

u(x) m(x)+1 m(
_JJQTim(x)+1(u +10gu—V

. 9:, (um(x)+l _ Vm(x +1) va( m(x)+

x)+1 log I/l)

- vm(x)H) dxdt > !
2

a(x) (0)+1 +112 1 [ m(x)+1
.JJQ m(x)+1|vumx+ —Vv’”“| 9n(”mx+ (81)
T

- vm(x)+1) dxdt — =

o ey 1 g v

X g; (um(x)Jrl _ vm(x +1)] dxdt.

(x)+1 log u)

For simplism, in what follows, we denote that

1 Vm(x)+1' < l}

D, = {Q : |u’”"‘)+
" n

(82)
Dy={xeQ:|lu-v|=0}

and, clearly,

lim D, = D,. (83)

n—:oo
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We have

lL (b (11 = by (1] (e

. g; ((um(x)+1 Vm(x +1))dx|

_ JD b (um(x)ﬂ) b (Vm(x)+1)] g (um(x)+1

_ vm(x)+1) (um(x)+1

<CJ
D

n

_ vm(x)+1)

Xi

_ vm(x)+1 )x. dx

bi (um(x)+1) _ bz (Vm(x)+1)

um(x)+1

m(x)+1
— ymx)+1 |(u

m(x)+1)

- a\? (84)

dxzcj
D,

bi (um(x)+l) _ bz (vm(x)+1)

um(x)+1 _ vm(x)+1

Xi
n

|a (x) (um(x)ﬂ

m(x)+1 m(x)+1 2 12
'[JD a(x)|V(u - )' dx] .

n

Since jQ a ' (x)dx < 0,

IfDy,={xe€Q:|u m)+L_m+L| = 0} is with 0 measure,

we have

nli_mw JD a(x)dx = J a(x)'dx=0. (86)

Dy

m(x)+1| —

Ifthe set Dy = {x € O : L _
measure, then,

0} has a positive

B Vm(x)+1)'2 dx

lim J a(x) |V (um(x)”
n—oo Jp
(87)

- J a(x) |V (um(")Jrl - vm(x)ﬂ)'z dx =0
D,
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Therefore, in both cases,

i, [ (6 (") < ()
m(x)+1 Vm(x)+1) (um(x)+1 _ vm(x)+1) dx (88)

Xi

g, (u
=0.

At last,

lim J g, (um(x)ﬂ _ Vm(x)+1) 0(u—-v) dx
Q

n—o0 ot

_ j sgn (um(x)+1 _
Q

[T Ly,
Q ot dt

Vm(x)+1) 0 (u - V) dx

ot (89)

Let n — oo in (79). By (80), (81), (88), and (89), we have

J [ (x,t) = v (x, 1) dx < J 1o (x) — v ()] dx
Q Q (90)
=0. 0

Corollary 10. Theorem 3 is true.

4. The Stability without the Boundary
Value Condition

In this section, we will prove Theorem 4.

Theorem 11. Let u, v be two nonnegative solutions of (9) with
the initial values uy(x), v,(x), respectively. If a(x) satisfies (17)

u and v satisfy

J a(x)[1+(m(x)+ 1)logu]2 |Vm|* dx < ¢,

§ (92)
J a(x)[1+(m(x)+ l)logv]2 |Vm|* dx < ¢,

Q

then

J |u(x,t)—v(x,t)|dxsaj |t (x) = v (x)| dx.  (93)
Q Q

Proof. For all 0 < ¢ € C;(Qr), by the definition of weak
solutions, forall 0 < ¢ € C(l)(QT), we have

“ u, @ (x,t) dxdt
Qr

a(x) m(x)+1
——V Vodxdt
+“QTm(x)+1 " pax

a(x)

(94)
m(x)+1
- e log uVmVedxdt
JJQTm(x)+1M oguvmyveax

N

e X || B () g dudt =0
i=1 7JQr

Let y, ((t) be the characteristic function of [, s]  (0,T).
By a process of limit, we can choose

and Xes (f) 9n (ar (um(x)+1 _ vm(x)+1)) (95)
J a(x)"'|Val*dx <c, |Va|=0, x€dQ, (91)
Q as the test function; then
: o(u—v) Sfoa@@™
r m(x)+1 _ m(x)+1 Y dxdt + J J v m(x)+1 v m(x)+1 i m(x)+1 _ m(x)+1
[/, oo s - oy 265 S g gy ) g (o
I ( r( m(x)+1 m(x)+1 s a (x)r m(x)+1 (m(x)+1 m(x)+1 m(x)+1
-gn(a (u -y ))dxdt+rJTJQm(Vu - Vv )-Va(u -y )
' (1 _ et a(x) ()41 (x)+1 ()41 _ m(x)+1
.gn(ar(um’” — /T dxdt J Lm(x+1 m’”logu—vm +logv]Vm-V(umer _me+)
! ( ( m(x)+1 _ m(x)+1 d dt _ [ m(x)+ll m(x)+11 ] Vm -V ( m(x)+1 _ m(x)+1) (96)
gn a\u 14 X r Qm(x)+1 Ogu OgV m alu 14

N s

g:, (ar (um(x)ﬂ _vm(x)+l))dxdt+ Zj J [
i=1 4t JQ

(um(x)ﬂ ) _

()]

. [rar—laXi (x) (um(x)+1 _ Vm(x)+1) . g; (ar (um(x)+1 _ vm(x)+l)) +d (um(x)+1 _ 1}m(x)+1)Xi g’/1 (ar (um(x)+l _ Vm(x)+1))] dxdt

=0.
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Let us analyse every term in (96). Firstly, we have T I A P (s
Yy y Y; In
r+1 2
J a(x) (Vum(x)+1 B va(x)+1) B vm(x)”))dx <c <J a(x) ('Vum(x)+1|
am(x)+1 Q
) mx)+1 _m(x)+1 (97) ) 1/2 v
v (u ) + [V )dx) : (J a(x) Vel
Q a
X g:, (ar (um(x)+1 _ Vm(x)+1)) dx > 0.
X ar (um(x)+1 _ Vm(x)+1)
Secondly, since IQ a(x)"!|Val’dx < ¢,
2 1/2
! (x)+1 (x)+1
J’ a(x)" (Vum(x)+l B Vv(m(x)+1) Va (um(x)+1 "9, (ﬂr (um oL _ymiar ))] dx)
am(x)+1
— 0,
_ Vm(x)+1) g; (ar (um(x)+1 _ vm(x)+1)) dx (98)
r
- J' a(x) (|Vum(x)+l' . 'Vv(m(x)+1)') Val as A — 0.
am(x)+1 By that
2 2
limo J a(x) [um(x)+1 log um(x)+1 _ Vm(x)+1 log Vm(x)+1] g:: (um(x)ﬂ _ Vm(x)+1) |Vm|2 dx
n—0|Jp,
2
um(x)+1 log um(x)+1 _ 1/m(x)+1 log Vm(x)+1
< lim J a(x) [ 3 ] |Vm|* dx (99)
n—s0 D, |um(x)+1 _ Vm(x)+1|
< J a(x)[1+m(x)+ 1)logC]2 |Vm|? dx < co.
0
where { € (u,v) in the mean value, we have
2 2
J;) a(x) [um(x)ﬂ logum(x)ﬂ _ Vm(x)+1 log vm(x)+1] g:l (um(x)+1 _ Vm(x)+1) |Vm|2 dx
m(x)+1 m(x)+1 m(x)+1 m(x)+1 2
[u logu v logv ] 2 m(x)+1 m(x)+1)2 1 m(x)+1 m(x)+1)\2 (100)
< a(x) 5 |Vm|” - |u -V | g, (u -y ) dx
D, |um(x)+1 _ Vm(x)+1|
< 00.

Using the Lebesgue dominated convergence theorem, we  and so
have

a (X) m(x)+1 m(x)+1
L oo+ 1 [u logu —v log v] Vm

. arv (um(x)+1 _ Vm(x)+1)
. [um(x)+1 log um(x)+1 _ vm(x)+1 log Vm(x)+1]2 (101)

b (" - Vm(x)+1)2 V| dx =0, - g (a (WO — ) dxdt‘
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) 1/2
< (J a(x) |Vum(x)+1 - va(x)“' dx)
D,

]

X [um(x)ﬂ log um(x)+1 _ vm(x m(x)+1]2

)+1 log v

1/2
2
. g; (um(x)ﬂ _ Vm(x)+1) |Vm|2 dx) 0,

(102)
asA — 0.
Thirdly, since |Val,¢3q = 0,
tim Ji [ [0 (7) < ()], 0
- gy (W e dxl
(103)
< tim [ 5 () <6 (7 g, 0]

1
<clim — J |Valdx = J |[Va|dZ = 0.
A—0A Jo\Q, 2Q

Moreover, as in the proof of Theorem 3, we can show that

/\lii)no nli_r>noo J;S JQ [bz (um(x)+l) _ bi (vm(x)+1)]

¢, (um(x)+l _ Vm(x)+1)x. (104)
. g; (um(x)+1 _ Vm(x)+1) dxdt = 0,
and, clearly,
lim J J 9, (ar (um(x)+1 _ vm(x)+1))
n—~oo T Q
.%a(u—v)dx: J lu(x,8) —v(x,s)|dx (105)
ot Q
- J lu(x, 1) —v(x, 1) dx.
Q
Atlast, let n — o0 in (96). Then
J [ (x,s) —v(x,s)|dx
o (106)
<c J lu(x, 1) — v (x,7)| dx.
Q
By the arbitraries of 7, we have
J [ (x,t) = v (x, 1) dx < J |ug (x) = vy (x)| dx.  (107)
Q Q |:|

5. The Stability Based on the Partial Boundary
Value Condition

In this section, we will prove Theorem 5. We assume that

16:(s1) = b ()| <clsy =55, i=1,2...,N.  (108)

11

we denote that Q) = {x € Q: a(x) > A} as before and denote
that

Q= {x €Q\Q;:a, < 0} s X = ,\IE}OQ"“’ (109)
Oy = {x €O\ Q,: a,, > 0} , 2y = }TOQAiZ' (110)
Theorem 12. Let u,v be two solutions of (9) with the initial

values uy(x), vy (x), respectively, and with a partial boundary
value condition

u(x,t)=v(xt)=0, (xt)eX x(0,7T). (111)
Here, for any giveni € {1,2,...,N}, ifb/(s) > 0,

T ={xe0Q:xeZ;}; (112)
ifb/(s) > 0,

T ={xe0Q:xex,}. (113)

It is supposed that a(x) satisfies (17) and

1 12
- (J a(x) |Val? dx) <c, (114)
A \aa,

u and v satisfy

J a(x)[1+(m(x)+ 1)logu]2 |Vm|? dx < oo,

“ (115)
J a(x)[1+m(x)+ l)logv]2 |Vm|* dx < 0.

Q

Then
J lu(x,t) —v(x,t)|dx < CJ 1o (x) — v (x)] dx,
Q Q (116)
a.e. €[0,T).

Proof. For all 0 < ¢ € Cj(Qy), by the definition of weak
solutions, forall 0 < ¢ € C(l)(QT), we have

“QT u, @ (x,t) dxdt

a(x) m(x)+1
—V dxdt
+”QTm(x)+1 Wi Vedx

() (117)
- ” ——= " og uVmVedxdt
Q m(x)+1
N
+ Z ” b, (um(")”) ¢, dxdt = 0.
i=177Qr ’
For a small positive constant A > 0, let
Q) ={xeQ:a(x)>A7}, (118)
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and Let y, ((t) be the characteristic function of [z,s] ¢ (0,T). By
a process of limit, we can choose
1, if x € Q, m)+l m(x)+1
61 =1 4 () (w9) s (08 G5) g (w7 =y"T) - (120)
, X E€ Q \ QA‘
A as the test function; then
§ o0 (u- § a(x
J J ¢/\ (x) g, (u ( m(x)+1 Vm(x +1) ( = )d dt + J JQ m(}:) 1 : (Vum(x)ﬂ _ va(x)+1) . ¢/\ (x) v (um(x)+1
_ Vm(x)+1) . g; (um(x)+1 m(x +1) dxdt + J J ?()xl 1 (Vum(x)ﬂ _ Vv(m(x)+1) Vo, (x) g, (um(x)ﬂ
o m(x
" x)”) dxdt - r J _a® [um(x)+1 logu — ymeol log v] Vm - ¢, (x)V (um(x)” - vm(x)”)
am(x)+1
(121)
N
g, (um(x)“ v x)+1) dxdt - J L 77}1‘(;())2 N [um(x)ﬂ logu —v"*! log v| Vm - V¢, (x) g, (um(’c)Jrl
V) o + i rj (b, (1) — b, (y701)]
a 1 1
=17
: [%xi (x) gy (WO =y g (0T "m(x)ﬂ)xi g, (O x)+1)] dxdf —
: . 1/2
Let us analyse every term in (121): . ('Vum(x)+1|2 . |va(x)+1 |2) dx)
a(x) m(x)+1 m(x)+1 12
JQ m(x)+1 (Vu - ) . % (J a(x) |Va|2 dx) — 0,
0\Q,
(/) V( m(x)+1 Vm(x)+1) (122) (123)
. gl (um(x)+1 _ vm(x)+1)dx > 0. asA — 0.
" _a®) [um(’c)Jrl logu — v+ o v] Vm
am(x)+1 & &
BY (114): (1/A)(J‘Q\Q,\ a(x)|Va|2dx)l/2 <g¢ (/) (_x) V( m(x)+ Vm(x)+1)
| _
J' a(x) (Va1 gy gh, (WM =) dxd| < (J a(x)
am(x)+1 D,
124
m(x)+1 m(x)+1 m(x)+1 m(x)+1|2 i (129
-V, (u — )dx -|Vu - Vy ' dx -C J a(x)
D,
< J' a (X) (Vum(x)ﬂ _ Vv(m(x)ﬂ) . [um(x)ﬂ log um(x)+1 _ vm(x)+1 log Vm(x)+1]2
a\Q, |m (x)+1
1/2
) V(/)Agn(um(x)*—l B Vm(x)+1 dx . g:l (um(X)+1 _ Vm x)+1) |Vm| dx) —0,
a(x) asA — 0.
< J — |Vum(x)+l' + |Vv(m(x)+1)') This is due to the fact that if Dy = {x € Q : [u—v| = 0} is
a\a, m(x) +1 with 0 measure,
a (x) m(x)+1 2
Vv dx < j 7 (lv . m(x)+1 m(x)+1
|V | dx < Voo, m(o) 41 (' u | ,}lno JDna(x) 'Vu Vv | dx
(125)

+ 'Vv(m(x)+1)|) |Va|dx < c <J a(x)
Q\Q,

(+1? (x)+12 _
SJDUa(x)<'Vumx+| +|Vvmer | )dx—O



Discrete Dynamics in Nature and Society

13

and by (115) we have
J a(x)[1+ (m(x)+1)log u]2 IVm|*dx < co,  (126)
Q
Jino JD a(x) [um(x)+1 log um(x)+1 _ Vm(x)+1 log S x)+1] g, (um(x) m(x +1) |Vm| dx

[um(x)+1 log um(x)+1 _ Vm(x)

(127)

n—>0

< lim J a(x)
D,

|um(x)+1

_ vm(x)+1|2

< J a(x)[1+m(x)+ l)logC]2 [Vm)? dx < co.
Dy

where { € (u,v) in the mean value. If Dy = {x € Q : [u—v| =
0} has a positive measure,

=J' a(x)<|vum(x)+l'2+'va(x)+1'2>dx< oo,
Q

(128)
2
lim J a (x) |[Vume — gy g
lim, | a ()| | and by (115)
2
lim J a (X) [um(x)+l log um(x)+1 _ Vm(x)+1 log vm(x)+1] g; (um(x)+1 m(x +1) |Vm| dx
n—>~0 {Q:lum(x)ﬂ _ym(x)+1 |<1/n}
[um(x)+1 log um(x)+1 _ Vm(x)+1 log Vm(x)+1]2 , (129)
< lim J a(x) 5 [Vm|”dx =0
n—0 J10:ju—v|=0} |um(x)+1 _ Vm(x)+1|
Moreover, recall that - _lim J ' m(x)+1 _ Vm(x)+1' b (&) G dx
A—0 Q\Q ! A
Q ={xeQ\Qy:a, <0}, I, = lim Oy, < lim AJ (—ay ) [ = | d
(130) A—0A Jay,
QM:{xEQ\QA:a‘ZO}, = lim Q,;,
i X; 0o M _ J' (_C,'ax.) |u (0)+1 _ Vm(x)+1| ds = o.
z“11' '
(131)

If bi'(s) > 0, by the partial boundary value condition (111)

—1lim lim j [bi (um(x)ﬂ) _bi( m(x) +1)] (p)tx (x)

A—0n—00 |

-9, (um(x)ﬂ _ Vm(x)+1) dx

=—limJ [ ( mx)+1) bz( mx)+1)]¢lx (x)

A—0

. sign ( m(x)+1 m(x +1) dx

_ —hm JQ mx)+1) ( mx)+1)] (/)Ax (x)

b (7)) d

mx)+1) bz (Vm(x)+1)| %dx

m x)+1)

- sign ( (u

=—lim J
A—0 Jo\a

If bl.'(s) < 0, by the partial boundary value condition (111)

— lim lim JQ [b, (Mm(x)+l) - b,'( e +1)] Py, (%)

A—0Qn—00

-9, (um<x)+1 3 vm(x)+1) dx
= tim [ [ () =5 (7] g, @
sign (" - Y gy

= tim [ [ () 5 (7] g, @
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a,.
i, | (T = (7 s

a,.
_lim J |um(x)+1 _ vm(x)+1' bi, (E) i
aQ, A

A—0

< lim % JQMZ (_Ciax,-) 'um(x)'H _ Vm(x)+1| dx

_ J' (_Ciaxi) 'um(x)+1 _ Vm(x)+1| 45 = 0.
Zyi

(132)

As in the proof of Theorem 11 we can show that

S
. . (x)+1 (x)+1
tim Jim [ [b () < ()]
) m(x)+1 _ m(x)+1 133
g[)/\ (1,[ V )xi ( )
-gh (um(x)“ - vm(x)“) dxdt = 0.
Clearly,
lim 1 § mx)+1_m(x)+1
nl_l')l’loo /\in() J; JQ gn (u 14 )
'%de = J |t (x,8) —v(x, )| dx (134)
ot Q
- J | (x, 1) —v(x, 1) dx.
Q
Now, after letting A — 0, let # — o0 in (121). Then
J lu(x,8) —v(x,s)|dx
¢ (135)
<c J lu(x, 1) — v (x,7)| dx.
Q
By the arbitraries of 7, we have
J lu(x,t) —v(x,t)|dx < J |u0 (%) = v, (x)l dx. (136)
Q Q

O

Proof of Theorem 5. Since we suppose that, for every i €
{1,2,..., N}, either bi'(s) > 0or bi'(s) < 0, by checking the
process of the proof of (131) or (132), we can easily obtain the
conclusion of Theorem 5. ([

6. Conclusion

The evolutionary equations with variable exponents, espe-
cially the so-called electrorheological fluids equations with
the form (15), have been brought to the forefront by many
scholars since the beginning of this century. There are more or
less beyond one’s imagination; there are only a few references
devoted to the porous medium with variable exponents as
(16). So, this paper fills the gaps in the related fields. Moreover,
the equation considered in this paper is more general than

Discrete Dynamics in Nature and Society

(16). The most important characteristic lies in that there is
a degenerate diffusion coefficient a(x) in the equation. This
characteristic may make the usual Dirichlet boundary value
condition overdetermined and so a partial boundary value
condition is expected. The conclusions in this paper answer
the problem partially. In addition, since the equation is with
variable exponents, there are many technique difficulties to be
overcome. This makes our paper contain many cumbersome
calculations, but it is necessary.
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