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A function 𝜓 : R → R is said to be a Tribonacci function with period 𝑝 if 𝜓(𝑥 + 3𝑝) = 𝜓(𝑥 + 2𝑝) + 𝜓(𝑥 + 𝑝) + 𝜓(𝑥), for all 𝑥 ∈ R.
In this paper, we present some properties on the Tribonacci functions with period 𝑝. We show that if 𝜓 is a Tribonacci function
with period 𝑝, then lim𝑥→∞(𝜓(𝑥 + 𝑝)/𝜓(𝑥)) = 𝛽, where 𝛽 is the root of the equation 𝑥3 − 𝑥2 − 𝑥 − 1 = 0 such that 1 < 𝛽 < 2.

1. Introduction

The most popular numbers studied in many different forms
for centuries are Fibonacci numbers. Fibonacci sequence
is famous for their amazing properties (see [1–5]). Many
research articles talk about these numbers. The third-order
linear recurrence of these sequences are what we call Tri-
bonacci sequences {𝑇𝑛} by the recurrence relation 𝑇𝑛+2 =
𝑇𝑛+1 + 𝑇𝑛 + 𝑇𝑛−1 with 𝑇0 = 𝑎, 𝑇1 = 𝑏, 𝑇2 = 𝑐, 𝑎, 𝑏, 𝑐 ∈ N

and 𝑛 as an integer. Han, Kim, andNeggers studied Fibonacci
numbers [6–8] and introduced the concept of Fibonacci
functions with Fibonacci numbers in [8] which were later
extended by B. Sroysang [9] to Fibonacci functions with
period 𝑝. In the same order as in [8], Parizi and Gordji [10]
studied Tribonacci functions. They gave some properties of
Tribonacci functions: a function 𝜓 : R → R is said to be a
Tribonacci function if𝜓(𝑥+3) = 𝜓(𝑥+2)+𝜓(𝑥+1)+𝜓(𝑥), for
all 𝑥 ∈ R. They also showed that if 𝜓 is a Tribonacci function,
then lim𝑥→∞(𝜓(𝑥 + 1)/𝜓(𝑥)) = 𝛽 = (1/3)[(19 + 3√33)1/3 +
(19 − 3√33)1/3 + 1] which is a root of 𝑥3 − 𝑥2 − 𝑥 − 1 =
0.

In this paper, for any positive integer 𝑝, a function 𝜓 :
R → R is said to be a Tribonacci function with period
𝑝 if 𝜓(𝑥 + 3𝑝) = 𝜓(𝑥 + 2𝑝) + 𝜓(𝑥 + 𝑝) + 𝜓(𝑥), for all
𝑥 ∈ R. In Sections 2 and 3, we present some properties
of these functions. In Section 4, we develop the notions of
these functions using the concept of even and odd functions
discussed in [8, 10]. We also show that if 𝜓 is a Tribonacci
function with period 𝑝, then lim𝑥→∞(𝜓(𝑥 + 𝑝)/𝜓(𝑥)) = 𝛽.

2. Tribonacci Functions with Period 𝑝
In this section, we present some properties of Tribonacci
functions with period 𝑝.

Definition 1. Let 𝑝 be a positive integer. A function 𝜓 : R →
R is said to be a Tribonacci function with period 𝑝 if 𝜓(𝑥 +
3𝑝) = 𝜓(𝑥 + 2𝑝) + 𝜓(𝑥 + 𝑝) + 𝜓(𝑥), for all 𝑥 ∈ R.

Example 2. Let 𝛽 be a positive root of the equation 𝑥3 − 𝑥2 −
𝑥−1 = 0. Then, 𝛽3 = 𝛽2 +𝛽+1. Define a map 𝜑 : R → R by
𝜑(𝑥) = 𝛽𝑥/𝑝, where 𝑝 ∈ N. Then, 𝜑 is a Tribonacci function
with period 𝑝.

Proposition 3. Let𝜓 : R → R be a Tribonacci function with
period 𝑝 ∈ N and define ℎ𝑡(𝑥) = 𝜓(𝑥 + 𝑡), for all 𝑥 ∈ R, where
𝑡 ∈ R. Then, ℎ𝑡 is also a Tribonacci function with period 𝑝.

Proof. Let 𝑥 ∈ R. Then,

ℎ𝑡 (𝑥 + 3𝑝) = 𝜓 (𝑥 + 3𝑝 + 𝑡) = 𝜓 (𝑥 + 𝑡 + 3𝑝)

= 𝜓 (𝑥 + 𝑡 + 2𝑝) + 𝜓 (𝑥 + 𝑡 + 𝑝)

+ 𝜓 (𝑥 + 𝑡)

= 𝜓 (𝑥 + 2𝑝 + 𝑡) + 𝜓 (𝑥 + 𝑝 + 𝑡)

+ 𝜓 (𝑥 + 𝑡)

= ℎ𝑡 (𝑥 + 2𝑝) + ℎ𝑡 (𝑥 + 𝑝) + ℎ𝑡 (𝑥) .

(1)
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Theorem 4. Let 𝜓 : R → R be a Tribonacci function
with period 𝑝 and let {𝑇𝑛}, {𝑇𝑛}, and {𝑇𝑛 } be the sequences
of Tribonacci numbers with 𝑇1 = 1, 𝑇2 = 2, 𝑇3 = 3, 𝑇𝑛+3 =
𝑇𝑛+2+𝑇𝑛+1+𝑇𝑛 and𝑇1 = 0, 𝑇


2 = 𝑇

3 = 1, 𝑇


𝑛+3 = 𝑇


𝑛+2+𝑇


𝑛+1+𝑇


𝑛

and 𝑇1 = 𝑇2 = 0 𝑇3 = 1, 𝑇𝑛+3 = 𝑇𝑛+2 + 𝑇

𝑛+1 + 𝑇


𝑛 . Then,

𝜓(𝑥 + 𝑛𝑝) = 𝑇𝑛𝜓(𝑥 + 2𝑝) + 𝑇𝑛−2𝜓(𝑥 + 𝑝) + 𝑇

𝑛 𝜓(𝑥) for any

𝑥 ∈ R and 𝑛 ≥ 3 an integer.

Proof. 𝜓(𝑥+3𝑝) = 𝜓(𝑥+2𝑝)+𝜓(𝑥+𝑝)+𝜓(𝑥).The assertion
holds for 𝑛 = 3.

So, fix 𝑛 ∈ N and assume that the assertion is valid for
every 𝑠 ∈ {3, . . . , 𝑛 + 2}. Then,

𝜓 (𝑥 + (𝑛 + 3) 𝑝) = 𝜓 ((𝑥 + 𝑛𝑝) + 2𝑝)

+ 𝜓 ((𝑥 + 𝑛𝑝) + 𝑝) + 𝜓 (𝑥 + 𝑛𝑝) .

= 𝜓 ((𝑥 + (𝑛 + 2) 𝑝)

+ 𝜓 ((𝑥 + (𝑛 + 1) 𝑝)

+ 𝜓 (𝑥 + 𝑛𝑝) .

= 𝑇𝑛+2𝜓 (𝑥 + 2𝑝) + 𝑇𝑛𝜓 (𝑥 + 𝑝)

+ 𝑇𝑛+2𝜓 (𝑥) + 𝑇

𝑛+1𝜓 (𝑥 + 2𝑝)

+ 𝑇𝑛−1𝜓 (𝑥 + 𝑝) + 𝑇

𝑛+1𝜓 (𝑥)

+ +𝑇𝑛𝜓 (𝑥 + 2𝑝) + 𝑇𝑛−2𝜓 (𝑥 + 𝑝)

+ 𝑇𝑛 𝜓 (𝑥) .

𝜓 (𝑥 + (𝑛 + 3) 𝑝) = (𝑇𝑛+2 + 𝑇

𝑛+1 + 𝑇


𝑛) 𝜓 (𝑥 + 2𝑝)

+ (𝑇𝑛 + 𝑇𝑛−1 + 𝑇𝑛−2) 𝜓 (𝑥 + 𝑝)

+ (𝑇𝑛+2 + 𝑇

𝑛+1 + 𝑇


𝑛 ) 𝜓 (𝑥)

= 𝑇𝑛+3𝜓 (𝑥 + 2𝑝) + 𝑇𝑛+1𝜓 (𝑥 + 𝑝)

+ 𝑇𝑛+3𝜓 (𝑥) .

(2)

Corollary 5. Let {𝑇𝑛}, {𝑇𝑛}, and {𝑇𝑛 } be the sequences of
Tribonacci numbers with 𝑇1 = 1, 𝑇2 = 2, 𝑇3 = 3, 𝑇𝑛+3 =
𝑇𝑛+2+𝑇𝑛+1+𝑇𝑛 and𝑇1 = 0,𝑇


2 = 𝑇

3 = 1,𝑇


𝑛+3 = 𝑇


𝑛+2+𝑇


𝑛+1+𝑇


𝑛

and 𝑇1 = 𝑇2 = 0 𝑇3 = 1, 𝑇𝑛+3 = 𝑇𝑛+2 + 𝑇

𝑛+1 + 𝑇


𝑛 . Let 𝛽 be

the root of the equation 𝑥3−𝑥2−𝑥−1 = 0 such that 1 < 𝛽 < 2.
Then, 𝛽𝑛 = 𝑇𝑛𝛽

2 + 𝑇𝑛−2𝛽 + 𝑇𝑛 .

Proof. Let 𝜓(𝑥) = 𝛽𝑥/𝑝. We have seen in Example 2 that
𝜓(𝑥) = 𝛽𝑥/𝑝 is a Tribonacci function with period 𝑝. Applying
Theorem 4, we have 𝛽𝑥/𝑝+𝑛 = 𝑇𝑛𝛽

𝑥/𝑝+2+𝑇𝑛−2𝛽𝑥/𝑝+1+𝑇𝑛 𝛽
𝑥/𝑝,

for all 𝑥 ∈ R. We obtain 𝛽𝑛 = 𝑇𝑛𝛽
2 + 𝑇𝑛−2𝛽 + 𝑇𝑛 .

Remark 6. Consider the Tribonacci sequenses {𝑇𝑛}, {𝑇𝑛}, and
{𝑇𝑛 } as in Theorem 4. We have the relations 𝑇𝑛 = 𝑇𝑛 + 𝑇


𝑛+1

and 𝑇𝑛 = 𝑇

𝑛−1.

3. Odd Tribonacci Functions with Period 𝑝
Here we discuss odd Tribonacci functions with period 𝑝
defined as follows.

Definition 7. Let 𝑝 be a positive integer. A function 𝜓 : R →
R is said to be an odd Tribonacci function with period 𝑝 if
𝜓(𝑥 + 3𝑝) = −𝜓(𝑥 + 2𝑝) − 𝜓(𝑥 + 𝑝) + 𝜓(𝑥), for all 𝑥 ∈ R.

Example 8. Let 𝜓(𝑥) = 𝛼𝑥/𝑝 be an odd Tribonacci function
with period 𝑝 ∈ N, 𝛼 > 0. It is clear that 𝛼𝑥/𝑝+3 = −𝛼𝑥/𝑝+2 −
𝛼𝑥/𝑝+1 + 𝛼𝑥/𝑝, for all 𝑥 ∈ R. We have 𝛼3 = −𝛼2 − 𝛼 + 1. Then,
𝛼 = 𝛽1 such that 𝛽1 is root of the equation 𝑥3 +𝑥2 +𝑥−1 = 0,
0 < 𝛽1 < 1. Thus, 𝜓(𝑥) = 𝛽𝑥/𝑝1 is an odd Tribonacci function
with period 𝑝 on R.

Proposition 9. Let 𝜓 : R → R be an odd Tribonacci
function with period 𝑝 ∈ N and define ℎ𝑡(𝑥) = 𝜓(𝑥 + 𝑡), for
all 𝑥 ∈ R, where 𝑡 ∈ R. Then, ℎ𝑡 is also an odd Tribonacci
function with period 𝑝.

Proof. Let 𝑥 ∈ R. Then,

ℎ𝑡 (𝑥 + 3𝑝) = 𝜓 (𝑥 + 3𝑝 + 𝑡) = 𝜓 (𝑥 + 𝑡 + 3𝑝)

= −𝜓 (𝑥 + 𝑡 + 2𝑝) − 𝜓 (𝑥 + 𝑡 + 𝑝)

+ 𝜓 (𝑥 + 𝑡)

= −𝜓 (𝑥 + 2𝑝 + 𝑡) − 𝜓 (𝑥 + 𝑝 + 𝑡)

+ 𝜓 (𝑥 + 𝑡)

= −ℎ𝑡 (𝑥 + 2𝑝) − ℎ𝑡 (𝑥 + 𝑝) + ℎ𝑡 (𝑥) .

(3)

Theorem 10. Let 𝜓 : R → R be an odd Tribonacci function
with period 𝑝 and let {𝑇−𝑛}, {𝑇−𝑛}, and {𝑇


−𝑛} be the sequences

of Tribonacci numbers with 𝑇0 = 0, 𝑇1 = 1, 𝑇2 = 2, 𝑇−𝑛−1 =
−𝑇−𝑛 −𝑇−𝑛+1 +𝑇−𝑛+2 and 𝑇0 = 𝑇


1 = 0, 𝑇


2 = 1, 𝑇


−𝑛−1 = −𝑇


−𝑛 −

𝑇−𝑛+1 + 𝑇−𝑛+2 and 𝑇

0 = 1, 𝑇1 = 𝑇2 = 0, 𝑇−𝑛−1 = −𝑇−𝑛 −

𝑇−𝑛+1 + 𝑇

−𝑛+2. Then, 𝜓(𝑥 + 𝑛𝑝) = 𝑇−𝑛+1𝜓(𝑥 + 2𝑝) + 𝑇−𝑛𝜓(𝑥 +

𝑝) + 𝑇−𝑛+3𝜓(𝑥) for any 𝑥 ∈ R.

Proof. 𝜓(𝑥+3𝑝) = −𝜓(𝑥+2𝑝)−𝜓(𝑥+𝑝)+𝜓(𝑥).The assertion
holds for 𝑛 = 3.

So, fix 𝑛 ∈ N and assume that the assertion is valid for
every 𝑠 ∈ {3, . . . , 𝑛 + 2}. Then,

𝜓 (𝑥 + (𝑛 + 3) 𝑝)

= 𝜓 ((𝑥 + 𝑛𝑝) + 2𝑝) + 𝜓 ((𝑥 + 𝑛𝑝) + 𝑝)

+ 𝜓 (𝑥 + 𝑛𝑝) .

= 𝜓 ((𝑥 + (𝑛 + 2) 𝑝) + 𝜓 ((𝑥 + (𝑛 + 1) 𝑝)

+ 𝜓 (𝑥 + 𝑛𝑝) .
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= 𝑇−𝑛−1𝜓 (𝑥 + 2𝑝) + 𝑇−𝑛−2𝜓 (𝑥 + 𝑝) + 𝑇

−𝑛+1𝜓 (𝑥)

+ 𝑇−𝑛𝜓 (𝑥 + 2𝑝) + 𝑇−𝑛−1𝜓 (𝑥 + 𝑝) + 𝑇

−𝑛+2𝜓 (𝑥)

+ +𝑇−𝑛+1𝜓 (𝑥 + 2𝑝) + 𝑇−𝑛𝜓 (𝑥 + 𝑝)

+ 𝑇−𝑛+3𝜓 (𝑥) .

𝜓 (𝑥 + (𝑛 + 3) 𝑝)

= (−𝑇−𝑛−1 − 𝑇

−𝑛 + 𝑇


−𝑛+1) 𝜓 (𝑥 + 2𝑝)

+ (−𝑇−𝑛−2 − 𝑇−𝑛−1 + 𝑇−𝑛) 𝜓 (𝑥 + 𝑝)

+ + (−𝑇−𝑛+1 − 𝑇

−𝑛+2 + 𝑇


−𝑛+3) 𝜓 (𝑥)

= 𝑇−(𝑛+3)+1𝜓 (𝑥 + 2𝑝) + 𝑇−(𝑛+3)𝜓 (𝑥 + 𝑝)

+ 𝑇−(𝑛+3)+3𝜓 (𝑥) .
(4)

4. Even and Odd Functions with Period 𝑝
In this section, we will talk about the notion of Tribonacci
functions using even and odd functions. Here we get results
obtained in [10] with third-order linear recurrence. We give
the limit of the quotient of a Tribonacci function with
period 𝑝, extending the results of [11] in third-order linear
recurrence.

Definition 11. Let 𝑝 be a positive integer and 𝜆 : R → R

a function such that the preimage of 0 by 𝜆 has the empty
interior. The function 𝜆 is said to be an even (resp., odd)
function with period 𝑝 if 𝜆(𝑥 + 𝑝) = 𝜆(𝑥) (resp., 𝜆(𝑥 + 𝑝) =
−𝜆(𝑥)), for all 𝑥 ∈ R.

Example 12. If 𝜆(𝑥) = 𝑥 − ⌊𝑥⌋, then 𝜆(𝑥)ℎ(𝑥) ≡ 0 implies
that ℎ(𝑥) ≡ 0 if 𝑥 ∉ Z. Due to the fact that R \ Z is dense in
R and ℎ is continuous, it follows that ℎ = 0. Let 𝑝 ∈ N and
𝑥 ∈ R. Then, 𝜆(𝑥 + 𝑝) = 𝑥 + 𝑝 − ⌊𝑥 + 𝑝⌋ = 𝑥 + 𝑝 − ⌊𝑥⌋ − 𝑝 =
𝑥 − ⌊𝑥⌋ = 𝜆(𝑥).Hence, 𝜆 is an even function with period 𝑝.

Theorem 13. Let 𝑝 ∈ N and 𝜆 : R → R be an even function
with period 𝑝 and let V : R → R be a continuous function.
Then, V is a (resp., an odd) Tribonacci function with period 𝑝
if and only if 𝜆V is a (resp., an odd) Tribonacci function with
period 𝑝.

Proof. Let V be a Tribonacci function with period 𝑝. For any
𝑥 ∈ R, we have

(𝜆V) (𝑥 + 3𝑝) = 𝜆 (𝑥 + 3𝑝) V (𝑥 + 3𝑝)

= 𝜆 (𝑥 + 2𝑝) V (𝑥 + 3𝑝)

= 𝜆 (𝑥 + 2𝑝) [V (𝑥 + 2𝑝) + V (𝑥 + 𝑝) + V (𝑥)]

= 𝜆 (𝑥 + 2𝑝) V (𝑥 + 2𝑝) + 𝜆 (𝑥 + 𝑝) V (𝑥 + 𝑝)

+ 𝜆 (𝑥) V (𝑥)

= (𝜆V) (𝑥 + 2𝑝) + (𝜆V) (𝑥 + 𝑝) + (𝜆V) (𝑥) .
(5)

Hence, 𝜆V is a Tribonacci function with period 𝑝.
Now assume that 𝜆V is a Tribonacci function with period

𝑝. For 𝑥 ∈ R, we have

𝜆 (𝑥 + 𝑝) V (𝑥 + 3𝑝) = 𝜆 (𝑥 + 2𝑝) V (𝑥 + 3𝑝)

= 𝜆 (𝑥 + 3𝑝) V (𝑥 + 3𝑝) = (𝜆V) (𝑥 + 3𝑝)

= (𝜆V) (𝑥 + 2𝑝) + (𝜆V) (𝑥 + 𝑝) + (𝜆V) (𝑥)

= 𝜆 (𝑥 + 2𝑝) V (𝑥 + 2𝑝) + 𝜆 (𝑥 + 𝑝) V (𝑥 + 𝑝)

+ 𝜆 (𝑥) V (𝑥)

= 𝜆 (𝑥 + 𝑝) V (𝑥 + 2𝑝) + 𝜆 (𝑥 + 𝑝) V (𝑥 + 𝑝)

+ 𝜆 (𝑥 + 𝑝) V (𝑥)

= 𝜆 (𝑥 + 𝑝) [V (𝑥 + 2𝑝) + V (𝑥 + 𝑝) + V (𝑥)] .

(6)

For all 𝑥 ∈ R, we get V(𝑥 + 3𝑝) = V(𝑥 + 2𝑝) + V(𝑥 + 𝑝) + V(𝑥).
Hence, V is a Tribonacci function with period 𝑝.

We give the proof for the case where V is a Tribonacci
functionwith period𝑝.The case where V is an odd Tribonacci
function with period 𝑝 is similar and left to the reader.

Now we give the limit of the quotient of a Tribonacci
function with period 𝑝.

Theorem 14. Let 𝑝 ∈ N and 𝜓 : R → R be a Tribonacci
function with period 𝑝. Then, the limit of the quotient 𝜓(𝑥 +
𝑝)/𝜓(𝑥) is 𝛽, the root of the equation 𝑥3 − 𝑥2 − 𝑥 − 1 = 0 such
that 1 < 𝛽 < 2.

Proof. Given 𝑥 ∈ R, there exists 𝑦 ∈ R and 𝑛 ∈ N such that
𝑥 = 𝑦 + 𝑛𝑝. Let us set 𝑢 = 𝜓(𝑦), V = 𝜓(𝑦 + 𝑝) and 𝑤 =
𝜓(𝑦+2𝑝). ByTheorem 4, we have 𝜓(𝑦+𝑛𝑝) = 𝑇𝑛𝜓(𝑦+2𝑝)+
𝑇𝑛−2𝜓(𝑦+𝑝)+𝑇𝑛 𝜓(𝑦) and hence 𝜓(𝑦+𝑛𝑝) = 𝑇


𝑛𝑤+𝑇𝑛−2V+

𝑇𝑛 𝑢. Hence,

𝜓 (𝑥 + 𝑝)
𝜓 (𝑥)

=
𝜓 (𝑦 + (𝑛 + 1) 𝑝)

𝜓 (𝑦 + 𝑛𝑝)

=
𝑇𝑛+1𝜓 (𝑦 + 2𝑝) + 𝑇𝑛−1𝜓 (𝑦 + 𝑝) + 𝑇


𝑛+1𝜓 (𝑦)

𝑇𝑛𝜓 (𝑦 + 2𝑝) + 𝑇𝑛−2𝜓 (𝑦 + 𝑝) + 𝑇𝑛 𝜓 (𝑦)

=
𝑇𝑛+1𝑤 + 𝑇𝑛−1V + 𝑇𝑛+1𝑢
𝑇𝑛𝑤 + 𝑇𝑛−2V + 𝑇𝑛 𝑢

.

(7)

By Remark 6, we have

𝜓 (𝑥 + 𝑝)
𝜓 (𝑥)

=
𝑇𝑛+1𝑤 + (𝑇𝑛−1 + 𝑇


𝑛) V + 𝑇


𝑛𝑢

𝑇𝑛𝑤 + (𝑇𝑛−2 + 𝑇𝑛−1) V + 𝑇𝑛−1𝑢

=
𝑇𝑛
𝑇𝑛−1

(𝑇𝑛+1/𝑇

𝑛)𝑤 + (𝑇𝑛−1/𝑇


𝑛 + 1) V + 𝑢

(𝑇𝑛/𝑇𝑛−1) 𝑤 + (𝑇𝑛−2/𝑇𝑛−1 + 1) V + 𝑢
.

(8)



4 Discrete Dynamics in Nature and Society

Now, the well-known result that lim𝑛→+∞(𝑇𝑛+1/𝑇

𝑛) = 𝛽

yields

lim
𝑥→+∞

𝜓 (𝑥 + 𝑝)
𝜓 (𝑥)

= 𝛽
𝛽𝑤 + (1/𝛽 + 1) V + 𝑢
𝛽𝑤 + (1/𝛽 + 1) V + 𝑢

. (9)

Hence, we obtain

lim
𝑥→+∞

𝜓 (𝑥 + 𝑝)
𝜓 (𝑥)

= 𝛽. (10)
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