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In this paper, a discrete predator-prey systemwith the periodic boundary conditions will be considered. First, we get the conditions
for producing Turing instability of the discrete predator-prey system according to the linear stability analysis. Then, we show that
the discrete model has the flip bifurcation and Turing bifurcation under the critical parameter values. Finally, a series of numerical
simulations are carried out in the Turing instability region of the discrete predator-prey model; some new Turing patterns such as
striped, bar, and horizontal bar are observed.

1. Introduction

Interaction between species and their natural environment
is the main characteristic of ecological systems ([1]). Such
interaction may occur over a wide range of spatial and
temporal scales ([2]). Since the great works of Lotka (in 1925)
and Volterra (in 1926) modeling predator-prey relations,
interaction has been one of the central themes in mathe-
matical ecology ([3–5]). In general, predator-prey models
follow two principles: one is that population dynamics can
be decomposed into birth and death processes; the other is
the conservation of mass principle, stating that predators can
grow only as a function of what they have eaten ([6]).

Patterns are ever-present in the chemical and biological
worlds; pattern formation is a fundamental problem in
the study of far-from-equilibrium phenomena in spatially
extended systems. Since Turing ([7]) first introduced his
model of pattern formation, reaction-diffusion equations
have been a primary means of predicting them. Similarly,
structured systems of ordinary differential equations govern
the spatiotemporal dynamics of ecological population mod-
els. A reaction-diffusion system exhibits diffusion-driven
instability or Turing instability if the homogeneous steady
state is stable to small perturbations in the absence of dif-
fusion, but it is unstable to small spatial perturbations when

diffusion is present. This approach allows us to understand
and predict a variety of different phenomena, including the
formation of structures that are similar to the patterns we
observe in the living world ([8–10]).

For the continuous predator-prey system, the mathemat-
ical problem is defined by

𝑢󸀠 (𝑡) = 𝑢 (𝑡) (𝜀 − 𝜀𝑢 (𝑡)𝐾 − 𝛼V (𝑡)) + 𝑑∇2𝑢,
V󸀠 (𝑡) = V (𝑡) (−𝛾 + 𝛽𝑢 (𝑡) − 𝛿V (𝑡)) + ∇2V. (1)

The parameters in the model (1) are summarized in the
following list:

𝑢(𝑡): the quantities at time 𝑡 of prey
V(𝑡): the quantities at time 𝑡 of predator𝜀: the intrinsic growth rate of the prey𝛼: the predation rate𝛾: the intrinsic mortality of the predator𝛽: the conversation rate𝐾: the carrying capacity of the environment with
respect to the prey
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∇2: 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2𝜀, 𝛼, 𝛾, 𝛽, 𝑑, 𝛿 are all positive constants.
For simplicity, we rewrite (1) in the following form:

𝑢󸀠 (𝑡) = 𝑢 (𝑡) (𝑟1 − 𝑎11𝑢 (𝑡) − 𝑎12V (𝑡)) + 𝑑∇2𝑢,
V󸀠 (𝑡) = V (𝑡) (−𝑟2 + 𝑎21𝑢 (𝑡) − 𝑎22V (𝑡)) + ∇2V, (2)

where 𝑟𝑖, 𝑎𝑖𝑗 (𝑖, 𝑗 = 1, 2) > 0. We let

𝑓 (𝑢, V) = 𝑢 (𝑟1 − 𝑎11𝑢 − 𝑎12V) ,𝑔 (𝑢, V) = V (−𝑟2 + 𝑎21𝑢 − 𝑎22V) . (3)

The positive fixed point 𝐸 = (𝑢∗, V∗) of (2) satisfies the system
𝑢 (𝑟1 − 𝑎11𝑢 − 𝑎12V) = 0,

V (−𝑟2 + 𝑎21𝑢 − 𝑎22V) = 0. (4)

Then

𝐸 = ( 𝑟1𝑎22 + 𝑟2𝑎12𝑎11𝑎22 + 𝑎12𝑎21 , 𝑟1𝑎21 − 𝑟2𝑎11𝑎11𝑎22 + 𝑎12𝑎21) , (5)

where 𝑟1/𝑟2 > 𝑎11/𝑎21. From (3), we have

𝑓𝑢 = −𝑎11𝑢,𝑓V = −𝑎12𝑢,𝑔𝑢 = 𝑎21V,𝑔V = −𝑎22V,
(6)

at the fixed point 𝐸(𝑢∗, V∗), 𝑓𝑢 + 𝑔V < 0, 𝑓𝑢𝑔V − 𝑓V𝑔𝑢 >0, but 𝑓𝑢 + 𝑑𝑔V < 0; thus, we can conclude that such a
simple continuous predator-prey system can not generate
Turing instability. For the discrete time and space predator-
prey system, research on the dynamics is not as common.
This paper concerns the dynamical behaviors of the discrete
predator-prey system.

The paper is organized as follows. In Section 2, the
simple discrete form of (2) and the Turing instability analysis
theoretically are studied. In Section 3, we analyze the flip
bifurcation of (13). In Section 4, a series of numerical
simulations and Lyapunov exponents are given to show the
consistence with the theoretical analysis. Conclusions are
drawn in Section 5.

2. Turing Instability Analysis for the Discrete
L-V Predator-Prey Systems

Now, we discuss the Turing instability of the discrete
predator-prey system. By Eular’smethod, we have the discrete
form of system (2):

𝑢𝑖,𝑗𝑛+1 = 𝑟1𝑢𝑖,𝑗𝑛 (1 − 𝑢𝑖,𝑗𝑛 − 𝑎12V𝑖,𝑗𝑛 ) + 𝑑∇2𝑢𝑖,𝑗𝑛 ,
V𝑖,𝑗𝑛+1 = 𝑟2V𝑖,𝑗𝑛 (1 + 𝑎21𝑢𝑖,𝑗𝑛 − V𝑖,𝑗𝑛 ) + ∇2V𝑖,𝑗𝑛 . (7)

The Laplacian diffusion parts are defined as∇2𝑢𝑖𝑗𝑛 = 𝑢𝑖+1,𝑗𝑛 + 𝑢𝑖,𝑗+1𝑛 + 𝑢𝑖−1,𝑗𝑛 + 𝑢𝑖,𝑗−1𝑛 − 4𝑢𝑖𝑗𝑛 , (8)

and

∇2V𝑖𝑗𝑛 = V𝑖+1,𝑗𝑛 + V𝑖,𝑗+1𝑛 + V𝑖−1,𝑗𝑛 + V𝑖,𝑗−1𝑛 − 4V𝑖𝑗𝑛 . (9)𝑢 and V satisfy the periodic boundary conditions

𝑢𝑖,0𝑛 = 𝑢𝑖,𝑚𝑛 ,𝑢𝑖,1𝑛 = 𝑢𝑖,𝑚+1𝑛 ,
𝑢0,𝑗𝑛 = 𝑢𝑚,𝑗𝑛 ,𝑢1,𝑗𝑛 = 𝑢𝑚+1,𝑗𝑛 ,

(10)

and

V𝑖,0𝑛 = V𝑖,𝑚𝑛 ,
V𝑖,1𝑛 = V𝑖,𝑚+1𝑛 ,
V0,𝑗𝑛 = V𝑚,𝑗𝑛 ,
V1,𝑗𝑛 = V𝑚+1,𝑗𝑛 ,

(11)

where 𝑖, 𝑗 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑚} = [1, 𝑚] and 𝑛 and 𝑚 are a positive
integer.

In order to find the Turing instability region of the
discrete predator-preymodel, we first analyze the model with
no spatial variation; 𝑢 and V satisfy

𝑢𝑖,𝑗𝑛+1 = 𝑟1𝑢𝑖,𝑗𝑛 (1 − 𝑢𝑖,𝑗𝑛 − 𝑎12V𝑖,𝑗𝑛 ) ,
V𝑖,𝑗𝑛+1 = 𝑟2V𝑖,𝑗𝑛 (1 + 𝑎21𝑢𝑖,𝑗𝑛 − V𝑖,𝑗𝑛 ) . (12)

For convenience, we make 𝑟1 = 𝑟2 = 𝑟, and 𝑎12 = 𝑎21 = 𝑎, so
the model (12) is written as

𝑢𝑖,𝑗𝑛+1 = 𝑟𝑢𝑖,𝑗𝑛 (1 − 𝑢𝑖,𝑗𝑛 − 𝑎V𝑖,𝑗𝑛 ) ,
V𝑖,𝑗𝑛+1 = 𝑟V𝑖,𝑗𝑛 (1 + 𝑎𝑢𝑖,𝑗𝑛 − V𝑖,𝑗𝑛 ) . (13)

There is a nonzero positive fixed point 𝐸1 = (𝑢∗, V∗) of (13);
that is,

𝜇∗ = (1 − 𝑎) (𝑟 − 1)𝑟 (1 + 𝑎2) ,
]∗ = (𝑎 + 1) (𝑟 − 1)𝑟 (1 + 𝑎2) , (14)

where 𝑟 > 1,0 < 𝑎 < 1. (15)

The linearization of (13) about 𝐸1 has the Jacobian matrix

𝐽𝐸1 = [1 − 𝑟𝜇∗ −𝑟𝑎𝜇∗𝑟𝑎]∗ 1 − 𝑟]∗] . (16)
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The eigenvalues of (16) are

𝜆1 = 𝑎2𝑟 − 𝑟 + 21 + 𝑎2
and 𝜆2 = 2 − 𝑟. (17)

The linear stability of (13) is guaranteed if󵄨󵄨󵄨󵄨𝜆1󵄨󵄨󵄨󵄨 < 1,󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 < 1. (18)

Then, we consider that the diffusion parts are added. Now,
let 𝜆 denote an eigenvalue of ∇2 with the boundary condition
(10); that is, ∇2𝑢𝑖𝑗 + 𝜆𝑢𝑖𝑗 = 0. (19)

In view of ([11]), 𝜆 is in the form of

𝜆𝑡,𝑠 = 4(sin2 (𝑡 − 1) 𝜋𝑚 + sin2 (𝑠 − 1) 𝜋𝑚 )
for 𝑡, 𝑠 ∈ [1, 𝑚] . (20)

The linearized form of (7) is

𝑢𝑖𝑗𝑛+1 = (1 − 𝑟𝑢∗) 𝑢𝑖𝑗𝑛 − 𝑟𝑎𝑢∗V𝑖𝑗𝑛 + 𝑑∇2𝑢𝑖𝑗𝑛 ,
V𝑖𝑗𝑛+1 = 𝑟𝑎V∗𝑢𝑖𝑗𝑛 + (1 − 𝑟V∗) V𝑖𝑗𝑛 + ∇2V𝑖𝑗𝑛 . (21)

Then, we, respectively, take the inner product of (21) with the
corresponding eigenfunction 𝑋𝑖𝑗𝑡𝑠 of the eigenvalue 𝜆𝑡,𝑠; then
𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠𝑢𝑖𝑗𝑛+1 = (1 − 𝑟𝑢∗) 𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠𝑢𝑖𝑗𝑛 − 𝑟𝑎𝑢∗ 𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠V𝑖𝑗𝑛
+ 𝑑 𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠∇2𝑢𝑖𝑗𝑛 ,
𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠V𝑖𝑗𝑛+1 = 𝑟𝑎V∗ 𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠𝑢𝑖𝑗𝑛 + (1 − 𝑟V∗) 𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠V𝑖𝑗𝑛
+ 𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠∇2V𝑖𝑗𝑛 .

(22)

Let

𝑈𝑛 = 𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠𝑢𝑖𝑗𝑛 (23)

and

𝑉𝑛 = 𝑚∑
𝑖,𝑗=1

𝑋𝑖𝑗𝑡𝑠V𝑖𝑗𝑛 . (24)

Then, we use the periodic boundary conditions (10) and (11),
and the Abel transform; thus, we have that𝑈𝑛+1 = (1 − 𝑟𝑢∗) 𝑈𝑛 − 𝑟𝑎𝑢∗𝑉𝑛 − 𝑑𝜆𝑡,𝑠𝑈𝑛,𝑉𝑛+1 = 𝑟𝑎V∗𝑈𝑛 + (1 − 𝑟V∗) 𝑉𝑛 − 𝜆𝑡,𝑠𝑉𝑛. (25)

If (𝑈𝑛, 𝑉𝑛) is a solution of the system (25), then 𝑢𝑖𝑗𝑛 =𝑈𝑛𝑋𝑖𝑗𝑡𝑠, V𝑖𝑗𝑛 = 𝑉𝑛𝑋𝑖𝑗𝑡𝑠 is also clearly a solution of (21) with the
periodic boundary conditions (10) and (11); thus, the unstable
system (25) produces the problem (7), (10), and (11) is also
unstable. The system (25) has the eigenvalue equation

𝜆2 + [(𝑑 + 1) 𝜆𝑙𝑠 + 𝑟 (𝑢∗ + V∗) − 2] 𝜆 + ℎ (𝜆𝑡,𝑠) = 0, (26)

where

ℎ (𝜆𝑡,𝑠) = 𝑑𝜆2𝑡,𝑠 − [1 − 𝑟𝑢∗ + 𝑑 (1 − 𝑟V∗)] 𝜆𝑡,𝑠+ (1 − 𝑟𝑢∗) (1 − 𝑟V∗) + 𝑟2𝑎2𝑢∗V∗. (27)

By calculating, the two eigenvalues are

𝜆± (𝑡, 𝑠, 𝑟) = 12𝑝 (𝑡, 𝑠, 𝑟) ± 12√𝑝 (𝑡, 𝑠, 𝑟)2 − 4𝑞 (𝑡, 𝑠, 𝑟), (28)

where

𝑝 (𝑡, 𝑠, 𝑟) = − [(𝑑 + 1) 𝜆𝑡,𝑠 + 𝑟 (𝑢∗ + V∗) − 2] , (29)

and 𝑞 (𝑡, 𝑠, 𝑟) = 𝑑𝜆2𝑡,𝑠 − [1 − 𝑟𝑢∗ + 𝑑 (1 − 𝑟V∗)] 𝜆𝑡,𝑠+ (1 − 𝑟𝑢∗) (1 − 𝑟V∗) + 𝑟2𝑎2𝑢∗V∗. (30)

On the basis of the two eigenvalues, we define

𝑍 (𝑡, 𝑠, 𝑟) = max (󵄨󵄨󵄨󵄨𝜆+ (𝑡, 𝑠)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝜆− (𝑡, 𝑠)󵄨󵄨󵄨󵄨) ,
𝑍𝑚 (𝑟) = 𝑚max

𝑡=1,𝑠=1
𝑍 (𝑡, 𝑠, 𝑟)

((𝑡, 𝑠) ̸= (1, 1)) ,
(31)

𝑍𝑚(𝑟) represents the maximal value of absolute modulus
of both eigenvalues 𝜆+ and 𝜆−. When 𝑍𝑚(𝑟) > 1, Turing
instability occurs; when 𝑍𝑚(𝑟) < 1, the discrete system
stabilizes at the homogeneous states. Thus, the threshold
condition for the occurrence of Turing bifurcation requires𝑍𝑚(𝑟) = 1. From this criterion, the critical value 𝑟󸀠 for Turing
bifurcation can be described by the following cases.

(1) 𝑝(𝑡, 𝑠, 𝑟)2 > 4𝑞(𝑡, 𝑠, 𝑟) establishes a small neighbor-
hood of 𝑟 = 𝑟󸀠, and the critical value 𝑟󸀠 satisfies

𝑚max
𝑡=1,𝑠=1

(󵄨󵄨󵄨󵄨󵄨𝑝 (𝑡, 𝑠, 𝑟󸀠)󵄨󵄨󵄨󵄨󵄨 − 𝑞 (𝑡, 𝑠, 𝑟󸀠)) = 1. (32)

(2) 𝑝(𝑡, 𝑠, 𝑟)2 ≤ 4𝑞(𝑡, 𝑠, 𝑟) establishes a small neighborhood of𝑟 = 𝑟󸀠 and the critical value 𝑟󸀠 satisfies
𝑚max
𝑡=1,𝑠=1

(𝑞 (𝑡, 𝑠, 𝑟󸀠)) = 1. (33)

Thus, the conditions of Turing instability of (7) are

0 < 𝑎 < 1,𝑟 > 1,󵄨󵄨󵄨󵄨𝜆1󵄨󵄨󵄨󵄨 < 1,
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󵄨󵄨󵄨󵄨𝜆2󵄨󵄨󵄨󵄨 < 1,𝑍𝑚 (𝑟) > 1.
(34)

3. Bifurcations and Center Manifolds

It is important to discuss the bifurcations and the center
manifolds for the applications; for example, see ([12–16]). In
this section, we study the flip bifurcation of (13) at the positive
steady state 𝐸1 = (𝜇∗, ]∗). When the flip bifurcation occurs,(𝜇∗, ]∗) loses its stability, and the discrete system (13) switches
to a new behavior with period-2. At the flip bifurcation point,(𝜇∗, ]∗) is neither stable nor unstable. In this critical case,
one of the two eigenvalues of 𝐽((𝜇∗, ]∗) satisfies 𝜆1 = −1,𝜆2 = 2 − 𝑟∗ when 𝑟∗ = (𝑎2 + 3)/(1 − 𝑎2). Regarding 𝑟 as
the dependent bifurcation parameter, we have the following
theorem.

Theorem 1. If the condition (15) is established, model (13)
undergoes a flip bifurcation if 𝛼1 ̸= 0, 𝛼2 ̸= 0, and 𝑟 = 𝑟∗;
furthermore, if 𝛼2 > 0 is satisfied, then the bifurcated period-2
points are stable; if 𝛼2 < 0, the bifurcated period-2 points are
unstable.

Proof. Let

𝜁𝑛 = 𝜇𝑛 − 𝜇∗,𝜂𝑛 = ]𝑛 − ]∗,𝛿𝑛 = 𝑟 − 𝑟∗,
(35)

and parameter 𝛿𝑛 is a new and independent variable; the
system (13) becomes

𝜁𝑛+1 = 𝑎11𝜁𝑛 + 𝑎12𝜂𝑛 + 𝑎13𝛿𝑛 + 𝑎14𝜁2𝑛 + 𝑎15𝜁𝑛𝜂𝑛
+ 𝑏11𝜁𝑛𝛿𝑛 + 𝑏12𝜂𝑛𝛿𝑛 + 𝑂((󵄨󵄨󵄨󵄨𝜁𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜂𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝛿𝑛󵄨󵄨󵄨󵄨)3) ,

𝜂𝑛+1 = 𝑎21𝜁𝑛 + 𝑎22𝜂𝑛 + 𝑎23𝛿𝑛 + 𝑎24𝜂2𝑛 + 𝑎25𝜁𝑛𝜂𝑛+ 𝑏21𝜁𝑛𝛿𝑛 + 𝑏22𝜂𝑛𝛿𝑛 + 𝑂 ((󵄨󵄨󵄨󵄨𝜁𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜂𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝛿𝑛󵄨󵄨󵄨󵄨)3) ,𝛿𝑛+1 = 𝛿𝑛,
(36)

where 𝑎11 = 1 − 𝑟∗𝑢∗,𝑎12 = −𝑎𝑟∗𝑢∗,
𝑎13 = −𝑢∗𝑟∗ ,𝑎14 = −𝑟∗,𝑎15 = −𝑎𝑟∗,𝑎21 = 𝑎𝑟∗V∗,𝑎22 = 1 − 𝑟∗V∗,
𝑎23 = V∗𝑟∗ ,𝑎24 = −𝑟∗,𝑎25 = 𝑎𝑟∗

(37)

and 𝑏11 = 1 − 2𝑢∗ − 𝑎V∗,𝑏12 = −𝑎𝑢∗,𝑏21 = 𝑎V∗,𝑏22 = 1 + 𝑎𝑢∗ − 2V∗.
(38)

Let

𝑇 = [[[
𝑎12 𝑎12 𝑎12 + 𝑎13−1 − 𝑎11 𝜆2 − 𝑎11 1 − 𝑎110 0 1 − 𝑎11

]]] ; (39)

then,

𝑇−1 = 1|𝑇| [[[[
(𝜆2 − 𝑎11) (1 − 𝑎11) −𝑎12 (1 − 𝑎11) 𝑎12 (1 − 𝑎11) − (𝑎12 + 𝑎13) (𝜆2 − 𝑎11)(1 + 𝑎11) (1 − 𝑎11) 𝑎12(1 − 𝑎11 − [𝑎12 (1 − 𝑎11) + (1 + 𝑎11) (𝑎12 + 𝑎13)]0 0 𝑎12 (𝜆2 − 𝑎11) + (1 + 𝑎11) 𝑎12

]]]]
. (40)

The transformation

(𝜁𝑛𝜂𝑛𝛿𝑛) = 𝑇(𝑢𝑛V𝑛𝛿1), (41)

changes (36) into

(𝑢𝑛+1V𝑛+1𝛿1 ) = (−1 0 00 𝜆2 00 0 1)(
𝑢𝑛
V𝑛𝛿1)
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+ 1|𝑇| (
𝑓 (𝑥𝑛, 𝑦𝑛, 𝛿𝑛)𝑔 (𝑥𝑛, 𝑦𝑛, 𝛿𝑛)0 ) ,

(42)

where𝑓 (𝑥𝑛, 𝑦𝑛, 𝛿𝑛)= (𝜆2 − 𝑎11) (1 − 𝑎11) 𝑎14𝜁2𝑛 − 𝑎12 (1 − 𝑎11) 𝑎24𝜂2𝑛+ [𝑎15 (𝜆2 − 𝑎11) (1 − 𝑎11) − 𝑎25𝑎12 (1 − 𝑎11) 𝜁𝑛𝜂𝑛]+ [𝑏11 (𝜆2 − 𝑎11) (1 − 𝑎11) − 𝑏21𝑎12 (1 − 𝑎11)] 𝜁𝑛𝛿𝑛+ [𝑏12 (𝜆2 − 𝑎11) (1 − 𝑎11) − 𝑏22𝑎12 (1 − 𝑎11)] 𝜂𝑛𝛿𝑛
+ 𝑂 ((󵄨󵄨󵄨󵄨𝑥𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨+𝑦𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝛿𝑛󵄨󵄨󵄨󵄨)3) ,𝑔 (𝑥𝑛, 𝑦𝑛, 𝛿𝑛)= 𝑎14 (1 − 𝑎211) 𝜁2𝑛 + 𝑎24𝑎12 (1 − 𝑎11) 𝜂2𝑛
+ [𝑎15 (1 − 𝑎211) + 𝑎25𝑎12 (1 − 𝑎11)] 𝜁𝑛𝜂𝑛
+ [𝑏11 (1 − 𝑎211) + 𝑏21𝑎12 (1 − 𝑎11)] 𝜁𝑛𝛿𝑛
+ [𝑏12 (1 − 𝑎211) + 𝑏22𝑎12 (1 − 𝑎11)] 𝜂𝑛𝛿𝑛
+ 𝑂 ((󵄨󵄨󵄨󵄨𝑥𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨+𝑦𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝛿𝑛󵄨󵄨󵄨󵄨)3) ,𝜁𝑛 = 𝑎12𝑢𝑛 + 𝑎12V𝑛 + (𝑎12 + 𝑎13) 𝛿1,𝜂𝑛 = ( − 1 − 𝑎11𝑢𝑛 + (𝜆2 − 𝑎11) V𝑛 + (1 − 𝑎11) 𝛿1,𝛿𝑛 = (1 − 𝑎11) 𝛿1.

(43)

Then,

𝑓 (𝑥𝑛, 𝑦𝑛, 𝛿𝑛) = (𝜆2 − 𝑎11) (1 − 𝑎11) 𝑎14 [𝑎12𝑢𝑛 + 𝑎12V𝑛
+ (𝑎12 + 𝑎13) 𝛿1]2 − 𝑎12 (1 − 𝑎11) 𝑎24 [(−1 − 𝑎11) 𝑢𝑛
+ (𝜆2 − 𝑎11) V𝑛 + (1 − 𝑎11) 𝛿1]2 + [𝑎15 (𝜆2 − 𝑎11)⋅ (1 − 𝑎11) − 𝑎25𝑎12 (1 − 𝑎11)] [𝑎12𝑢𝑛 + 𝑎12V𝑛+ (𝑎12 + 𝑎13) 𝛿1] [(−1 − 𝑎11) 𝑢𝑛 + (𝜆2 − 𝑎11) V𝑛+ (1 − 𝑎11) 𝛿1] + [𝑏11 (𝜆2 − 𝑎11)

⋅ (1 − 𝑎11 − 𝑏21𝑎12 (1 − 𝑎11)]⋅ [𝑎12𝑢𝑛 + 𝑎12V𝑛 + (𝑎12 + 𝑎13) 𝛿1] [(1 − 𝑎11) 𝛿1]+ 𝑏12 (𝜆2 − 𝑎11) (1 − 𝑎11) − 𝑏22𝑎12) (1 − 𝑎12)]⋅ [(−1 − 𝑎11) 𝑢𝑛)+ (𝜆2 − 𝑎11) V𝑛 + (1 − 𝑎11) 𝛿1] [(1 − 𝑎11) 𝛿1] ,𝑔 (𝑥𝑛, 𝑦𝑛, 𝛿𝑛) = 𝑎14 (1 − 𝑎211) [𝑎12𝑢𝑛 + 𝑎12V𝑛
+ (𝑎12 + 𝑎13) 𝛿1]2 + 𝑎24𝑎12 (1 − 𝑎11) [(−1 − 𝑎11) 𝑢𝑛
+ (𝜆2 − 𝑎11) V𝑛 + (1 − 𝑎11) 𝛿1]2 + [𝑎15 (1 − 𝑎211)
+ 𝑎25𝑎12 (1 − 𝑎11)] [𝑎12𝑢𝑛 + 𝑎12V𝑛 + (𝑎12 + 𝑎13) 𝛿1]⋅ [(−1 − 𝑎11) 𝑢𝑛+ (𝜆2 − 𝑎11) V𝑛 + (1 − 𝑎11) 𝛿1] + [𝑏11 (1 − 𝑎211)
+ 𝑏21𝑎12 (1 − 𝑎11)] [𝑎12𝑢𝑛 + 𝑎12V𝑛 + (𝑎12 + 𝑎13) 𝛿1]
⋅ [(1 − 𝑎11) 𝛿1] + [𝑏12 (1 − 𝑎211) + 𝑏22𝑎12 (1 − 𝑎11)]⋅ [(−1 − 𝑎11) 𝑢𝑛+ (𝜆2 − 𝑎11) V𝑛 + (1 − 𝑎11) 𝛿1] [(1 − 𝑎11) 𝛿1] .

(44)

Applying the center manifold theorem, there exists a center
manifold 𝑊0(0, 0, 0) of the model in a small neighborhood
of 𝛿1 = 0, which can be represented as

𝑊0 (0, 0, 0) = {(𝑢𝑛, V𝑛, 𝛿1) ∈ 𝑅3 | V𝑛 = ℎ (𝑢𝑛, 𝛿1)
= 𝑐1𝑢2𝑛 + 𝑐2𝑢𝑛𝛿1 + 𝑐3𝛿21 + 𝑂 (󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝛿1󵄨󵄨󵄨󵄨)3 )} (45)

with

V𝑛+1 = 𝜆2ℎ (𝑢𝑛, 𝛿1) + 𝑔 (𝑥𝑛, 𝑦𝑛, 𝛿1 = ℎ (𝑢𝑛+1, 𝛿1)= ℎ (−𝑢𝑛 + 𝑓 (𝑥𝑛, 𝑦𝑛, 𝛿𝑛) , 𝛿1)) . (46)

By calculating, we can obtain

𝑐1 = {𝑎14 (1 − 𝑎211) 𝑎212 + 𝑎24𝑎12 (1 − 𝑎11) (−1 − 𝑎11)2 + [𝑎15 (1 − 𝑎211) + 𝑎25𝑎12 (1 − 𝑎11)] 𝑎12 (−1 − 𝑎11)}|𝑇| (1 − 𝜆2) ,
𝑐2 = 2𝑎14 (1 − 𝑎211) 𝑎12 (𝑎12 + 𝑎13) + 2𝑎24𝑎12 (1 − 𝑎11)2 (−1 − 𝑎11)|𝑇| (1 − 𝜆2)
+ [𝑎15 (1 − 𝑎211) + 𝑎25𝑎12 (1 − 𝑎11)] [𝑎12 (1 − 𝑎11) + (𝑎12 + 𝑎13) (−1 − 𝑎11)]|𝑇| (1 − 𝜆2)
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+ [𝑏11 (1 − 𝑎211) + 𝑏21𝑎12 (1 − 𝑎11) 𝑎12 (1 − 𝑎11)]|𝑇| (1 − 𝜆2) + [𝑏12 (1 − 𝑎211) + 𝑏22𝑎12 (1 − 𝑎11)] (−1 − 𝑎11) (1 − 𝑎11)|𝑇| (1 − 𝜆2) ,
𝑐3 = 0.

(47)

The model (36) restricted to the center manifold can be
written as

𝐻 : 𝑢𝑛+1 = −𝑢𝑛 + ℎ1𝑢2𝑛 + ℎ2𝑢𝑛𝛿1 + ℎ3𝑢2𝑛𝛿1 + ℎ4𝑢𝑛𝛿21+ ℎ5𝑢3𝑛 + 𝑂((󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝛿1󵄨󵄨󵄨󵄨)4) ,
ℎ1 = 1|𝑇| {(𝜆2 − 𝑎11) (1 − 𝑎11) 𝑎14𝑎212
− 𝑎12𝑎24 (1 − 𝑎11) (−1 − 𝑎11)2+ [𝑎15 (𝜆2 − 𝑎11) (1 − 𝑎11) − 𝑎25𝑎12 (1 − 𝑎11)]
⋅ 𝑎12 (−1 − 𝑎11)} ,

ℎ2 = 1|𝑇| {2 (𝜆2 − 𝑎11) (1 − 𝑎11) 𝑎14𝑎12 (𝑎12 + 𝑎13)− 2𝑎12 (1 − 𝑎11) 𝑎24 (1 − 𝑎11) (−1 − 𝑎11)+ [𝑎15 (1 − 𝑎11) (𝜆2 − 𝑎11) − 𝑎25𝑎12 (1 − 𝑎11)]⋅ [(1 − 𝑎11) 𝑎12 + (𝑎12 + 𝑎13) (−1 − 𝑎11)]+ [𝑏11 (1 − 𝑎11) (𝜆2 − 𝑎11) − 𝑏21𝑎12 (1 − 𝑎11)]⋅ 𝑎12 (1 − 𝑎11)} ,
ℎ3 = 1|𝑇|𝑐2 {2 (𝜆2 − 𝑎11) (1 − 𝑎11) 𝑎14𝑎212 − 2𝑎12 (1− 𝑎11) 𝑎24 (−1 − 𝑎11) (𝜆2 − 𝑎11) + [𝑎15 (1 − 𝑎11)⋅ (𝜆2 − 𝑎11) − 𝑎25𝑎12 (1 − 𝑎11)] [𝑎12(𝜆2 − 𝑎11+ 𝑎12 (−1 − 𝑎11)]
+ 1|𝑇|𝑐1 {2 (𝜆2 − 𝑎11) (1 − 𝑎11) 𝑎14𝑎12 (𝑎12 + 𝑎13)+ 2 (1 − 𝑎11) 𝑎24𝑎12 (𝜆2 − 𝑎11) (1 − 𝑎11)+ [𝑎15 (𝜆2 − 𝑎11) (1 − 𝑎11) − 𝑎25𝑎12 (1 − 𝑎11)]⋅ [(𝑎12 + 𝑎13) (𝜆2 − 𝑎11) + 𝑎12 (1 − 𝑎11)]+ [𝑏11 (1 − 𝑎11) (𝜆2 − 𝑎11) − 𝑏21𝑎12 (1 − 𝑎11)]⋅ 𝑎12 (1 − 𝑎11)+ [𝑏11 (1 − 𝑎11) (𝜆2 − 𝑎11) − 𝑏22𝑎12 (1 − 𝑎11)]⋅ (𝜆2 − 𝑎11) (1 − 𝑎11)} ,

ℎ4 = 1|𝑇| 𝑐2 {2 (𝜆2 − 𝑎11) (1 − 𝑎11) 𝑎14𝑎12 (𝑎12 + 𝑎13)+ 2 (1 − 𝑎11) 𝑎24𝑎12 (𝜆2 − 𝑎11) (1 − 𝑎11)+ [𝑎15 (𝜆2 − 𝑎11) (1 − 𝑎11) − 𝑎25𝑎12 (1 − 𝑎11)]⋅ [(𝑎12 + 𝑎13) (𝜆2 − 𝑎11) + 𝑎12 (1 − 𝑎11)]+ [𝑏11 (1 − 𝑎11) (𝜆2 − 𝑎11) − 𝑏21𝑎12 (1 − 𝑎11)]⋅ 𝑎12 (1 − 𝑎11)+ [𝑏11 (1 − 𝑎11) (𝜆2 − 𝑎11) − 𝑏22𝑎12 (1 − 𝑎11)]⋅ (𝜆2 − 𝑎11) (1 − 𝑎11)} ,
ℎ5 = 1|𝑇| 𝑐1 {2 (𝜆2 − 𝑎11) (1 − 𝑎11) 𝑎14𝑎212− 2𝑎12 (1 − 𝑎11) 𝑎24 (−1 − 𝑎11) (𝜆2 − 𝑎11)+ [𝑎15 (1 − 𝑎11) (𝜆2 − 𝑎11) − 𝑎25𝑎12 (1 − 𝑎11)]⋅ [𝑎12 (𝜆2 − 𝑎11) + 𝑎12 (−1 − 𝑎11)]} .

(48)

As stated by the flip bifurcation theorem in ([17]), the
emergence of flip bifurcation for map (3) requires

𝛼1 = ( 𝜕2𝐻𝜕𝑢𝜕𝛿1 + 12 𝜕𝐻𝜕𝛿1 𝜕
2𝐻𝜕𝑢2 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(0,0) = ℎ2 ̸= 0,

𝛼2 = (16 𝜕3𝐻𝜕𝑢3 + (12 𝜕2𝐻𝜕𝑢2 )
2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(0,0) = ℎ5 + ℎ21 ̸= 0.

(49)

4. Numerical Simulation

To illustrate the analytical results in the above sections and
find new dynamics with different parameters, in this section,
we provide some numerical evidence for the qualitative
dynamic behavior of model (7).

4.1. Simulations about the Flip Bifurcation. In the follow-
ing, we display the bifurcation diagrams and the Lya-
punov exponents. Now, the fix point is (𝑢∗, V∗) =(0.37974684, 0.88607595), 𝑎 = 0.001, and 𝑟∗ is considered a
parameter with the range (1.1 − 5). From Figure 1(a) we see
that equilibrium is stable for 𝑟 = 2.9, at this moment 𝑟 < 𝑟∗ =3.000004, and the eigenvalues 𝜆1 = 0.9 and 𝜆2 = 0.8999, lose
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Figure 1: Flip bifurcation diagram of model (7) with 𝑟 ∈ [1.1; 5]; maximum Lyapunov exponents corresponding to flip bifurcation diagram.
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Figure 2: Turing bifurcation with critical point 𝑟’ ≈ 1.4.
stability when 𝑟 = 𝑟∗. Furthermore, when 𝑟 > 𝑟∗, there is a
period-doubling bifurcation. We also observe that there is a
cascade of period doubling; moreover, a chaotic set emerges
with increasing of 𝑟. At the same time, we show themaximum
Lyapunov exponents, as shown in Figure 1(b); we find that
the periodic windows are repeated. Quantitatively, we can
determine the chaotic region; we find that when 𝑟 = 3.75 the
maximum Lyapunov exponents are greater than zero. Model
(7) may experience chaotic oscillating states.

4.2. Simulations of Related Spatial Turing Patterns. From
the analysis of the second chapter, we know that, under
conditions (15) and (18), the point (𝑢∗, V∗) remains stable, and
no Turing instability is induced. At the same time, under (15),
(18), and𝑍𝑚(𝑟) > 1, the point (𝑢∗, V∗) becomes unstable from
stable under diffusive effects, so Turing instability occurs.
Briefly, we only display several patterns of the 𝑢 and take𝑡 = 5000. We fix 𝑎 = 0.001 and 𝑑 = 0.2, as shown in Figure 2.
In the diagram of Figure 2, the abscissa is 𝑟, and the ordinate
is the maximum eigenvalue of (25). When 𝑟 > 𝑟󸀠, the critical
value of Turing instability 𝑟󸀠 ≈ 1.4, the maximum eigenvalue

of (25) is > 1; under conditions (15) and (18), we know 𝑟 < 3.
At this time, some Turing patterns form.We find 0 < 𝑟󸀠 < 𝑟∗;
if 0 < 𝑟 < 𝑟󸀠, the stable homogeneous steady state keeps
its stability; flip and Turing bifurcation cannot occur in this
region. When 𝑟󸀠 < 𝑟 < 3, the homogeneous steady state is
not stable because of the diffusions. Flip bifurcation cannot
appear this moment; only pure Turing instability appears
in the homogeneous steady state. And when 𝑟 > 𝑟∗, both
flip and Turing bifurcations arise. In the following, we give
some new Turing patterns in the Turing instability region.
The model (7) has three parameters: 𝑟, 𝑎, and 𝑑. To study
the effects that parameters have on pattern formation, we
assume that only one parameter is remaining fixed, and the
others are changing. Then Figure 3 is obtained. The X-axis is
time, and the Y-axis is the number of 𝑢 in Figure 3. Firstly,
in Figures 3(a), 3(b), and 3(c), we fix 𝑑 = 0.2207, and the
other two parameters 𝑎 and 𝑟 are smaller. Comparing the
pattern structure reveals the transition from diagonal striped
to two horizontal stripes, and, finally, it becomes diagonal
striped Turing patterns. In Figures 3(d), 3(e), and 3(f), when
we fix 𝑑 = 0.2207, the other two parameters 𝑎 and 𝑟 are
larger. By comparing the pattern structure, the two vertical
striped patterns are found, as the parameters increase, and
the two horizontal stripes arise; finally it becomes diagonal
stripes. In the end, we fix 𝑟 = 1.27; the other two parameters 𝑎
and 𝑑 are increasing, and the two horizontal stripes first turn
into diagonal stripes and, finally, turn into the vertical striped
pattern; see Figures 3(g), 3(h), and 3(i).

5. Conclusions

This study demonstrates that space and time discrete
predator-prey system can produce Turing instability, whereas
continuous ones cannot. Through linear stability analysis, the
conditions for producing Turing instability of the discrete
predator-prey system are obtained. A series of numerical
simulations are given and many new and interesting striped
patterns are observed from the simulation. In addition,
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(a) 𝑑 = 0.2207, 𝑟 = 1.36, 𝑎 = 0.365
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(b) 𝑑 = 0.2207, 𝑟 = 1.35, 𝑎 = 0.246
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(c) 𝑑 = 0.2207, 𝑟 = 1.34, 𝑎 = 0.177
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(d) 𝑑 = 0.2207, 𝑟 = 1.29, 𝑎 = 0.332
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(e) 𝑑 = 0.2207, 𝑟 = 1.32, 𝑎 = 0.389
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(f) 𝑑 = 0.2207, 𝑟 = 1.35, 𝑎 = 0.446
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(g) 𝑟 = 1.27,, 𝑎 = 0.144, 𝑑 = 0.217
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(h) 𝑟 = 1.27, 𝑎 = 0.244, 𝑑 = 0.22

Figure 3: Continued.
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(i) 𝑟 = 1.27, 𝑎 = 0.344, 𝑑 = 0.2234

Figure 3: Turing patterns.

we show that the discrete model has the flip bifurcation
and Turing bifurcation under the critical parameter values
by the bifurcation theory and center manifold theorem.
Finally, for the discrete time and space predator-prey model,
a new instability mechanism is found, namely, flip-Turing
instability, which is the basis of chaos. The bifurcation, chaos,
and pattern formation provide us with a new and better
understanding of dynamical complexity of the space and time
discrete predator-prey system.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (no. 71371138).

References

[1] M. Baurmann, T. Gross, andU. Feudel, “Instabilities in spatially
extended predator-prey systems: spatio-temporal patterns in
the neighborhood of Turing-Hopf bifurcations,” Journal of
Theoretical Biology, vol. 245, no. 2, pp. 220–229, 2007.

[2] S. A. Levin, B. Grenfell, A. Hastings, and A. S. Perelson,
“Mathematical and computational challenges in population
biology and ecosystems science,” Science, vol. 275, no. 5298, pp.
334–343, 1997.

[3] Y. Kuang and E. Beretta, “Global qualitative analysis of a ratio-
dependent predator-prey system,” Journal of Mathematical Biol-
ogy, vol. 36, no. 4, pp. 389–406, 1998.

[4] L. E. Jones and S. P. Ellner, “Evolutionary tradeoff and equilib-
rium in an aquatic predator-prey system,”Bulletin ofMathemat-
ical Biology, vol. 66, no. 6, pp. 1547–1573, 2004.

[5] P. Auger, R. Bravo de la Parra, S. Morand, and E. Sanchez,
“A predator-prey model with predators using hawk and dove
tactics,” Mathematical Biosciences, vol. 177/178, pp. 185–200,
2002.

[6] C. Jost, Comparing Predator-Prey Models Qualitatively and
Quantitatively with Ecological Time-Series Data [Ph.D. thesis],
Institute National Agronomique, Paris Grignon, 1998.

[7] A. M. Turing, “The chemical basis of morphogenesis,” Philo-
sophical Transactions of the Royal Society B: Biological Sciences,
vol. 237, no. 641, pp. 37–72, 1952.

[8] G. Nicolis and I. Prigogine, Self-Organization in Nonequi-
Librium Systems, Wiley, New York, NY, USA, 1977.

[9] J. D. Murray, Mathematical Biology, Springer, New York, NY,
USA, 1993.

[10] H. Meinhardt, Models of Biological Pattern Formation, Aca-
demic Press, New York, NY, USA, 1982.

[11] L. Bai and G. Zhang, “Nontrivial solutions for a nonlinear
discrete elliptic equation with periodic boundary conditions,”
Applied Mathematics and Computation, vol. 210, no. 2, pp. 321–
333, 2009.

[12] L. Zhang, C. Zhang, and M. Zhao, “Dynamic complexities in a
discrete predator-prey system with lower critical point for the
prey,” Mathematics and Computers in Simulation, vol. 105, pp.
119–131, 2014.

[13] D. Hu and H. Cao, “Bifurcation and chaos in a discrete-time
predator-prey system of Holling and Leslie type,” Communica-
tions in Nonlinear Science andNumerical Simulation, vol. 22, no.
1–3, pp. 702–715, 2015.

[14] L. Cheng and H. Cao, “Bifurcation analysis of a discrete-time
ratio-dependent predator-prey model with Allee effect,” Com-
munications inNonlinear Science andNumerical Simulation, vol.
38, pp. 288–302, 2016.

[15] Z.He andX. Lai, “Bifurcation and chaotic behavior of a discrete-
time predator-prey system,” Nonlinear Analysis: Real World
Applications, vol. 12, no. 1, pp. 403–417, 2011.

[16] W. Jinliang, L. You, S. Zhong, and X. Hou, “Analysis of
bifurcation, chaos and pattern formation in a discrete time and
space Gierer Meinhardt system,”Chaos, Solitons & Fractals, vol.
118, pp. 1–17, 2019.

[17] J.Guckenheimer andP.Holmes,NonlinearOscillations,Dynam-
ical Systems, and Bifurcation of Vector Fields, Springer, New
York, NY, USA, 1983.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

