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In this paper, we will establish some new Lyapunov-type inequalities for a class of second-order boundary value problems with a
parameter. +e inequalities generalize some early results in the literature.

1. Introduction

Up until now, integral inequalities have attracted the at-
tention of many researchers, due to its wide applications in
the research of qualitative and quantitative properties such
as global existence, boundedness, and stability of differential
and integral equations (see [1–26] and the references
therein). Among these inequalities, one important kind is
the Lyapunov-type inequality, which was originally pre-
sented by Lyapunov in [27] as follows.

If u(t) is a solution of

u′′ + q(t)u � 0, (1)

satisfying u(a) � u(b) � 0 (a< b) and u(t)≠ 0 for t ∈ (a, b),
then

􏽚
b

a
|q(t)|dt>

4
b − a

, (2)

and afterwards by Wintner [28] as

􏽚
b

a
q

+
(t)dt>

4
b − a

, (3)

where q+(t): � max q(t), 0􏼈 􏼉.
Following Lyapunov’s landmark work, there have been

plenty of references focused on the Lyapunov-type in-
equality and its generalizations which are widely used in
various problems such as asymptotic theory, disconjugacy,

and eigenvalue problems of differential equations and dif-
ference equations (see [29–41] and the references therein).

For example, in 2003, Yang [29] obtained the following
result for the second-order half-linear equation:

r(t) u′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p− 1

u′(t)􏼐 􏼑′ + q(t)|u(t)|p− 1u(t) � 0,

u(a) � u(b) � 0, u(t)≠ 0, t ∈ (a, b),

⎧⎨

⎩ (4)

where q, r ∈ C([a, b],R) such that r(t)> 0, for t ∈ [a, b], and
p> 0.

Theorem 1 (see [29]). Assume boundary value problem (4)
has a solution u(t); then, the following inequality holds:

􏽚
b

a
q+(t)dt≥

2p+1

􏽚
b

a
r

−1/p
(t)dt􏼠 􏼡

p,
(5)

where q+(t) :� max q(t), 0􏼈 􏼉.
In 2012, Tiryaki et al. [34] established an inequality for

boundary value problem of the form

r(t) u′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α− 2

u′(t)􏼐 􏼑′ + q(t)|u(t)|α∗− 2, u(t) � 0,

u(a) � u(b) � 0, u(t)≠ 0, t ∈ (a, b),

⎧⎨

⎩

(6)

where α> 1 and α∗ � (α/α − 1). /eir result is as follows.
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Theorem 2 (see [34]). Assume boundary value problem (6)
has a solution u(t); then, the following inequality holds:

􏽚
b

a

q+(t)

h1−α
a (t) + h1−α

b (t)
dt≥ 1, (7)

where ha(t) � 􏽒
t

a
r1− α∗(s)ds, hb(t) � 􏽒

b

t
r1− α∗(s)ds, and

q+(t) :� max q(t), 0􏼈 􏼉.
In 2015, Agarwal et al. [36] established a Lyapunov-type

inequality for the second-order forced boundary value
problem of the form:

r(t) u′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
β− 1

u′(t)􏼒 􏼓
′ + q(t)|u(t)|c− 1, u(t) � f(t),

u(a) � u(b) � 0, u(t)≠ 0, t ∈ (a, b),

⎧⎪⎨

⎪⎩

(8)

in the subhalf-linear (0< c< β) and the super-half-linear
(0< β< c< 2β) cases, where r(t) and q(t) are integrable on
[a, b] with r(t)> 0 on [a, b]. +eir result is as follows.

Theorem 3 (see [36]). Suppose that a, b, a< b, are consec-
utive zeros of a nontrivial solution of the first part of equation
(8), then the inequality

2Γcβ 􏽚
b

a
q+(t)dt + 􏽚

b

a
|f(t)|dt> 2β+1

���
Γcβ

􏽱
􏽚

b

a
r

− 1/β
(t)dt􏼠 􏼡

− β

(9)

holds, where c ∈ (0, 2β) and Γcβ � (2β − c)cc/(2β− c)

β− 2β/(2β−c)2− 2β/(2β−c) > 0.

Agarwal and Özbekler [36] also established a Lyapunov-
type inequality for the second-order forced boundary value
problem with mixed nonlinearities:

u′′(t) + p(t)|u(t)|α− 1u(t) + q(t)|u(t)|c− 1u(t) � f(t),

u(a) � u(b) � 0, u(t)≠ 0, t ∈ (a, b),

⎧⎨

⎩

(10)

where 0< c< 1< α< 2. +e result is as follows.

Theorem 4 (see [36]). Suppose that a, b, a< b, are consec-
utive zeros of a nontrivial solution of the first part of equation
(10), then the inequality

􏽚
b

a
p+ + q+( 􏼁(t)dt􏼠 􏼡 􏽚

b

a
α0p+(t) + c0q+(t) +|f(t)|􏼈 􏼉dt􏼠 􏼡

>
4

(b − a)2
,

(11)

holds, where α0 � (2 − α)αα/(2− α)22/(α− 2) > 0 and
c0 � (2 − c)cc/(2− c)22/(c− 2) > 0.

We find that in [36], the authors studied the case
0< c< 1< α< 2 of equation (10). It will be interesting to
prove Lyapunov-type inequalities for equation (10) or other
equation when α and c have other relation. Motivated by
[36], in this paper, we will establish a Lyapunov-type in-
equality for the nonlinear second-order boundary value
problem of the form

p(t) u′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α− 2

u′􏼐 􏼑′ − λq(t)|u|
β− 2

u + λr(t)|u|
c− 2

u + h(t)|u|
α− 2

u � 0, t ∈ [a, b], (12)

u(a) � u(b) � 0, u(t)≠ 0, t ∈ (a, b), (13)

where p, q, r, h ∈ C([a, b],R) such that p(t)> 0, q(t)> 0,
r(t)> 0 for t ∈ [a, b], 1< α< c< β, and λ≥ 0 is a real pa-
rameter, and

p(t) u′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
α− 2

u′􏼐 􏼑′ + λ q(t) u′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
β−2

u′􏼒 􏼓
′ + λr(t)|u|

c− 2
u

+ h(t)|u|
α− 2

u � 0, t ∈ [a, b],

(14)

with the boundary condition (13), where p, q, r, h ∈
C([a, b],R) such that p(t)> 0, q(t)> 0, r(t)> 0 for
t ∈ [a, b], 1< α< c< β, and λ≥ 0 is a real parameter. Our
results extend and compliment the results of [29, 36].

2. Main Results

Lemma 1. If u is differential on [a, b] satisfying u(a) �

u(b) � 0 and u(t)≠ 0 for t ∈ (a, b), then

sup
a≤t≤b

|u(t)|≤
1
2

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt. (15)

Proof. Since u is differential on [a, b] satisfying
u(a) � u(b) � 0, then we have

u(t) �
1
2

􏽚
t

a
u′(s)ds −

1
2

􏽚
b

t
u′(s)ds, t ∈ [a, b]. (16)

So,

|u(t)|≤
1
2

􏽚
t

a
u′(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds +

1
2

􏽚
b

t
u′(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds �

1
2

􏽚
b

a
u′(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds,

t ∈ [a, b].

(17)

+erefore, (15) holds. □

Lemma 2 (see [13]). Let A> 0, B> 0, and 1< α< c< β be
given. /en, for each x≥ 0,

Ax
c

− Bx
β ≤

A(β − c)

β − α
(β − α)B

(c − α)A
􏼠 􏼡

(c− α)/(c−β)

x
α
, (18)

holds.
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Theorem 5. Assume u is a solution of equation (12) satisfying
the boundary conditions (13). /en,

λ
2α

c − α
β − α

􏼠 􏼡

(c− α)/(β−c)β − c

β − α
􏽚

b

a
r
β− α

(t)q
α− c

(t)􏽨 􏽩
1/(β− c)

dt

+
1
2α

􏽚
b

a
h

+
(t)dt≥ 􏽚

b

a
p
1/(1− α)

(t)dt􏼠 􏼡

1− α

,

(19)

where h+(t) :� max h(t), 0{ }.

Proof. Multiplying (12) by u(t) and integrating over [a, b],
yields:

􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α− 2

u′(t)􏼐 􏼑′u(t)dt − λ􏽚
b

a
q(t)|u(t)|

βdt

+ λ􏽚
b

a
r(t)|u(t)|

cdt + 􏽚
b

a
h(t)|u(t)|

αdt � 0.

(20)

Using integration by parts to the first integral on the left-
hand side of (20) and from (13), we have

− 􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt − λ􏽚

b

a
q(t)|u(t)|

βdt + λ􏽚
b

a
r(t)|u(t)|

cdt

+ 􏽚
b

a
h(t)|u(t)|

αdt � 0.

(21)

+en, we obtain

− 􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt − λ􏽚

b

a
q(t)|u(t)|

βdt + λ􏽚
b

a
r(t)|u(t)|

cdt

+ 􏽚
b

a
h

+
(t)|u(t)|

αdt≥ 0,

(22)

i.e.,

􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt≤ λ􏽚

b

a
r(t)|u(t)|

cdt − λ􏽚
b

a
q(t)|u(t)|

βdt

+ 􏽚
b

a
h

+
(t)|u(t)|

αdt.

(23)

By using Hölder’s inequality with indices
(1/τ) + (1/ρ) � 1,

􏽚
b

a
|f(t)g(t)|dt≤ 􏽚

b

a
|f(t)|

τdt􏼠 􏼡

1/τ

􏽚
b

a
|g(t)|

ρdt􏼠 􏼡

1/ρ

,

(24)

with f(t) � p1/α (t)|u′(t)|, g(t) � p− 1/α(t), τ � α, and
ρ � (α/α − 1), we obtain that

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt≤ 􏽚

b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt􏼠 􏼡

1/α

􏽚
b

a
p
1/(1− α)

(t)dt􏼠 􏼡

(α− 1/α)

,

(25)

i.e.,

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

􏽚
b

a
p
1/(1−α)

(t)dt􏼠 􏼡

α−1 ≤ 􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt. (26)

On the contrary, from Lemma 1, we obtain

􏽚
b

a
h

+
(t)|u(t)|

αdt≤ sup
a≤t≤b

|u(t)|􏼠 􏼡

α

􏽚
b

a
h

+
(t)dt

≤
1
2α

􏽚
b

a
h

+
(t)dt 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

.

(27)

+en, from (23), (26), and (27), we obtain

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

􏽚
b

a
p
1/(1−α)

(t)dt􏼠 􏼡

α−1 ≤ 􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt

� λ 􏽚
b

a
r(t)|u(t)|

cdt − 􏽚
b

a
q(t)|u(t)|

βdt􏼢 􏼣 + 􏽚
b

a
h

+
(t)|u(t)|

2dt

≤ λ􏽚
b

a
r(t)|u(t)|

c
− q(t)|u(t)|

β
􏽨 􏽩dt

+
1
2α

􏽚
b

a
h

+
(t)dt 􏽚

b

a
|u′(t)|dt􏼠 􏼡

α

.

(28)
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For the first integral on the right-hand side of (28),
inequality (18) in Lemma 2 with A � r(t), B � q(t), and x �

|u(t)|≥ 0 for t ∈ [a, b] implies that

r(t)|u(t)|
c

− q(t)|u(t)|
β ≤ r

(β− α)/(β−c)
(t)q

(α− c)/(β−c)
(t)

·
c − α
β − α

􏼠 􏼡

(c− α)/(β−c)β − c

β − α
|u(t)|

α
.

(29)

By (28) and (29), we obtain

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

􏽚
b

a
p
1/(1−α)

(t)dt􏼠 􏼡

α−1 ≤ λ􏽚
b

a
r
β− α

(t)q
α− c

(t)􏼐 􏼑
1/(β− c) c − α

β − α
􏼠 􏼡

(c− α)/(β−c)β − c

β − α
|u(t)|

α⎡⎣ ⎤⎦dt +
1
2α

􏽚
b

a
h

+
(t)dt 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

.

(30)

From Lemma 1, we have

sup
a≤t≤b

|u(t)|􏼠 􏼡

α

≤
1
2α

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

. (31)

In view of (30) and (31), we obtain that

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

􏽚
b

a
p
1/(1−α)

(t)dt􏼠 􏼡

α−1

≤
λ
2α

􏽚
b

a
r
β− α

(t)q
α− c

(t)􏼐 􏼑
1/(β− c) c − α

β − α
􏼠 􏼡

(c− α)/(β−c)β − c

β − α
⎡⎣ ⎤⎦dt 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

+
1
2α

􏽚
b

a
h

+
(t)dt 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

.

(32)

Since 􏽒
b

a
|u′(t)|dt> 0 (in fact, if 􏽒

b

a
|u′(t)|dt � 0, we have

u′(t) � 0 for t ∈ [a, b]. By condition (13), we obtain u(t) � 0
for t ∈ [a, b], which contradicts to u(t)≠ 0, t ∈ [a, b]), di-
viding both sides of (32) by (􏽒

b

a
|u′(t)|dt)α, we obtain

λ
2α

􏽚
b

a
r
β− α

(t)q
α− c

(t)􏼐 􏼑
1/(β− c) c − α

β − α
􏼠 􏼡

(c− α)/(β−c)β − c

β − α
⎡⎣ ⎤⎦dt

+
1
2α

􏽚
b

a
h

+
(t)dt≥ 􏽚

b

a
p
1/(1− α)

(t)dt􏼠 􏼡

1− α

,

(33)

which also leads to (19). +e proof is complete.
If we take α � 2 and λ � 1 in inequality (19), we obtain

the following result. □

Corollary 1. Assume u is a solution of equation

p(t)u′( 􏼁′ − q(t)|u|
β− 2

u + r(t)|u|
c− 2

u + h(t)u � 0, t ∈ [a, b],

(34)

satisfying boundary condition (13). /en,

1
4

c − 2
β − 2

􏼠 􏼡

(c− 2)/(β−c)β − c

β − 2
􏽚

b

a
r
β− 2

(t)q
2− c

(t)􏽨 􏽩
1/(β− c)

dt

+
1
4

􏽚
b

a
h

+
(t)dt≥ 􏽚

b

a
p

− 1
(t)dt􏼠 􏼡

− 1

,

(35)

where h+(t) :� max h(t), 0{ }.

Theorem 6. Assume u is a solution of equation (14) satisfying
boundary condition (13). /en,
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λ
1
2

􏼒 􏼓
c(β− α)/(β−c) c − α

β − α
􏼠 􏼡

(c− α)/(β−c)β − c

β − α
,

· 􏽚
b

a
q
1/(1− β)

(t)dt􏼠 􏼡

(1− β)(c− α)/(c−β)

􏽚
b

a
r(t)dt􏼠 􏼡

(β− α)/(β−c)

+
1
2α

􏽚
b

a
h

+
(t)dt

≥ 􏽚
b

a
p
1/(1− α)

(t)dt􏼠 􏼡

1− α

,

(36)

where h+(t) :� max h(t), 0{ }. Proof. Multiplying (14) by u(t) and integrating over [a, b]

yields

􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
α− 2

u′(t)􏼐 􏼑′u(t)dt + λ􏽚
b

a
q(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
β− 2

u′(t)􏼒 􏼓
′u(t)dt + λ􏽚

b

a
r(t)|u(t)|

cdt + 􏽚
b

a
h(t)|u(t)|

αdt � 0. (37)

Using integration by parts to the first and second in-
tegrals on the left-hand side of (37) and from (13), we have

− 􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt − λ􏽚

b

a
q(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt + λ􏽚

b

a
r(t)|u(t)|

cdt + 􏽚
b

a
h(t)|u(t)|

αdt � 0, (38)

i.e.,

􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt

� λ 􏽚
b

a
r(t)|u(t)|

cdt − 􏽚
b

a
q(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt􏼢 􏼣 + 􏽚

b

a
h(t)|u(t)|

αdt

≤ λ 􏽚
b

a
r(t)|u(t)|

cdt − 􏽚
b

a
q(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt􏼢 􏼣 + 􏽚

b

a
h

+
(t)|u(t)|

αdt.

(39)

By using Hölder’s inequality (24) with f(t) � q1/β

(t)|u′(t)|, g(t) � q− 1/β(t), τ � β, and ρ � (β/β − 1), we ob-
tain that

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt≤ 􏽚

b

a
q(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt􏼠 􏼡

1/β

􏽚
b

a
q
1/(1− β)

(t)dt􏼠 􏼡

(β− 1/β)

,

(40)

i.e.,

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

β

􏽚
b

a
q
1/(1−β)

(t)dt􏼠 􏼡

β−1 ≤ 􏽚
b

a
q(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt. (41)

From (26), (39), (41), and Lemma 1, we obtain
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􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

􏽚
b

a
p
1/(1−α)

(t)dt􏼠 􏼡

α−1 ≤ 􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt

� λ 􏽚
b

a
r(t)|u(t)|

cdt − 􏽚
b

a
q(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt􏼢 􏼣 + 􏽚

b

a
h

+
(t)|u(t)|

αdt

≤ λ 􏽚
b

a
r(t)|u(t)|

cdt −

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼐 􏼑

β

􏽚
b

a
q
1/(1−β)

(t)dt􏼠 􏼡

β−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 􏽚

b

a
h

+
(t)|u(t)|

αdt

≤ λ sup
a≤t≤b

|u(t)|􏼠 􏼡

c

􏽚
b

a
r(t)dt −

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

β

􏽚
b

a
q
1/(1−β)

(t)dt􏼠 􏼡

β−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 􏽚

b

a
h

+
(t)|u(t)|

αdt

≤ λ
1
2

􏼒 􏼓
c

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

c

􏽚
b

a
r(t)dt −

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

β

􏽚
b

a
q
1/(1−β)

(t)dt􏼠 􏼡

β−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 􏽚
b

a
h

+
(t)|u(t)|

αdt.

(42)

For the right-hand side of (42), inequality (18) in Lemma
2 with A � (1/2)c 􏽒

b

a
r(t)dt, B � (􏽒

b

a
q1/(1− β)(t)dt)1− β, and

x � 􏽒
b

a
|u′(t)|dt> 0 implies that

1
2

􏼒 􏼓
c

􏽚
b

a
r(t)dt 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

c

− 􏽚
b

a
q
1/(1− β)

(t)dt􏼠 􏼡

1− β

· 􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

β

≤
1
2

􏼒 􏼓
c(β− α)/(β−c)

􏽚
b

a
r(t)dt􏼠 􏼡

(β− α)/(β−c)

·
c − α
β − α

􏼠 􏼡

(c− α)/(β−c)β − c

β − α
·

· 􏽚
b

a
q
1/(1− β)

(t)dt􏼠 􏼡

(1− β)(c− α)/(c−β)

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

.

(43)

From (27), (42), and (43), we have

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

􏽚
b

a
p
1/(1−α)

(t)dt􏼠 􏼡

α−1

≤ λ
1
2

􏼒 􏼓
c(β− α)/(β−c)

􏽚
b

a
r(t)dt􏼠 􏼡

(β− α)/(β−c)

·
c − α
β − α

􏼠 􏼡

(c− α)/(β−c)β − c

β − α
·

· 􏽚
b

a
q
1/(1− β)

(t)dt􏼠 􏼡

(1− β)(c− α)/(c−β)

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

·
1
2α

􏽚
b

a
h

+
(t)dt 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

.

(44)

+us, dividing both sides of (29) by (􏽒
b

a
|u′(t)|dt)α, we

obtain

6 Discrete Dynamics in Nature and Society



λ
1
2

􏼒 􏼓
c(β− α)/(β−c) c − α

β − α
􏼠 􏼡

(c− α)/(β−c)β − c

β − α
,

􏽚
b

a
q
1/(1− β)

(t)dt􏼠 􏼡

(1− β)(c− α)/(c−β)

􏽚
b

a
r(t)dt􏼠 􏼡

(β− α)/(β−c)

+
1
2α

􏽚
b

a
h

+
(t)dt ≥ 􏽚

b

a
p
1/(1− α)

(t)dt􏼠 􏼡

1− α

,

(45)

which also leads to (36). +e proof is complete. □

Remark 1. We note that when λ � 0, α � p + 1, and (5) can
be obtained from +eorems 5 and 6, respectively.

If we take α � 2 and λ � 1 in inequality (36), we obtain
the following result.

Corollary 2. Assume u is a solution of equation

p(t)u′( 􏼁′ + q(t) u′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
β− 2

u′􏼒 􏼓
′ + r(t)|u|

c− 2
u + h(t)|u|

α− 2
u � 0,

t ∈ [a, b],

(46)

satisfying boundary condition (13). /en,

1
2

􏼒 􏼓
c(β− 2)/(β−c) c − 2

β − 2
􏼠 􏼡

(c− 2)/(β−c)β − c

β − 2
,

· 􏽚
b

a
q
1/(1− β)

(t)dt􏼠 􏼡

(1− β)(c− 2)/(c−β)

· 􏽚
b

a
r(t)dt􏼠 􏼡

(β− 2)/(β−c)

+
1
4

􏽚
b

a
h

+
(t)dt

≥ 􏽚
b

a
p

− 1
(t)dt􏼠 􏼡

− 1

,

(47)

where h+(t) :� max h(t), 0{ }.

Theorem 7. Assume u is a solution of equation (14) satisfying
boundary condition (13). /en,

λ
1
2

􏼒 􏼓
c(β− α)/(β−c) (b − a)β− 1(c − α)

q(β − α)
􏼠 􏼡

(c− α)/(β−c)
β − c

β − α
,

􏽚
b

a
r(t)dt􏼠 􏼡

(β− α)/(β−c)

+
1
2α

􏽚
b

a
h

+
(t)dt≥p(b − a)

1− α
,

(48)

where p :� min p(t): t ∈ [a, b]􏼈 􏼉, q :� min q(t): t ∈ [a, b]􏼈 􏼉,
and h+(t) :� max h(t), 0{ }.

Proof. From the proof of +eorem 6, we have (39) holds. By
(39) and Lemma 1, we obtain

p 􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt � min

a≤t≤b
p(t) · 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt

≤ 􏽚
b

a
p(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt

� λ 􏽚
b

a
r(t)|u(t)|

cdt − 􏽚
b

a
q(t) u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt􏼢 􏼣 + 􏽚

b

a
h

+
(t)|u(t)|

αdt

≤ λ 􏽚
b

a
r(t)|u(t)|

cdt − min
a≤t≤b

q(t) 􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt􏼢 􏼣 + 􏽚

b

a
h

+
(t)|u(t)|

αdt

≤ λ sup
a≤t≤b

|u(t)|􏼠 􏼡

c

􏽚
b

a
r(t)dt − q 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt􏼢 􏼣 + 􏽚

b

a
h

+
(t)|u(t)|

αdt

≤ λ
1
2

􏼒 􏼓
c

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

c

􏽚
b

a
r(t)dt − q 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt􏼢 􏼣

+ 􏽚
b

a
h

+
(t)|u(t)|

αdt.

(49)
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By using Hölder’s inequality (24) with
f(t) � |u′(t)|, g(t) � 1, τ � α,β and ρ � (α/α − 1), (β/β − 1),

respectively, we obtain that

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt≤ 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt􏼠 􏼡

1/α

(b − a)
(α− 1)/α

,

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt≤ 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt􏼠 􏼡

1/β

(b − a)
(β− 1)/β

.

(50)

+erefore,

(b − a)
1− α

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

≤ � 􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
αdt, (51)

(b − a)
1− β

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

β

≤ 􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
βdt. (52)

From (49), (51), and (52), we have

p(b − a)
1− α

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

≤ λ
1
2

􏼒 􏼓
c

􏽚
b

a
r(t)dt 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

c

􏼢

− q(b − a)
1− β

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

β
⎤⎦

+ 􏽚
b

a
h

+
(t)|u(t)|

αdt.

(53)

For the right-hand side of (53), inequality (18) in Lemma
2 with A � (1/2)c 􏽒

b

a
r(t)dt, B � q(b − a)1− β, and

x � 􏽒
b

a
|u′(t)|dt> 0 implies that

1
2

􏼒 􏼓
c

􏽚
b

a
r(t)dt 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

c

− q(b − a)
1− β

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

β

≤
1
2

􏼒 􏼓
c(β− α)/(β−c)

􏽚
b

a
r(t)dt􏼠 􏼡

(β− α)/(β−c)
(b − a)β− 1(c − α)

q(β − α)
􏼠 􏼡

(c− α)/(β−c)

·
β − c

β − α
􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

.

(54)

From (53) and (54), we have

p(b − a)
1− α

􏽚
b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

≤ λ
1
2

􏼒 􏼓
c(β− α)/(β−c)

􏽚
b

a
r(t)dt􏼠 􏼡

(β− α)/(β−c)
(b − a)β− 1(c − α)

q(β − α)
􏼠 􏼡

(c− α)/(β−c)

⎡⎢⎢⎣

·
β − c

β − α
􏼣 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

+
1
2α

􏽚
b

a
h

+
(t)dt 􏽚

b

a
u′(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt􏼠 􏼡

α

.

(55)

+us, dividing both sides of (55) by (􏽒
b

a
|u′(t)|dt)α, we

obtain

λ
1
2

􏼒 􏼓
c(β− α)/(β−c)

􏽚
b

a
r(t)dt􏼠 􏼡

(β− α)/(β−c)
(b − a)β− 1(c − α)

q(β − α)
􏼠 􏼡

(c− α)/(β−c)

·
β − c

β − α
⎡⎢⎢⎣ ⎤⎥⎥⎦ +

1
2α

􏽚
b

a
h

+
(t)dt≥p(b − a)

1− α
, (56)

which also leads to (48). +e proof is complete. □

Remark 2. We note that when λ � 0, α � 2, and p(t) ≡ 1,
classical result (3) can be obtained from +eorems 5–7,
respectively.

If we take α � 2 and λ � 1 in inequality (48), we obtain
the following result.

Corollary 3. Assume u is a solution of equation (46), sat-
isfying boundary condition (13). /en,
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1
2

􏼒 􏼓
c(β− 2)/(β−c) (b − a)β− 1(c − 2)

q(β − 2)
􏼠 􏼡

(c− 2)/(β−c)
β − c

β − 2

· 􏽚
b

a
r(t)dt􏼠 􏼡

(β− 2)/(β−c)

+
1
4

􏽚
b

a
h

+
(t)dt≥

p

b − a
,

(57)

where p :� min p(t): t ∈ [a, b]􏼈 􏼉, q :� min q(t): t ∈ [a, b]􏼈 􏼉,
and h+(t) :� max h(t), 0{ }.
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