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In this work, by using the properties of the variable sum exdeg indices and analyzing the structure of the quasi-tree graphs and
unicyclic graphs, the minimum and maximum variable sum exdeg indices of quasi-tree graphs and quasi-tree graphs with perfect
matchings were presented; the minimum and maximum variable sum exdeg indices of unicyclic graphs with given pendant
vertices and cycle length were determined.

1. Introduction
Topological indices are mathematical descriptors reflecting
some structural characteristics of organic molecules on
molecular graphs, and they play an important role in
pharmacology, chemistry, etc. ([1–3]). For a graph G, the
variable sum exdeg index (denoted by SEIa) was proposed by
Vukičević [4] and is defined as

SEIa(G) � 􏽘
uv∈E(G)

a
dG(u)

+ a
dG(v)

􏼐 􏼑 � 􏽘
v∈V(G)

dG(v)a
dG(v)

,

(1)

where a ∈ (0, 1)∪ (1, +∞) and dG(v) is the degree of vertex
v. )is graph invariant has a good correlation with the
octanol-water partition coefficient [4] and was used to study
the octane isomers given by the International Academy of
Mathematical Chemistry (IAMC) [5–7]. Yarahmadi and
Ashrafi [8] proposed a polynomial form of this graph in-
variant which is applied in nanoscience. By using the
technique of majorization, Ghalavand and Ashrafi [9]
provided the maximal and minimal SEIa (for a> 1) of trees,
bicyclic graphs, unicyclic graphs, and tricyclic graphs.

All graphs considered in this work are simple connected
graphs. Let G � (V(G), E(G)) be a graph with the vertex set
V(G) and the edge set E(G). We denote by δ(G) the

minimum degree of G. We use NG(v) to denote the neigh-
bourhood of a vertex v and ni to denote the number of vertices
with degree i. Denoted by G − uv and G + uv the graphs arisen
fromG by deleting the edge uv ∈ E(G) and by adding the edge
uv ∉ E(G)(u, v ∈ V(G)), respectively. We denote by G − x

the subgraph of G resulted by deleting the vertex x(x ∈ V(G))

with its incident edges.We call G a quasi-tree graph if there is a
vertex x in G such that G − x is a tree. A unicyclic graph is the
graph with exactly one cycle. Let G1 and G2 be two vertex-
disjoint graphs. We denote by G1 ∨G2 the graph having vertex
set V(G1 ∨G2) � V(G1)∪V(G2) and edge set E(G1 ∨G2) �

E(G1)∪ E(G2)∪ xy | x ∈ V(G1), y ∈ V(G2)􏼈 􏼉. As usual, we
usePn, Sn, andCn to denote the n-vertex path, the n-vertex star,
and the n-vertex cycle, respectively.)e readers should refer for
other definitions to [10].

)ere aremany papers on themathematical properties of
topological indices, such as [11–14], since these invariants
can detect the desirable properties of chemical molecules. In
this work, we studied the mathematical properties of SEIa.
)is article is structured as follows. In Section 2, we present
some useful lemmas. In Section 3, we obtain the maximal
and minimal SEIa (for a> 1) of quasi-tree graphs. In Section
4, we determine the maximal and minimal SEIa (for a> 1) of
quasi-tree graphs with perfect matchings. In Section 5, we
derive the maximal and minimal SEIa (for a> 1) of unicyclic
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graphs with given cycle length. In Section 6, we find the
maximal and minimal SEIa (for a> 1) of unicyclic graphs
with given pendant vertex.

2. Preliminaries

Lemma 1 (see [6]). Let fa(x) � xax, where x≥ 1, a> 1.
 en

(i) fa(x) is strictly monotone increasing in x

(ii) fa
″(x)> 0 and fa(x) is strictly convex

By Lemma 1, we have Lemmas 2 and 3 immediately.

Lemma 2. Suppose G � (V(G), E(G)) is a connected graph,
then

(i) If e ∈ E(G), SEIa(G)> SEIa(G − e) for a> 1
(ii) If e � uv ∉ E(G), u, v ∈ V(G), SEIa(G)< SEIa (G +

e) for a> 1

Lemma 3. Let x1, y1, x2 and y2 be positive integers with x1 +

x2 � y1 + y2 and |y1 − y2|> |x1 − x2|.  en for a> 1, we
have

x1a
x1 + x2a

x2 <y1a
y1 + y2a

y2 . (2)

By simple calculation, Lemma 4 is immediate.

Lemma 4. Let

l(x) � fa(x) − fa(x − 1) � xa
x

− (x − 1)a
x− 1

, (3)

where a> 1, x≥ 2. en l(x) is strictly monotone increasing in x.

Lemma 5. Let

g(k) � (k + 1)a
k+1

+ 2(k − 2)a
2

− 3(k − 1)a
3
, (4)

where k≥ 3 and a> 1.  en g(k)> 0.

Proof. Note that

g′(k) � (k + 1)a
k+1ln a + a

k+1
− 3a

3
+ 2a

2
. (5)

g′′(k) � ln a 2a
k+1

+(k + 1)a
k+1ln a􏽨 􏽩> 0. (6)

So, g′(k)≥g′(3) � a4 − 3a3 + 2a2 + 4a4ln a. Let
h(a) � a4 − 3a3 + 2a2 + 4a4ln a, where a≥ 1. )en

h′(a) � a 8a
2

− 9a + 4􏼐 􏼑 + 16a
3ln a> 0. (7)

)us, g′(k)≥g′(3) � h(a)> h(1) � 0. So, g(k)≥ g(3) �

4a4 − 6a3 + 2a2 � 2a2(a − 1)(2a − 1)> 0 for a> 1. □

3. Variable Sum Exdeg Indices of Quasi-
Tree Graphs

Suppose G is a quasi-tree graph and x is a vertex in G such
that G − x is a tree. If dG(x) � 1, then G is a tree with

extremal variable sum exdeg index (for a> 1), that had been
presented in [6, 9]. )us, we always consider the case of
dG(x)≥ 2 in this section. Let.

QT(n) � H | H is a quasi − tree graph on􏼈 n vertices with
dG(x)≥ 2}.

Let Qn be the graph arisen from complete bipartite
graph K2,n− 2 by adding one edge between the two non-
adjacent vertices with degree n − 2, as shown in Figure 1.
We can easily obtain that SEIa(Qn) � 2(n − 1)an− 1+

2(n − 2)a2.

Lemma 6. Suppose G ∈ QT(n) such that G has the maximal
value of SEIa for a> 1. Let x ∈ V(G) such that G − x is a tree.
 en, δ(G)≥ 2 and dG(x) � n − 1.

Proof. If dG(x)< n − 1, then there exists z ∈ V(G) such that
xz ∉ V(G). Clearly, G + xz ∈ QT(n). In view of Lemma 2,
SEIa(G + xz)> SEIa(G), a contradiction.)erefore dG(x) �

n − 1, and it can be concluded that δ(G)≥ 2. □

Theorem 1. Let G ∈ QT(n), where n≥ 3.  en, for a> 1,

2na
2 ≤ SEIa(G)≤ 2(n − 2)a

2
+ 2(n − 1)a

n− 1
, (8)

with the left equality if and only if G � Cn and with the right
equality if and only if G � Qn.

Proof. By induction on n. When n � 3, it follows that G � C3
and (8) holds. Assume that n≥ 4 and (8) holds for
QT(n − 1).

First, we obtain the lower bound. If there is no pendant
vertex in G, since G ∈ QT(n), then there exists u ∈ V(G)

such that dG(u) � 2. Let NG(u) � v1, v2􏼈 􏼉. For v1v2 ∉ E(G),
let G′ � G − u + v1v2 ∈ QT(n − 1). By (1) and induction
hypothesis, for a> 1, we have

SEIa(G) � SEIa G′( 􏼁 + 2a
2

≥ 2(n − 1)a
2

+ 2a
2

� 2na
2
,

(9)

with equality holding only if G′ � Cn− 1. )is implies
G � Cn.

For v1v2 ∈ E(G), let G′′ � G − u ∈ QT(n − 1). By (i) of
Lemma 1 and induction hypothesis, for a> 1, we have

SEIa(G) � SEIa G′′( 􏼁 + 2a
2

+ dG v1( 􏼁a
dG v1( )

− dG v1( 􏼁 − 1( 􏼁a
dG v1( )− 1

+ dG v2( 􏼁a
dG v2( )

− dG v2( 􏼁 − 1( 􏼁a
dG v2( )− 1

> 2(n − 1)a
2

+ 2a
2

� 2na
2
.

(10)

Otherwise, there is at least one pendant vertex in G. Let
y ∈ V(G) and dG(y) � 1. )en, G − y ∈ QT(n − 1). We
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denote by z the vertex with yz ∈ E(G). It can be seen that
dG(z)≥ 2. If dG(z) � 2, then G − y≇Cn. By (1) and in-
duction hypothesis, for a> 1, we have

SEIa(G) � SEIa(G − y) + 2a
2 > 2(n − 1)a

2
+ 2a

2
� 2na

2
.

(11)

If dG(z)> 2, then by (1), (2), Lemma 4, and induction
hypothesis, for a> 1, it follows that

SEIa(G) � SEIa(G − y) + a + dG(z)a
dG(z)

− dG(z) − 1( 􏼁a
dG(z)− 1

≥ 2(n − 1)a
2

+ a + 3a
3

− 2a
2

� 2na
2

+ 3a
3

+ a − 2 · 2a
2

> 2na
2
.

(12)

Next, we obtain the upper bound. Choose G ∈ QT(n)

such that G has the maximum SEIa for a> 1. By Lemma 6,
δ(G)≥ 2. )en, there is a vertex v in G such that dG(v) � 2
since G is a quasi-tree graph. By Lemma 6, it follows that
G − v ∈ QT(n − 1). Denote NG(v) � w1, w2􏼈 􏼉. If
dG(w1) � dG(w2) � n − 1, then G − w1, w2􏼈 􏼉 has no edges.
)is implies that G � Qn. If one of the vertices w1, w2, say w1,
satisfies dG(w1)< n − 1, then G≇Qn. By (1), Lemma 1, and
induction hypothesis, we have

SEIa(G) � SEIa(G − v) + 2a
2

+ dG w1( 􏼁a
dG w1( ) − dG w1( 􏼁 − 1( 􏼁a

dG w1( )− 1

+ dG w2( 􏼁a
dG w2( ) − dG w2( 􏼁 − 1( 􏼁a

dG w2( )− 1

≤ 2(n − 3)a
2

+ 2a
2

+ 2(n − 2)a
n− 2

+ dG w1( 􏼁a
dG w1( ) − dG w1( 􏼁 − 1( 􏼁a

dG w1( )− 1

+ dG w2( 􏼁a
dG w2( ) − dG w2( 􏼁 − 1( 􏼁a

dG w2( )− 1

� 2(n − 2)a
2

+ 2(n − 1)a
n− 1

− 2(n − 1)a
n− 1

− 2(n − 2)a
n− 2

− dG w1( 􏼁a
dG w1( )􏼔􏼚

− dG w1( 􏼁 − 1( 􏼁a
dG w1( )− 1

+ dG w2( 􏼁a
dG w2( ) − dG w2( 􏼁 − 1( 􏼁a

dG w2( )− 1
􏼕􏼛

� SEIa Qn( 􏼁 − 2fa
′(ξ) − fa

′ η1( 􏼁 − fa
′ η2( 􏼁( 􏼁

� SEIa Qn( 􏼁 − fa
′(ξ) − fa

′ η1( 􏼁 + fa
′(ξ) − fa

′ η2( 􏼁􏼂 􏼃

< SEIa Qn( 􏼁,

(13)

where n − 2< ξ < n − 1, dG(w1) − 1< η1 <dG(w1),
dG(w2) − 1< η2 < dG(w2), and ξ > η1, ξ ≥ η2.

In [6], Vukičević obtained the minimal andmaximal SEIa
of trees on n vertices for a> 1.)e result is shown below. □

Theorem 2 (see [6]). Suppose T is a tree on n vertices, then
for a> 1,

2(n − 2)a
2

+ 2a≤ SEIa(T)≤ (n − 1)a
n− 1

+(n − 1)a, (14)

where the left equality holds only when G � Pn, and the right
equality holds only when G � Sn.

)us, by simple calculation, we can extend our result to
the whole quasi-tree graphs, as follows.

Theorem 3. Let G be an n-vertex quasi-tree graph.  en, for
a> 1,

2(n − 2)a
2

+ 2a≤ SEIa(G)≤ 2(n − 2)a
2

+ 2(n − 1)a
n− 1

,

(15)

where the left equality holds if and only if G � Pn and the right
equality holds if and only if G � Qn.

···

υ1 υ2

υ3 υ4 υn

Qn

Figure 1: )e graph Qn.
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4. Variable Sum Exdeg Indices of Quasi-Tree
Graphs with a Perfect Matching

Let T1 be the tree of order 2k − 1 arisen from Sk+1 by adding
a pendant edge to its k − 2 pendant vertices, as shown in
Figure 2. Let T2 be the tree of order 2k − 1 arisen from Sk by
adding a pendant edge to its every pendant vertex, as shown
in Figure 2. LetQT1(2k) � T1 ∨K1 andQT2(2k) � T2 ∨K1.

Lemma 7. Let k≥ 3 be positive integers.  en, for a> 1,

SEIa QT1(2k)( 􏼁> SEIa QT2(2k)( 􏼁. (16)

Proof. By (1) (2) and Lemma 4, for a> 1, we have

SEIa QT1(2k)( 􏼁 − SEIa QT2(2k)( 􏼁

� (2k − 1)a
2k− 1

+(k + 1)a
k+1

+ 2ka
2

+ 3(k − 2)a
3

− (2k − 1)a
2k− 1

− ka
k

− 2(k − 1)a
2

− 3(k − 1)a
3

� (k + 1)a
k+1

− ka
k

+ 2a
2

− 3a
3

≥ 4a
4

+ 2a
2

− 2 · 3a
3 > 0,

(17)

since k≥ 3. □

Theorem 4. Let G be a quasi-tree graph of order 2k with a
perfect matching, where k≥ 2.  en, for a> 1,

SEIa(G)≤ (2k − 1)a
2k− 1

+(k + 1)a
k+1

+ 3(k − 2)a
3

+ 2ka
2
,

(18)

with equality only when G � QT1(2k).

Proof. When k � 2, G ∈ G1, G2, G3,QT1(4)􏼈 􏼉 (as shown in
Figure 3). By Lemma 2, we have SEIa(QT1(4))> SEIa(Gi),
i� 1, 2, 3.

If k≥ 3, choose G such that G has the maximal value of
SEIa for a> 1. Assume that M is a perfect matching of G. We
can suppose that T � G − x is a tree since G are quasi-tree
graphs. Choose y ∈ V(T) such that dT(y) � max dT(u) |􏼈

u ∈ V(T)}. □

Claim 1. For any vertex v of T, xv ∈ E(G).
)e proof is similar to Lemma 6 (thus omitted).

Claim 2. For any vertex u of T except y, dT(u)≤ 2.
To the contrary, assume that there is y′ ∈ (V(T)\ y􏼈 􏼉)

such that dT(y′)≥ 3. Let NT(y) � u1, u2, . . . , ur􏼈 􏼉 and
NT(y′) � v1, v2, . . . , vs􏼈 􏼉, where r≥ s≥ 3. By Claim 1,
dG(y) � r + 1 and dG(y′) � s + 1. Since T is a tree, we
suppose that P is the unique path P from y to y′ in T.
Assume without loss of generality that u1, v1 ∈ V(P) (maybe
u1 � y′ or v1 � y ). Notice that |M∩ v2y′, v3y′, . . . ,􏼈

vsy′}|≤ 1. Without loss of generality, assume that

v3y′, . . . ,vsy′ ∉M. Let G′ � G − v3y′, . . . ,vsy′􏼈 􏼉 + v3y, . . . ,􏼈

vsy}. Clearly, G′ is also a quasi-tree graph of order 2k with a
perfect matching. By (1) and (2),

SEIa G′( 􏼁 − SEIa(G)

� (r + s − 1)a
r+s− 1

+ 3a
3

− (s + 1)a
s+1

− (r + 1)a
r+1 > 0,

(19)

a contradiction with the choice of the graph G.
By Claim 2, T is a tree with some pendant paths attached

to y.

Claim 3. dT(y)≥ 3.
On the contrary, assume that dT(y)≤ 2. By the choice of

y, dT(y)≥ 2, thus dT(y) � 2 and T is a path on 2k − 1
vertices. Denote T � x1x2 . . . x2k− 1. By Claim 1, xxi ∈ E(G),
i � 1, 2, . . . , 2k − 1{ }. It is not difficult to get that
SEIa(G) � (2k − 1)a2k− 1 + 3(2k − 3)a3 + 4a2. By Lemma 5,
for a> 1 and k≥ 3, we have

SEIa QT1(2k)( 􏼁 − SEIa(G)

� (k + 1)a
k+1

+(2k − 1)a
2k− 1

+ 3(k − 2)a
3

+ 2ka
2

− (2k − 1)a
2k− 1

− 3(2k − 3)a
3

− 4a
2

� (k + 1)a
k+1

− 3(k − 1)a
3

+ 2(k − 2)a
2 > 0,

(20)

a contradiction with the choice of the graph G.
We denote by P1, P2, . . . , Pt (t≥ 3) the paths attached to

y in T.

Claim 4. |E(Pi)|≤ 2 for 1≤ i≤ t in T.
To the contrary, suppose without loss of generality that

|E(P1)|≥ 3 in T. Denote P1 � y1y2 . . . yr, where y1 � y and
r≥ 4. )en, there is at least one edge yjyj+1 satisfying
yjyj+1 ∉M and j ∈ 2, 3, . . . , r − 1{ }. Let G′′ � G − yjyj+1
+yyj+1. Obviously, G′′ is also a quasi-tree graph of order 2k

with a perfect matching. By (1) and (2),

SEIa G′′( 􏼁 − SEIa(G)

� dG(y) + 1( 􏼁a
dG(y)+1

+ 2a
2

− dG(y)a
dG(y)

− 3a
3

� (t + 2)a
t+2

+ 2a
2

− (t + 1)a
t+1

− 3a
3 > 0,

(21)

a contradiction with the choice of the graph G.
Denote V1 � u ∈ V(T) | dT(u) � 1, uy ∈ E(G)􏼈 􏼉. Since

G has a perfect matching, by Claim 4, it follows that |V1| � 0
or |V1| � 2.

If |V1| � 0, then G � QT2(2k). If |V1| � 2, then
G � QT1(2k). By (16), for k≥ 3, SEIa(QT1(2k))> SEIa
(QT2(2k)). )erefore, G � QT1(2k).

By )eorem 3, )eorem 5 is obtained immediately.

Theorem 5. Suppose G is a quasi-tree graph of order 2k with
a perfect matching, where k≥ 2, then for a> 1,
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SEIa(G)≥ 4(k − 1)a
2

+ 2a, (22)

with equality if and only if G � P2k.

5. Variable Sum Exdeg Indices of Unicyclic
Graphs with Given Cycle Length

Let C1
n,l and C2

n,l (as shown in Figure 4) denote the graph
obtained from Cl by identifying its one vertex with the center
vertex of Sn− l+1 and the graph obtained from Cl by identi-
fying its one vertex with a pendant vertex of Pn− l+1,
respectively.

Theorem 6. Let U be an n-vertex unicyclic graph with cycle
length l≤ n − 1.  en, for a> 1,

SEIa(U)≤ (n − l + 2)a
n− l+2

+(n − l)a + 2(l − 1)a
2
, (23)

with equality only when U � C1
n,l.

Proof. Choose U such that U has the maximum SEIa for
a> 1. Suppose C is the only cycle in U. □

Claim 1. )ere is at most one vertex u ∈ V(C) with
dU(u)≥ 3 in U.

To the contrary, suppose that there exist two vertices
x, y ∈ V(C) such that dU(x)≥dU(y)≥ 3. )us, there exists
one vertex z ∈ NU(y), but z ∉ V(C). It is evident that
z ∉ NU(x). Let U′ � U − yz + xz. )en, C has no change
and U′ is also an n-vertex unicyclic graph with cycle length l.
By (1) and (2), it follows that

SEIa U′( 􏼁 − SEIa(U)

� dU(y) − 1( 􏼁a
dU(y)− 1

+ dU(x) + 1( 􏼁a
dU(x)+1

− dU(y)a
dU(y)

− dU(x)a
dU(x) > 0.

(24)

a contradiction with the choice of the graph U.

Claim 2. For v ∉ V(C), dU(v) � 1.

Assume, to the contrary, that there exists one vertex
v ∉ V(C) with dU(v) � d≥ 2. Denoted by P � x1x2 . . . xr

(where v � x1 and xr ∈ V(C)) the path from v to C. )en
NU(v)∩P � x2􏼈 􏼉. Since v ∉ V(C) and dU(v) � d≥ 2, it
follows that (NU(v)\ x2􏼈 􏼉)≠∅ and (NU(v)\ x2􏼈 􏼉)∩
NU(xr) � ∅. Denote (NU(v)\ x2􏼈 􏼉) � y1, y2, . . . ys􏼈 􏼉, where
s≥ 1. Let U′′ � U − vy1, vy2, . . . , vys􏼈 􏼉 + xry1, xry2, . . . ,􏼈

xrys}. )en, C has no change and U′′ is also an n-vertex
unicyclic graph with cycle length l. By (1) and (2), it follows
that

SEIa U′′( 􏼁 − SEIa(U)

� dU xr( 􏼁 + s( 􏼁a
dU xr( )+s

+ a − dU xr( 􏼁a
dU xr( )

− (s + 1)a
s+1 > 0,

(25)

a contradiction again.
By Claims 1 and 2, we have U � C1

n,l.

Theorem 7. Let U be a unicyclic graph of order n with cycle
length l≤ n − 1.  en, for a> 1,

SEIa(U)≥ 2(n − 2)a
2

+ 3a
3

+ a, (26)

with equality only when U � C2
n,l.

Proof. Choose U such that U has the minimum SEIa for
a> 1. Suppose C is the only cycle in U. □

Claim 3. U contains at most one pendant vertex.
Suppose that U contains at least two pendant vertices.

Let x, y ∈ V(U) be two pendant vertices. We denote by P �

z1z2 . . . zt (where x � z1, y � zt and t≥ 3) the path from x to
y with minimum length. )en, there is 1< i< t,
j ∈ 1, 2, . . . , i − 1{ } such that dU(zi)≥ 3 and dU(zj)≤ 2.
Obviously, zi− 1 ∉ NU(y).

Let U′ � U − zi− 1zi + zi− 1y. Since x ∉ V(C) and
dU(zi− 1)≤ 2, then zi− 1 ∉ V(C). )us C has no change and U′
is also an n-vertex unicyclic graph with cycle length l. By (1)
and (2), it follows that

G1

(a)

G2

(b)

G3

(c)

QT1(4)

(d)

Figure 3: )e graph G1, G2, G3 and QT1(4).

k − 2

T1

...

(a)

k − 1

T2

...

(b)

Figure 2: )e graph T1 and T2.
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SEIa U′( 􏼁 − SEIa(U)

� dU zi( 􏼁 − 1( 􏼁a
dU zi( )− 1

+ 2a
2

− dU zi( 􏼁a
dU zi( ) − a< 0,

(27)

a contradiction with the choice of the graph U.
Since l≤ n − 1, by Claim 3, U has exactly one pendant

vertex. )is implies U � C2
n,l.

6. Variable Sum Exdeg Index of Unicyclic
Graphs with Given Pendant Vertex

Let U1
n,p (as shown in Figure 5) be the graph obtained from

Cn− p by identifying its one vertex with the center vertex of
Sp+1.

Let U2
n,p be the n-vertex unicyclic graphs having p

pendant vertices and degree sequence (b + 2, . . . , b + 2􏽼√√√√√√􏽻􏽺√√√√√√􏽽
n− b(n− p)

,

b + 1, . . . , b + 1􏽼√√√√√√􏽻􏽺√√√√√√􏽽
b(n− p)− p

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
p

), where b � 􏼄n/(n − p)􏼅.

Theorem 8. Let U be an n-vertex unicyclic graph with p≥ 1
pendant vertices.  en, for a> 1,

SEIa(U)≤ (p + 2)a
p+2

+ 2(n − p − 1)a
2

+ pa, (28)

the equality holds only when U � U1
n,p.

Proof. Choose U such that U has the maximum SEIa for
a> 1. □

Claim 1. )ere is at most one vertex u with dU(u)≥ 3 in U.
Assume that there exist two vertices x, y ∈ V(U) with

dU(y)≥ dU(x)≥ 3. Let P � x1x2, . . . , xr (where x � x1,
y � xr) be the path from x to y with minimum length. Since
dU(x)≥ 3, there exists a vertex z ∈ (NU(x)\

( x2􏼈 􏼉))∪NU(y). Let U′ � U − xz + yz. Clearly, U′ is also
an n-vertex unicyclic graph with p pendant vertices. In view
of (1) and (2), it follows that

SEIa U′( 􏼁 − SEIa(U)

� dU(x) − 1( 􏼁a
dU(x)− 1

dU(y) + 1( 􏼁a
dU(y)+1

− dU(x)a
dU(x)

− dU(y)a
dU(y) > 0,

(29)

a contradiction with the choice of the graph U.
Since p≥ 1, by Claim 1, we have U � U1

n,p.

Theorem 9. Let U be an n-vertex unicyclic graph with p≥ 1
pendant vertices.  en, for a> 1,

SEIa(U)≥ [n − (n − p)b](b + 2)a
b+2

+[(n − p)b − p](b + 1)a
b+1

+ pa,
(30)

where b � 􏼄n/(n − p)􏼅, with equality if and only if U � U2
n,p.

Proof. Choose U such that U has the minimum SEIa for
a> 1. Suppose C is the only cycle in U. □

Claim 2. If x andy are two nonpendant vertices of U, then
|dU(x) − dU(y)|≤ 1.

Assume that there are two vertices x, y ∈ V(U) with
|dU(x) − dU(y)|≥ 2. Suppose without loss of generality that
dU(x) − 2≥ dU(y)≥ 2. Since dU(x)≥ 4, then there exist at
least two vertices z1, z2 ∈ (NU(x)/V(C)). Furthermore,
since U is a unicyclic graph, NU(y)∪ y􏼈 􏼉 contains at most
one of z1, z2. Set z ∈ z1, z2􏼈 􏼉 and z ∉ (NU(y)∪ y􏼈 􏼉). Let
U′ � U − xz + yz. Note that dU′(y) � dU(y) + 1≥ 3 and
dU′(x) � dU(x) − 1≥ 3, so U is also a unicyclic graph with p

pendant vertices. In view of (1) and (2), it follows that

SEIa U′( 􏼁 − SEIa(U)

� dU(y) + 1( 􏼁a
dU(y)+1

+ dU(x) − 1( 􏼁a
dU(x)− 1

− dU(y)a
dU(y)

− dU(x)a
dU(x) < 0,

(31)

a contradiction with the choice of the graph U.
By Claim 2, we can find that U has degree 1, k, or k + 1,

where k≥ 2. Hence

p + nk + nk+1 � n. (32)

Since U is a unicyclic graph, then p≤ n − 3 and

p + knk +(k + 1)nk+1 � 2n. (33)

Cl

υ1

υ2

υn–l

C1
n,l

...

(a)

υ1 υ2 υn–l
Cl

C2
n,l

·· · ·

(b)

Figure 4: )e graphs C1
n,l and C2

n,l.

Cn−p

υ1

υ2

υp

...

Figure 5: )e graph U1
n,p.
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By (32) and (33), we have k � n/(n − p) + nk/(n − p). By
(32), nk ≤ n − p, hence k � 􏼄n/(n − p)􏼅 + 1.

We also can get that nk � 􏼄n/(n − p)􏼅( n − p) −

p, nk+1 � n − 􏼄n/(n − p)􏼅( n − p).
So, U has the degree sequence

k + 1, . . . , k + 1􏽼√√√√√√􏽻􏽺√√√√√√􏽽
nk+1

, k, . . . , k􏽼√√√􏽻􏽺√√√􏽽
nk

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
p

⎛⎝ ⎞⎠

� b + 2, . . . , b + 2􏽼√√√√√√􏽻􏽺√√√√√√􏽽
n− b(n− p)

, b + 1, . . . , b + 1􏽼√√√√√√􏽻􏽺√√√√√√􏽽
b(n− p)− p

, 1, . . . , 1􏽼√√√􏽻􏽺√√√􏽽
p

⎛⎝ ⎞⎠,

(34)

where b � 􏼄n/(n − p)􏼅.

7. Results and Discussion

As one of the 148 topological indices that turned out good
predictive properties, SEIa has a good correlation with the
octanol-water partition coefficient. )e mathematical
properties of SEIa are worth studying [6] since this invariant
can detect the desirable properties of chemical molecules.
)erefore, our results may be used to predict the extremal
properties of organic molecules.

8. Conclusions

In this work, we present the minimum and maximum SEIa
(a> 1) of quasi-tree graphs and quasi-tree graphs with
perfect matchings and determine the minimum and max-
imum SEIa (a> 1) of unicyclic graphs with given pendant
vertices and cycle length. We will consider the bicyclic
graphs with some graph parameters for further study.
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