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In this paper, we investigate an approximation of the Euler equation by the second-grade fluid equations in Rd(d � 2, 3). +e
convergence in Hm of a sequence of solutions to the second-grade fluid equations in a uniform interval is proven as both the
viscosity coefficient (]) and filter parameter (α) tend to zero with an initial velocity in Hm.

1. Introduction

Let Ω ⊂ Rd(d � 2, 3) be a simply connected domain and
T> 0. +e second-grade fluid equations are as follows:

vt − ]Δu + u · ∇v + 
d

i�1
vi∇ui + ∇p � 0, inΩ ×(0, T),

v � u − α2Δu,

∇ · u � 0, inΩ ×(0, T),

u | t�0 � uα,]
0 , in,Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where u is the velocity, p is the pressure, ] is the viscosity
coefficient, and α is the filter parameter. We impose the
nonslip boundary conditions, i.e.,

u � 0, in zΩ ×(0, T). (2)

It is believed that equation (1) is an interpolation be-
tween the Navier–Stokes (α� 0) and Euler-α equation
(]� 0). When the filter parameter (α) and viscosity (]) are
very small, we expect the second-grade fluid system (1) to
behave like the Euler system:

ztu + u · ∇u + ∇p � 0, inΩ ×(0, T),

∇ · u � 0, inΩ ×(0, T),

u | t�0 � u0, inΩ,

⎧⎪⎪⎨

⎪⎪⎩
(3)

with the following no-penetration boundary condition:

u · n � 0, in zΩ ×(0, T), (4)

where n is the outward-pointing normal unit vector of zΩ.
It is well known that the zero-viscosity limit of the

incompressible Navier–Stokes equations, which is
expressed by (1) with a vanishing filter parameter (i.e.,
α � 0), is one of the most challenging open problems in
fluid mechanics (see [1–4] and the references therein).
+is is because of the formation of a boundary layer that
appears due to the different boundary conditions between
the Navier–Stokes and Euler equations. Fortunately,
Lopes Filho et al. [5] proved that the solution of the 2D
Euler-α equation (]� 0) given by (1) with a no-slip
boundary condition converges to the solution of the Euler
equations (3) with no-penetration boundary conditions,
despite the presence of a boundary layer. Lopes Filho et al.
also obtained an approximation of the 2D Euler equation
(3) using the second-grade fluid equation (1) [6]. +ey
expected their work to shed light into the contrast be-
tween the vanishing α limit of the Euler-α and the van-
ishing viscosity limit of the Navier–Stokes system in the
presence of a boundary layer. In their paper [7], Su and
Zang selected a radical symmetric example such that the
solution of the second-grade fluid equation converged to
the solution of the Euler equation as α and ] tended to zero
in L2-space.
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In this paper, we only examine with the vanishing α and
vanishing viscosity limits in the whole space, i.e.,
Ω � Rd(d � 2, 3). For the case of α� 0 in (1), the inviscid
limit in the whole space has been examined by several
authors, e.g., Swann [8], Kato [9], Constantin [10], and
Masmoudi [4]. In these previous results, they proved the
convergence in Hm space, as long as a solution of the Euler
system exists. For the case of Euler-α (i.e., ]� 0), Linshiz and
Titi [11] verified that the convergence of the Euler-α in the
whole space was guaranteed using the same technique used
by Masmoudi [4]. Zang [12] extended these results of the
Euler-α equation to periodic boundary conditions using a
different method. In this paper, we focus on the uniform
estimates on the viscosity and filter parameter. It is easy to
see these estimates on the viscosity for Navier–Stokes
equations by Swann [8] and Masmoudi [4]. However, we
discuss on a priori estimates on the filter parameter α by the
special structure of second-grade fluid equations.

+e remainder of this article is divided into two sections.
In Section 2, we introduce basic notation and the existence
theorem of the second-grade fluid equations, and we present
a technique lemma. In Section 3, we present the main results
of this paper and provide a proof.

2. Existence Theorem and Technique Lemma

First, we let (·, ·) and ‖ · ‖ denote the scalar product and the
norm in L2(Rd), respectively, and let (·, ·)m and ‖ · ‖m be the
scalar product and the norm in Hm(Rd), respectively. For
any f, g ∈ Hm(Rd),

(f, g)m � 
|α|≤m

D
α
f, D

α
g( , (5)

where Dα is a multi-index derivation, α � (α1, . . . , αd).
We denote by H and Vm the closures of C∞0 (Rd) that are

divergence free in L2(Rd) and Hm(Rd)(m≥ 1), respectively.
By the Sobolev +eorem, Vm is embedded in H.

+e well-posedness of (1) has been established previously
[13, 14], and the existence and well-posedness of (3) have
been determined by many mathematicians (see [15–17] and
the references therein). +e following theorem can be
obtained.

Theorem 1. Let u0 ∈ Vm, (m> s0 � (d/2) + 1). &ere exists
a T∗ � T∗(‖u0‖s0

)> 0 such that, for any T<T∗, there exists a
unique solution u ∈ C([0, T]; Vm)∩AC([0, T]; Vm− 1) of
problem (3) with an initial velocity u0, where AC[0, T]

represents the class of the absolutely continuous functions on
[0, T]. In two dimensions, the solution exists globally in time
(T∗ �∞). Similar results hold for the second-grade fluid
equations (1) with a maximal interval of existence of the
three-dimensional second-grade fluid equations, which are
also dependent on α and ], and the solution uα,] satisfies

u
α,]

(t)
����

����
2

+ α2 ∇uα,]
(t)

����
����
2

+ ]
t

0
∇uα,]

(τ)
2dτ

����
���� � u0

����
����
2

+ α2 ∇u0
����

����
2
,

(6)

for every t ∈ [0, T].

+roughout this paper, the following lemma plays a
crucial role in proving the convergence of the second-grade
fluid equations to the Euler equations in Hm.

Lemma 1. Let m> s0 and both u ∈ Hm+3 and v ∈ Hm+3 be
divergence free vectors. We can obtain the following estimates:

((u · ∇)Δu, v)m


≤C‖u‖m‖∇u‖m‖v‖m+3, (7)



d

j�1
ΔujΔuj, v 

m




≤C‖u‖m‖∇u‖m‖v‖m+2. (8)

Assuming that m> s0 + 1, the following estimates can be
obtained:

((u · ∇)Δu, u)m


 + 

d

j�1
ΔujΔuj, u 

m




≤C‖u‖Hm ‖∇u‖

2
m.

(9)

Proof. First, we examine estimates (7) and (8). Since m≥ s0,



d

j�1
Δuj∇uj, v 

m





≤ 
d

j�1


|β|�2
Δuj∇uj, z

2β
v 

m− 2




+ 

d

j�1
Δuj∇uj, v 1





≤ 
d

j�1
Δuj∇uj

�����

�����m− 2
‖v‖m+2 +‖∇u‖1‖Δu‖1‖v‖2 +‖u‖

2
2‖v‖1

≤C‖∇u‖m‖Δu‖m− 2‖v‖m+2 +‖∇u‖1‖Δu‖1‖v‖2 +‖u‖
2
2‖v‖1

≤C‖u‖m‖∇u‖m‖v‖m+2.

(10)

Integrating by parts and using a similar approach as in
the proof above, the following is obtained:

(u · ∇(Δu), v)m


 � (u · ∇v,Δu)m




≤ ‖uΔu‖m− 2‖∇v‖m+2 +|uΔu|2‖∇v‖1

≤C‖u‖m‖∇u‖m‖∇v‖m+2.

(11)

+us, it is sufficient to prove that (9) is true, since

((u · ∇)Δu, u)Hm � 
m

|α|�0

Rd

D
α
(u · ∇(Δu))D

α
udx

� − 
m

|α|�0

β≤α

α

β
   

d

l�1
D

β
zlu · ∇ D

α− β
zlu D

α
udx ⎛⎝

− 
m

|α|�0


0<β≤ α

α

β
   

d

l�1
D

β
u · ∇ D

α− β
zlu D

α
zludx

� I1 + I2.

(12)

We divide I1 into four parts, as follows:
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I1 � 
m

|α|>0


0<|β|≤[m/2]

α
β

 
Rd



d

l�1
D

β
zlu · D

α− β
zlu ∇D

α
u(  dx

+ 
m

|α|>0


m− 1

|β|≤[m/2]+1

α
β

 
Rd



d

l�1
D

β
zlu · D

β− α
Dlu ∇D

α
u(  dx

+ 

m

|α|>0


d

l�1

Rd

zlu D
α
zlu ∇D

α
u( ( dx

+ 
d

l�1


|β|�m


Rd

D
β
zluzlu ∇D

α
u( dx

� I11 + I12 + I13 + I14.

(13)

Integrating by parts, we observe that

I11 ≤C 
m

|α|>0


0<|β|≤[m/2]

D
β
zlu

�����

�����L4 D
α− β

zlu
�����

�����L4‖∇u‖m

≤C 
m

|α|>0


0<|β|≤[m/2]

D
β+1

u
�����

�����L4 D
α− β∇u

�����

�����L4‖∇u‖m.

(14)

As m≥ s0 + 1 and β + 2≤ [m/2] + 2≤ (m/2) + 2≤m, it
follows that

I11 ≤C‖u‖m‖∇u‖
2
m. (15)

Similarly, α − β + 2≤m for β≥ [m/2] + 1, and thus,

I12 ≤C‖u‖m‖∇u‖
2
m. (16)

Now, we determine the bounds of I13 and I14, as follows:

I13 � 
m

|α|�0


d

l�1

Rd

zlu D
α
zlu ∇D

α
u( ( dx

≤C‖∇u‖L∞‖∇u‖
2
Hm ≤C‖u‖H3‖∇u‖

2
Hm

≤C‖u‖Hm ‖∇u‖
2
Hm .

(17)

Along with the above estimate, we have the following:

I14 � 

d

l�1


|β|�m


Rd

D
β
zluzlu ∇D

α
u( dx

≤C‖u‖Hm ‖∇u‖
2
Hm .

(18)

For I2, integrating by parts yields the following:

I2 � − 
m

|α|�0


|β|>0

α
β

 
Rd

D
β
u · ∇Dα− β

zlu · D
α
zludx

≤ 
m

|α|�0


0<|β|≤[m/2]

α
β

 
Rd

D
β
u · ∇Dα− β

zlu · D
α
zludx

+ 
m

|α|�0


0≤ |α− β|<m− 3

α
β

 
Rd

D
β
u · ∇Dα− β

zlu · D
α
zludx

+ 
m

|α|�0


m− 3<|α− β|≤(m/2)

α
β

 
Rd

D
β
u · ∇Dα− β

zlu · D
α
zludx

� I21 + I22 + I23.

(19)

Estimating the integrals one by one in (19), it is easy to
verify that

I21 ≤C 
m

|α|�0


0<|β|≤[m/2]

D
β
u

�����

�����L∞
D

α− β+1∇u
�����

�����L2‖∇u‖Hm

≤C‖u‖Hm ‖∇u‖
2
Hm ,

(20)

since for β< [m/2], ‖Dβu‖L∞ ≤C‖Dβu‖H2‖u‖Hm (m≥ 4).
By the interpolation and Hölder inequalities, the fol-

lowing can be inferred:

I22 ≤C 
m− 3<|α− β|<(m/2)

D
β
u

�����

�����L4 ∇D
α− β+1

u
�����

�����L4‖∇u‖Hm

≤C‖u‖Hm ‖∇u‖
2
Hm .

(21)

As in the proof of I21, the following can be verified:

I23 ≤C 
|α− β|≤m− 3

D
β
u

�����

�����L2 ∇D
α− β+1

u
�����

�����L∞
‖∇u‖Hm

≤C‖u‖Hm ‖∇u‖
2
Hm .

(22)

+erefore, we have shown that

((u · ∇)Δu, u)Hm


≤C‖u‖Hm ‖∇u‖

2
Hm . (23)

Finally, integrating by parts yields the following:



d

j�1
Δuj∇uj, u 

Hm





≤ 
d

j�1


|β|�1
Δuj∇uj, z

β+1
u 

Hm− 1 + 
d

j�1
Δuj∇uj, u 

L2

≤ 
d

j�1
Δuj∇uj

�����

�����Hm− 1 ∇
2
u

����
����Hm− 1 +‖u‖L∞‖Δu‖L2‖∇u‖L2

≤C‖∇u‖Hm− 1‖Δu‖Hm− 1 ∇2u
����

����Hm− 1 +‖u‖H3‖∇u‖
2
H1

≤C‖u‖Hm ‖∇u‖
2
Hm .

(24)

+erefore,

((u · ∇)Δu, u)Hm


 + 

d

j�1
Δuj∇uj, u 

Hm





≤C‖u‖Hm ‖∇u‖
2
Hm .

(25)

□

3. Main Theorem and Its Proof

We state the main result, which is as follows: the classical
results of (1) will exist in the maximal interval of the solution
of the Euler equation (3) and converge to the solutions of
Euler equations under suitable assumptions of the initial
velocity.+emain results of this paper are described in detail
in this section.

Theorem 2. Let m> (d/2) + 2 and u0 ∈ Hm(Rd) be a di-
vergence-free and solenoidal vector uα,]

0 ∈ Hm+1(Rd), which
can be approximated by u0 as follows:
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‖uα,]
0 − u0‖m⟶ 0, as α, ]⟶ 0

α‖∇uα,]
0 ‖m⟶ 0, as α, ]⟶ 0

Let T∗ be the time of existence and u ∈ C([0, T∗]; Hm) be
the solution of the Euler system (3). &en, for all 0<T0 <T∗,
there exists α0, ]0 > 0 such that, for all α< α0, ]< ]0, the
second-grade fluid equation (1) has a unique solution
uα,] ∈ C([0, T0]; Hm+1(Rd)). Moreover,
α ∇uα,]����

����L∞ 0,T0;Hm( ) + u
α,]

− u
����

����L∞ 0,T0;Hm( )⟶ 0, as α, ]⟶ 0,

α u
α,]����

����L∞ 0,T;L2( )
+ u

α,]
− u

����
����L∞ 0,T0;L2( )

≤C (]t)
(1/2)

+ αt
(1/2)

+ u
α,]
0 − u0

����
����L2 + α ∇uα,]

0

����
����L2 ,

α ∇uα,]����
����L∞ 0,T;HS0( ) + u

α,]
− u

����
����L∞ 0,T;HS0( )

≤C (]t)
m− S0/2( ) + αt

m− S0/2( ) + u
α,]
0 − u0

����
����Hm + α u

α,]
0

����
����Hm ,

(26)

for all 0< t<T0 and (d/2)≤ S0 ≤m − 1, and C depends only
on d and T0.

Remark 1. For u0 ∈ Hm(Rd), from [16], if we choose a
suitably small ε> 0 such that (α/ε)⟶ 0, then there exists a
uε
0 ∈ Hm+1(Rn) such that

u0 − u
ε
0

����
����Hm⟶ 0,

α ∇uε
0

����
����Hm⟶ 0, as α⟶ 0, ]⟶ 0.

(27)

Proof. We prove this theorem using the following three
steps.

Step 1 (energy estimates): we easily obtain the uniform
existence interval of the solutions to the second-grade
fluid equation (1) by using the Kato–Lai +eorem [15]
with the following energy estimates (dropping α and ])
from Lemma 1:

d

dt
‖u‖

2
Hm + α2‖∇u‖

2
Hm  + ]‖∇u‖

2
Hm ≤C‖u‖s0

‖u‖
2
Hm

+ α2‖u‖s0
‖∇u‖

2
Hm ,

(28)

where m + 1> s0 > (d/2) + 1. +erefore, there exists a
T∗ > 0 that only depends on ‖uα,]

0 ‖s0
, and we have a

uniform bound of uα,] for all t ∈ [0, T∗):

‖u‖L∞ 0,t;Hm( ) ≤K, (29)

where K is independent of α, ] and 0< α< α0, 0< ]< ]0.
Step 2 (convergence in L2): the difference between (1)
and (3) is given by

(u − u)t − α2Δut − ]Δu +(u · ∇u − u · ∇u) − α2(u · ∇)Δu

− α2 

d

j�1
Δuj∇uj � − ∇ p +

1
2
|u|

2
− p ,

(30)

where u � uα,] and p is the pressure of the Euler
equation (3).
Multiplying both sides of (30) by (u − u) and inte-
grating in Rd, we obtain
d
dt

‖u − u‖
2

+ α2‖∇u‖
2

− α2(∇u,∇u) 

+ α2 ∇u,∇ut(  + ]‖∇u‖
2

− ](∇u,∇u)

+ 
Rd

(u − u)∇u(u − u) − α2
Rd

(u · ∇)Δu(u − u)

− α2 

d

j�1

Rd
Δuj∇uj(u − u)

� 0.

(31)

It is evident that

α2
Rd

(u · ∇)Δuudx � − α2 

d

i�1


d

j�1

Rd

uiΔujziuj

� α2 

d

i�1


d

j�1


d

l�1

Rd

zluizlujziuj

+ 
Rd

uizlujzlziuj

≤ α2‖∇u‖
2
‖∇u‖L∞ + α2‖u‖L4‖∇u‖L2 ∇2u

����
����L4

≤C‖u‖H3 α2‖∇u‖
2

 .

(32)

Similarly,

α2 

d

l�1

Rn
∇ui∇uju

� α2 

d

j�1
− 

Rd
zluj∇zluju + 

Rd
zluj∇ujzlu 

≤ α2 

d

l�1

Rd

zluj∇ujzlu≤C‖∇u‖L∞α
2
‖∇u‖

2

≤C‖u‖H3 α2‖∇u‖
2

 .

(33)

Equation (31) can be rewritten as follows:
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d

dt
‖u − u‖

2
+ α2‖∇u‖

2
− α2(∇u,∇u)  + ]‖∇u‖

2

≤ α2‖∇u‖ ∇ut

����
���� + ]‖∇u‖‖∇u‖

+‖∇u‖L∞‖u − u‖
2

+ Cα2‖u‖H3‖∇u‖
2
.

(34)

It can be inferred that

‖u − u‖
2

+ α2‖∇u‖
2

+ ]
t

0
‖∇u‖

2ds

≤
α2

2
‖∇u‖

2
+
α2

2
∇u0

����
����
2

+
α2

2
∇uα,]

0

����
����
2

+
α2

2
‖∇u‖

2

+
]
2


t

0
‖∇u‖

2
+
]
2


t

0
‖∇u‖

2
+ C 

t

0
‖]‖H3‖u − u‖

2

+ 
t

0
C ‖u‖H3 + 1( α2‖∇u‖

2
+
α2

2


t

0
∇ut

����
����
2ds

+ u
α,]
0 − u0

����
����
2

+ α2 ∇u0
����

����
2
.

(35)

Letting g(t) � ‖u − u‖2 + α2‖∇u‖2, (35) becomes

g(t)≤ 
t

0
g(t)ds + f α, ], u0, ]0( , (36)

where

f α, ], u0, ]0(  � Cα2t + C]t + u
α,]
0 − u0

����
����
2

+ α2 ∇uα,]
0

����
����
2⟶ 0,

as α⟶ 0, ]⟶ 0.

(37)

By the Gronwall inequality, we obtain the following:

‖u − u‖
2

+ α2‖∇u‖
2 ≤Cα2t + C]t + u

α,]
0 − u0

����
����
2

+ α2 ∇u0
����

����
2
.

(38)

By the energy estimate (29) and the interpolation in-
equality (38), the following can be obtained for any
0< s<m, 0< t<T0:

‖u − u‖L∞ Hs( ) + α‖∇u‖L∞ Hs( ) ≤Cαs/m
t

s/2m
+ C(]t)

s/2m

+ u
α,]
0 − u0

����
����Hm + α ∇uα,]

0

����
����Hm ,

(39)

since

‖u − u‖Hs ≤C‖u − u‖
s/m

‖u − u‖
1− (s/m)
Hm ,

α‖∇u‖Hs ≤C(α‖∇u‖)
s/m α‖∇u‖Hm( 

1− (s/m)
.

(40)

Step 3: (convergence in Hm): From Lemma 1, we know
the following:

((u · ∇)∇u, u)Hm


≤C‖u‖Hm ‖∇u‖Hm ‖∇u‖Hm+2 , (41)



d

j�1
Δuj∇uj, u 

Hm




≤C‖u‖Hm ‖∇u‖Hm ‖u‖Hm+2 . (42)

From the energy estimates (41) and (42), we ensure the
convergence in Hm by requiring regularization of the initial
data. For all δ > 0, we take uδ

0 such that

u
δ
0

�����

�����Hm
≤C u0

����
����Hm,

u
δ
0

�����

�����Hm+k
≤

C

δk
, k ∈ Z+.

(43)

For any s, such that (d/2)< s<m − 1, we have

u
δ
0 − u0

�����

�����Hs
≤Cδm− s

,

u
δ
0 − u0

�����

�����Hm
⟶ 0,

(44)

as δ⟶ 0. +e existence of uδ
0 can be constructed by the

following previously reported approaches [4, 16]. +e
maximum existence time T0 of the Euler equations only
depends on ‖u0‖s0

(s0 � (d/2) + 1). +us, for any δ > 0, there
exists a uniform interval (0, T0) in which the solution uδ of
the Euler equations exists. Furthermore, ‖uδ‖Hm ≤C,
‖uδ‖Hm+k ≤ (C/δk)(k � 1, 2 . . .), and ‖uδ

t ‖Hm+1 ≤ (C/δ).
Similar to a previous report [4], for any (d/2)< s<m − 1,

we have

u
δ

− u
�����

�����L∞ Hm( )
≤C u

δ
0 − u0

�����

�����Hm
+ δm− s− 1

T . (45)

For equation (30), we have an energy estimate for
w],α,δ � u],α − uδ, and we obtain the following (dropping ], α
and δ):

d

dt
‖w‖

2
Hm + α2‖∇u‖

2
Hm − α2 ∇u,∇uδ

 
Hm 

+ ]‖∇u‖
2
Hm + α2 ∇u,∇uδ

t 
Hm

≤ ] ∇u,∇uδ
 

Hm + C ‖w‖L∞ u
δ

�����

�����Hm+1‖w‖Hs

+ u
δ

�����

�����Hm
+‖u‖Hm ‖w‖

2
Hm

+ Cα2‖u‖Hm ‖∇u‖Hm ∇uδ
�����

�����Hm+2 + u
δ

�����

�����Hm+2 ,

(46)

since

‖w‖L∞ u
δ

�����

�����Hm+1‖w‖Hm

≤ u
α,]

− u
����

����L∞
u
δ

�����

�����Hm+1‖w‖Hm + u − tu
δ

�����

�����L∞
u
δ

�����

�����Hm+1‖w‖Hm .

(47)

From Step 2, uα,] converges to u in Hm− 1, and we deduce
the following:
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u
α,]

− u
����

����L∞
≤C u

α,]
− u

����
����L∞ Hm+1( )

≤Cα(m− 1/m)
t
(m− 1/2m)

+ C(]t)
(m− 1/2m)

+ g
(1/2)

(0),
(48)

where g(0) � ‖uα,]
0 − u0‖

2
m + α‖∇uα,]

0 ‖
2
m. On contrary, from

(45), we know that

u − tu
δ

�����

�����L∞
≤C u

δ
0 − u0

�����

�����Hm
+ δm− s′T  :� f(δ), (49)

for some s0 < s′ <m − 1. Combining estimates (48) and (49)
and using (46) and the Gronwall inequality, we obtain

‖w‖
2
Hm + α2‖∇u‖

2
Hm ≤ α2 u

δ
�����

�����H3 + ]
T

0
∇uδ

�����

�����
2

Hm

+ α2 
T

0
‖∇u‖Hm + α2 

T

0
‖∇u‖Hmds

+ 
T

0

f α, ], u0, ]0( 

δ
‖w‖Hm

+ 
T

0
Cα2‖∇u‖Hm ‖u‖Hm+3

+ 
T

0
f(δ)‖w‖Hm + 

T

0
C‖w‖

2
Hm ,

(50)

where f(α, ], u0, ]0) is defined by (37). It follows that

‖u − u‖
2
L∞ 0,T0;Hm( ) + α2‖∇u‖

2
L∞ 0;T0;Hm( )

≤CT0
α2

δ
+

]
δ2

  +
f α, ], u0, ]0( 

δ
+
α2

δ3
+ u

δ
0 − u0

�����

�����Hm
+ f

2
(δ),

(51)

where δ is chosen such that (α2/δ3), (]/δ2), and
(‖uα,]

0 − u0‖Hm/δ) are sufficiently small. Letting α, ]⟶ 0
and δ⟶ 0, the following can be shown:

lim
α,]⟶0

u
α,β

− u
�����

�����
2

Hm
+ α2‖∇u‖

2
Hm  � 0. (52)

Using the continuous method, we ensure convergence
on any time interval [0, T0] for T0 <T∗, where T∗ is the
maximum existence time of the Euler equations. +is
completes the proof. □
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