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Social networks are one of the main carriers of information diffusion. Changes in social ties will affect the quality of Device-to-
Device (D2D) communications especially the video transmission. For further improving the communication utility of users, it is
of great significance to effectively integrate D2D communications and social networks. To this end, this paper utilizes a stochastic
approach to modeling and analysis of dynamic social ties in D2D collaborative video transmission. Specifically, a stochastic
mathematical model is established and analyzed, in which the combined effect of many factors such as interest, geographical
position, career, social class, value system, and interaction is considered. Based on the Brownian motion theory, the strength of
social ties among social individuals with time is studied. Next, the reliability function and adaptive parameter estimation are
performed. Finally, some examples are conducted to illustrate the main results of this paper, from which one can see that the
proposed model has a good predictive ability of the changing trend of social ties.

1. Introduction

With the development of mobile Internet and wireless
communication technology, Device-to-Device (D2D)
communications have become one of the key technologies of
the future wireless communication and social networks have
become one of the main carriers of information diffusion [1].
)rough D2D communications and social networks, people
can not only communicate with friends but also share
pictures and videos faster and more conveniently. Since the
communication equipment are usually carried by people, the
dynamic social environment and a wide range of social
applications require D2D communications, especially the
D2D collaborative video transmission, to be more self-
adapting and to meet more general communication needs.
When users share videos locally through the wireless short-
distance D2D communications, if users successfully estab-
lish a D2D link, the video streams will spread rapidly over
social networks. However, there are users’ mobility and the

occurrence of random events in social networks, and
changes in users behavior will lead to dynamic interactions
between users, which will affect the success rate of users to
establish D2D links, thereby affecting the information dif-
fusion [2]. )erefore, it is essential to study the D2D col-
laborative video transmission in conjunction with social
networks.

In [3], a D2D communication-assisted caching frame-
work for video multicast was proposed, which considers the
social trust and social reciprocity to encourage effective
collaboration between users. Wang et al. [4] studied an
Expected Available Duration (EAD) indicator to measure
the chance of D2D users’ downloading video packets from
neighbors. Zhang et al. [5] considered the D2D pairing for
cooperative video transmission. )e social tie in previous
work was usually calculated according to the personal in-
formation of users and the interaction information among
different users. However, the social communication is af-
fected by many factors, including social topology, user
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behavior, and inherent content characteristics, and the social
ties are a dynamic process that changes with time.

)e study of social ties is conducive to understanding
human behavior, which can be applied in viral spread [6],
information recommendation [7], traffic planning, and
complex socioeconomic phenomena [8]. Granovetter [9]
first defined the social ties that are a combination of time,
emotional intensity, intimacy, and reciprocity, which pro-
vides a theoretical basis for many researchers to analyze the
linear combination of the four elements of social ties.

With the development of social network, the research of
modeling the structure of social ties has been paid attention
increasingly. In [10], the authors pointed out that strangers
established social ties based on shared interests, career, or
activities. Xiang et al. [11] proposed an unsupervised model,
in which the social ties between users were regarded as a
latent variable that caused interactive behaviors. Based on
this idea, Zhao et al. [12] presented a probabilistic generative
model, which considers life activities and moving patterns.
However, Xiang et al. and Zhao et al. [11, 12] neglect the
assignment of activity topics. Meanwhile, Xiong et al. [13]
proposed a general framework to measure social ties by
similarities, interaction activities, and the co-occurrence of
users’ names. In [14], the authors calculated social ties based
on users’ profile information and interaction activities in
different activity fields. In [15], a language model based on
sentiment classification, similarity, and interactivity was
applied to compute social ties before adopting K-means
clustering method to cluster the users. It is noteworthy that
Zhao et al. and Ju and Tao [14, 15] both assume that social
ties are a static constant, resulting that the dynamic behavior
of social network cannot be analyzed.

In addition to the above theoretical studies on social ties,
there are also some application scenarios that describe social
ties [16–19]. In traditional social networking websites,
modeling the social ties has a wide spectrum of applications
[16, 17]. In [18], a graphical probabilistic model and Topical
Affinity Propagation (TAP) approach were applied to study
social ties and social influence, respectively. In [19], the
spatiotemporal patterns of social ties were represented by the
factors of the tensors. Yi et al. [20] proposed a dynamic
model with social ties and self-confirmation mechanism,
and verified the key role of social connections in information
diffusion.

Inspired by the abovementioned work and based on the
fact that the real world is a dynamic environment and it is
difficult to gather accurate real-time date to track the
changes of social ties, this paper attempts to utilize stochastic
processes to study social ties. A stochastic mathematical
model, which incorporates the combined effect of many
factors such as interest, geographical position, career, social
class, value system, and interaction, is proposed and ana-
lyzed. Specifically, the reliability function and adaptive pa-
rameter estimation are conducted. To illustrate the main
results, some numerical examples are given at the end of this
paper.

)e subsequent materials of this paper are organized as
follows. Section 2 formulates the stochastic model. Section 3
makes a mathematical analysis of this model. Some

numerical examples are given in Section 4. Finally, Section 5
outlines this work.

2. Model Formulation

2.1. Scenario Description. Social tie is a key factor for the
successful spread of video streaming among users in D2D
communications. Since there are many influencing factors in
social networks that affect the social tie between users, the
social tie between users is dynamic, which will affect the
success rate of D2D link establishment between users,
thereby affecting communication performance. Based on the
above description, the purpose of this paper is to build a
dynamic model of social ties among social individuals for
better understanding the D2D collaborative video trans-
mission. As shown in Figure 1, considering a single-cell
cellular network, there are D D2D users
D � D1, D2, . . . , DD􏼈 􏼉 and M cellular users
C � C1, C2, . . . , CM􏼈 􏼉 in the coverage area of the base sta-
tion. At time t � tk, users D1 and D2 establish a D2D
communication link and reuse the spectrum resources of
cellular user C2. Between time t � tk and t � tk+1, if D1 and
D2 have a negative interaction, resulting that the strength of
the social ties decreases and is below the trust threshold of
user D1. )en, at time t � tk+1, users D1 and D2 cannot
successfully communicate. Similarly, at time t � tk, user D4
needs to obtain the required video resources from D3, and
user D3 is willing to share the data packet with D4 if the
physical conditions are met, then a trust relationship is
established between D4 and D3 at time t � tk+1. Based on this
background, starting from the social level of users, a model
of dynamic social ties between users is established. )e
strength of the social ties between any two users i and j can
be regarded as a set of random variables Sij(t), t≥ 0􏽮 􏽯 that
related to the time t.

2.2. Model Assumption. At any time t, Sij(t) can be defined
as a random representation of the strength of social ties
between individuals, then Sij(t), t> 0􏽮 􏽯 can be understood as
a random process of social ties strength between individuals.
To modeling and analysis of dynamic social ties
Sij(t), t≥ 0􏽮 􏽯 between users i and j at any given time t, the
following assumptions are imposed:

(A1) As the social ties between users i and j can be
regarded as a random variable Sij(t), then for τ > 0,
let ΔSij(t) � Sij(t + τ) − Sij(t) represent the
change of Sij(t) during the interval (t, t + τ] and
Sij(t) � 􏽐

t
l�1 ΔSij(l).

(A2) )e social ties are influenced by many random
factors, such as interest, geographical position,
career, social class, value system, and interaction.
Let a set of random variables ξm(t), m ∈ N+􏼈 􏼉

represent these random factors.
(A3) )e random variables ξ1(t), ξ2(t), . . . , ξm(t), m ∈

N+ are independent of each other. Let Δξm(t)

represent the change of ξm(t).
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(A4) Δξ1(t),Δξ2(t), . . . ,Δξm(t), m ∈ N+ obey the same
distribution. Let E[Δξm(t)] � μ, D[Δξm(t)] � σ2 >
0 and ΔSij(t) � 􏽐

m
k�1 Δξk(t).

Lemma 1. Sij(t), t> 0􏽮 􏽯 is a Markov process.

Proof. Assume that Sij(tk) � Stk
, for any time t � tk, k ∈ N+.

)en,

P Sij tk( 􏼁≤ Stk

􏼌􏼌􏼌􏼌􏼌 Sij t1( 􏼁 � St1
, . . . , Sij tk−1( 􏼁 � Stk−1

􏼚 􏼛

� P Sij tk( 􏼁 − Sij tk−1( 􏼁≤ Stk
− Stk−1

􏼌􏼌􏼌􏼌􏼌ΔSij t1( 􏼁, . . . ,ΔSij tk−1( 􏼁􏼚 􏼛

� P Sij tk( 􏼁≤ Stk

􏼌􏼌􏼌􏼌􏼌 Sij tk−1( 􏼁 � Stk−1
􏼚 􏼛.

(1)

According to the above formula, one can get that, given
the present state of the process, the future state is inde-
pendent of the past. From the definition of Markov process
in [21], the random variable Sij(t) satisfies the Markov
property, and Sij(t), t> 0􏽮 􏽯 is called the Markov process.
)us, the proof is complete. □

Lemma 2. 1e random variable ΔSij(t) obeys the normal
distribution.

Proof. From assumptions (A3) and (A4), the claimed result
follows from the central limit theorem [22].

Collecting the foregoing assumptions and Lemmas 1 and
2, at time t � tk, k ∈ N+, the social ties Sij(t) can be modeled
by the Wiener process with an adaptive drift, which can be
expressed by the following stochastic system [23]:

u tk( 􏼁 � u tk−1( 􏼁􏼈 + ηW tk( 􏼁,

Sij tk( 􏼁 � Sij tk−1( 􏼁 + u tk−1( 􏼁Δtk + αB Δtk( 􏼁,
(2)

where Δtk � tk − tk−1, W(tk) is a Brownian motion inde-
pendent of B(tk) (B(tk) is the standard Brownian motion)
and W ∼ N(0, Q), Q is a constant, u(tk) is the drift pa-
rameter at tk, and η and α are diffusion coefficients of the
adaptive drift and social ties, respectively. □

3. Model Analysis

3.1.ReliabilityFunction. )is section considers a liner model
of system (2) based on a Wiener process as follows:

Sij(t) � St0
+ ut + αBt, (3)

where St0
is the observed social tie at t � t0, u is the drift

parameter and utk
∼ N(uk, σk) at t � tk, k ∈ N+, and Bt is the

standard Brownian motion.
During the interaction, any two users i and j trust each

other whether their relationship reaches to a given threshold
ST

ij or not,T � t | Sij(t)≥ ST
ij􏽮 􏽯 is the time that users trust each

other for the first time. It is well known that the Probability
Density Function (PDF) of T follows inverse Gaussian
distribution [24]. )en, it can be expressed as follows [25]:

F
T
(t | u) �

ST
ij

������
2πα2t3

√ exp −
ST

ij − ut􏼐 􏼑
2

2α2t
⎛⎝ ⎞⎠. (4)

According to statistic characteristics and conditional
distribution of the Wiener process, the cumulative distri-
bution function (CDF) can be expressed as the following
reliability function [24, 25]:

R
T
(t | u) � 1 − P Sij(t)≤ S

T
ij􏼐 􏼑

� 1 −Φ
ST

ij − ut

α
�
t

√􏼠 􏼡 +Φ −
ST

ij + ut

α
�
t

√􏼠 􏼡exp −
2uST

ij

α2
􏼠 􏼡,

(5)

where Φ(·) expresses the CDF of the standard normal
random variable.

Combined the foregoing analysis, one of main results of
this paper can be obtained as follows.

Theorem 1. For the social tie process Sij(t), t> 0􏽮 􏽯 given by
system (3), the PDF and CDF can be expressed as equations
(4) and (5), respectively.

3.2. Adaptive Parameter Estimation. In this section, the
Kalman filtering [26] is applied to estimate the mean and
variance of drift parameter u. On this basis, parameters α
and Q are estimated by the expectation-maximization (EM)
algorithm [27].

For a given observation sample S � St1
, St2

, . . . , Stk
􏽮 􏽯,

the observation equation of drift parameter u forms a
Kalman filtering framework. Let utk

and σtk
stand for the

updated drift parameter and variance, respectively. Let
utk|tk−1

and σtk|tk−1
represent the estimated mean and var-

iance based on the previous moment, respectively.
)erefore, the mean and variance of drift parameter u can
be derived from the following Kalman filtering equations
for k ∈ N+:

utk tk−1| � utk−1
,

σtk tk−1| � σtk−1
+ η2Q,

Kk � σtk tk−1| + σtk tk−1| + α2􏼒 􏼓
−1

,

utk
� utk−1

+ σtk tk−1| Kk Stk
− utk tk−1|􏼒 􏼓,

σtk
� 1 − Kk( 􏼁σtk tk−1| .

(6)

D2{tk+1}D2{tk}

D1{tk}

D3{tk}

D4{tk+1}

D7{tk}

D8{tk}

D4{tk}
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Figure 1: D2D collaborative video transmission scenario.
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With initial conditions ut0
� u0 and σt0

� σ0, Kk is the
Kalman gain.

)e EM algorithm includes E-step and M-step, and it is
necessary to take the expectation of the complete log-like-
lihood function in the first step, and then maximize the
expectation to obtain estimated parameters until a con-
vergence is achieved.

Let Θ � (u0, σ0, α, Q) and u � ut0
, ut1

, . . . , utk−1
􏽮 􏽯. )en,

the complete log-likelihood function for n points can be
expressed as follows [28]:

L(Θ, S; u) � log P ut0
;Θ􏼐 􏼑 􏽙

n−1

k�1
P utk

utk−1
;Θ

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 􏽙

n

k�1
P Stk

utk−1
;Θ

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎡⎣ ⎤⎦,

(7)

where

ut0
∼ N u0, σ0( 􏼁,

utk
utk−1

􏼌􏼌􏼌􏼌􏼌 ∼ N utk−1
, Q􏼐 􏼑,

Stk
utk−1

􏼌􏼌􏼌􏼌􏼌 ∼ N Stk−1
+ utk−1

tk − tk−1( 􏼁, σ2 tk − tk−1( 􏼁􏼐 􏼑.

(8)

By ignoring constant terms, the function L(Θ, S; u) can
be rewritten as follows:

2L(Θ, S; u) � −log σ0 −
ut0

− u0􏼐 􏼑
2

σ0
− 􏽘

n−1

k�1
logQ −

utk
− utk−1

􏼐 􏼑
2

σ0
⎛⎝ ⎞⎠

− 􏽘
n

k�1
2 log α −

Stk
− Stk−1

− utk−1
Δtk􏼐 􏼑

2

σ2Δtk

⎛⎝ ⎞⎠.

(9)

Next, E(u2
tk

| S,Θ) and E(utk
utk−1

| S,Θ) are calculated by
the Rauch–Tung–Striebel (RTS) smoothing algorithm [29].
)e backward iteration rules are as follows:

Dtk−1
� σtk−1

σ−1
tk tk−1| ,

utk|n
� utk

+ Dtk
utk+1 | n

− utk
􏼒 􏼓,

σtk|n
� σtk tk| + D

2
tk

σtk+1 | n
− utk+1 tk|􏼒 􏼓,

(10)

where utk|n
, σtk|n

, and Dtk−1
are the RTS smoothing state es-

timation, variance, and gain function on the basis of the
current estimated parameters, respectively. )en,

E utk
| S,Θ􏼐 􏼑 � utk|n

,

E u
2
tk

| S,Θ􏼐 􏼑 � σtk|n
+ u

2
tk|n

,

E utk
utk−1

| S,Θ􏼐 􏼑 � Dtk−1
σtk|n

+ utk|n
utk−1|n

.

(11)

Let Eu L(Θ, S;u){ } denote the conditional expectation of
the complete log-likelihood function given utk

,
Ctktk−1|n � E(utk

utk−1
| S,Θ), and Ctk|n � E(u2

tk
| S,Θ). )en,

Eu L(Θ, S; u){ } � −log σ0 −
Ct0|n − 2u0u0|n + u2

0

σ0

+ 􏽘

n−1

k�1
log

1
Q

−
Ctk|n + Ctk−1|n − 2Ctktk−1|n

Q
􏼠 􏼡

− 􏽘
n

k�1
2 log α +

Stk
− Stk−1

􏼐 􏼑
2

+ tk − tk− 1( 􏼁
2
Ctk−1|n

α2 tk − tk−1( 􏼁
⎛⎝ ⎞⎠

+ 􏽘
n

k�1

2 Stk
− Stk−1

􏼐 􏼑 tk − tk−1( 􏼁utk−1|n

α2 tk − tk−1( 􏼁
.

(12)

Finally, the estimation of parameters can be obtained by
maximizing the complete log-likelihood function in (12).

4. Numerical Examples

Some numerical examples are given to illustrate the main
results of this paper in this section.

Example 1. Consider system (2) with initial conditions
u0 � 0.1, σ0 � 0.1, n � 50, and ST

ij � 0.7.)e social tie sample
S is randomly produced by obeying normal distribution.
Figure 2 shows the estimated mean and variance of the drift
parameter u and the square of diffusion coefficients α2 and
Q.

Example 2. Consider system (2) with initial conditions
u0 � 0.1, σ0 � 0.1, n � 3, and ST

ij � 0.7. )e social tie sample
S is randomly produced by obeying normal distribution.
Figure 3 displays the probability density function of
achieving social trust for the first time.

Example 3. Consider system (2) with initial conditions
u0 � 0.1, σ0 � 0.1, n � 3, and ST

ij � 0.7. )e social tie sample
S is randomly produced by obeying normal distribution.
Figure 4 shows the reliability of social tie over time. As time
increases, the reliability between users gradually increases
with time. In addition, at the same time point, the greater the
drift coefficient, the greater the reliability.

Example 4. Consider system (2) with initial conditions
u0 � 0.1, σ0 � 0.1, and n � 50. )e social tie sample S is
randomly produced by obeying normal distribution.
Figure 5 reveals the variation curve of the estimated social tie
strength under adaptive and fixed drift coefficient, respec-
tively. )e changes of social tie over time are not monot-
onous, and the interaction process is positive or negative.
)e estimated values obtained from the two methods have
the same trend as the observed values, and the model has a
good predictive ability. In addition, the predicted value

4 Discrete Dynamics in Nature and Society
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Figure 2: )e estimated parameters for system (2) with initial conditions given in Example 1.
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conditions given in Example 3.
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obtained by updating the drift parameter is closer to the real
value than that of the fixed drift parameter.

5. Conclusions and Future Work

In this paper, a stochastic mathematical model describing
the social ties, which incorporates the combined effect of
many factors, such as interest, geographical position, career,
social class, value system, and interaction, has been proposed
and analyzed. )e reliability function and adaptive pa-
rameter estimation have both been determined. To illustrate
the main results, some numerical examples have been given
at the end of this paper. )is work contributes to the un-
derstanding of social phenomena.

As research based on the background of big data and ar-
tificial intelligence gradually enters people’s vision [30, 31], our
proposed model can also open up new research directions
under this background. For example, using artificial intelligence
methods to abstract and analyzemultidimensional features such
as network behavior, content attributes, positional relationships,
structural features, and privacy protection policies. In addition,
the data in the social network is dynamic and transmitted in the
form of data streams. )e linking and generation of relation-
ships are constantly changing, and the popularity of the video
will also change over time. For large-scale dynamic networks, it
is of great significance to further study efficient dynamicmodels
and algorithms for video transmission.
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